
An Overlay Approach to Data Security in Ad-Hoc Networks

Jörg Liebeherr Guangyu Dong
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904

Abstract— Recently, application-layer overlay protocols have
been considered for enhancing delivery services in mobile ad-hoc
networks. This paper shows that overlay networks can provide
forward and backward secrecy for application data in an ad-
hoc network. We present a key management and encryption
scheme, called neighborhood key method, where each node shares
a secret with authenticated neighbors in the ad-hoc network.
The neighborhood key method avoids expensive global re-keying
operations when the membership in the network changes or when
the network is partitioned. The method is evaluated in a newly
developed application-layer ad-hoc routing protocol. Both the ad-
hoc routing protocol and the security scheme are implemented in
a software system for application-layer overlay networks. Exten-
sive indoor and outdoor measurement experiments with handheld
wireless devices evaluate the effectiveness of the neighborhood
key method and the performance of application-layer ad-hoc
networks.

I. I NTRODUCTION

A common characteristic of mobile ad-hoc networks and
application-layer overlay networks is that they do not make
a distinction between endsystems and relay systems (routers),
that is, endsystems relay traffic for which they are neither the
sender nor the receiver. In addition, both types of networks
must be able to cope with frequent changes of the network
topology and the set of nodes attached to the network. These
similarities have stimulated interest in leveraging solutions
gained in one type of network to the other. Notably, several
studies recently applied application-layer overlay protocol
solutions in a mobile ad-hoc context to run ad-hoc routing
protocols at the application layer [10], [24] or to realize a
multicast service in an ad-hoc network [4], [8], [9], [27].

An advantage of building ad-hoc networks at the application
layer is that they are easy to deploy, since there is no need
for compatible mesh radios or operating systems. Further,
application layer solutions make it easy to add or customize
network services, such as multicast, streaming, or security. The
main drawbacks of ad-hoc routing at the application layer is an
expected loss of performance and a reduced ability to interact
with lower layers of the protocol stack.

This paper shows how application-layer overlay networks
can effectively ensure backward secrecy (a new member of
the network cannot access data transmitted before the member
joined) and forward secrecy (a member cannot access data
that is transmitted after the member left) in a mobile network.
We present a key management and encryption method, called
neighborhood key method, where each node shares a secret
key with authenticated neighbors in the ad-hoc network. The
neighborhood key method avoids network wide re-keying

operations, without requiring that payload data be re-encrypted
at each hop.

In addition to the novel security scheme, we are the first
to present empirical measurement data that show the perfor-
mance of application-layer ad-hoc networking on commer-
cially available portable wireless devices (PDAs).1 The paper
also presents a new spanning tree routing protocol for ad-hoc
networks which supports unicast and multicast transmissions,
and evaluates its performance with the proposed security
scheme.

In Section II we discuss an overlay software system that
is the basis for the protocol implementation presented in this
paper. In Section III we present the neighborhood key method
and in Section IV we present a tree-based ad-hoc routing
protocol. Each section includes a performance evaluation. In
Section V we present experiments with mobile nodes that mea-
sure the performance of the routing protocol from Section IV
combined with the security mechanisms of Section III. We
provide brief conclusions in Section VI.

II. OVERLAY PERFORMANCE INAD-HOC NETWORKS

In this section we evaluate the delay and throughput per-
formance of application-layer overlay networks in an ad-hoc
environment. The implementation and experimentation of the
protocols presented in this paper are realized in a software
system for application-layer overlay networks [16], called
HyperCast, which is described in detail in [2].

A. The Overlay Software System

The HyperCast software uses the concept of an overlay
socket as an endpoint of communication in an overlay network.
An overlay network is viewed as a collection of overlay
sockets (see Figure 1). The overlay socket has a message-based
API for unicast and multicast transmissions that is independent
of the overlay topology and the substrate (underlay) network.
An overlay socket is configured with attributes from a config-
uration file that specify the name of the overlay network to
be joined, the type of overlay topology, the type of substrate
network, as well as detailed information on the size of inter-
nal buffers, protocol-specific timers, and security properties.
Overlay sockets must have compatible configuration attributes
to join the same overlay network.

Each overlay socket has alogical addressand aphysical
address. The logical address is a unique identifier of the socket
in the overlay network, with a format that is specific to the

1The measurement data presented in this paper are a selection of a large
set of measurement data available at [2].

Substrate Network

Overlay
socket

Application

Overlay
socket

Application

ApplicationOverlay
socket

Application

ApplicationOverlay
socket

Application

(a) Overlay socket
(b) Overlay Network

(Collection of overlay sockets)

 Overlay Socket

Forwarding
Engine

Overlay Socket API

Messages of
overlay protocol

Message
Buffer

Overlay
Protocol

Node
Adapter

Application
messages

Application Program

Substrate Network (e.g., Internet)

Socket
Adapter

Fig. 1. Components of overlay sockets.

topology of the overlay. The physical address is a transport
layer address in the substrate network. When the overlay
socket runs over an IP network, physical addresses consists
of IP addresses and TCP or UDP port numbers.

In Figure 1(a) we show the main components of an overlay
socket and their interactions. The overlay protocol component
establishes and maintains the overlay network topology. The
ad-hoc routing protocol presented in Section IV is imple-
mented as a new type of overlay protocol. Other available over-
lay protocols include a triangulation graph [15], a hypercube
[14], and the Pastry distributed hash table [23].2 The forward-
ing engine is responsible for sending and receiving formatted
application messages in the overlay network. Application
messages have a header of 26 bytes or more. Overlay messages
can be transmitted to a single overlay socket (unicast) or to
all overlay sockets in the network (multicast). The components
used to access the substrate network are called adapters. Each
overlay socket has two adapters: a node adapter and a socket
adapter. The former handles messages of the overlay protocol
and the latter transmits and receives application messages. The
two interfaces to the substrate network reflects a separation of
the control path (for routing messages) and the data path (for
application data).

Note the similarity of the overlay socket to a software
implementation of IP router functions: the forwarding engine
corresponds to the IP module, the overlay protocol corresponds
to a routing protocol, and the adapters play a similar role as
device drivers.

B. Measurements in a Static Ad-hoc Network

Next we present measurement experiments that evaluate
the performance of an overlay network on wireless hand-
held devices. The experiments involve up to eight HP iPAQ
5550 PDAs, each with a 400 MHz XScale CPU, 128 MB
SDRAM, 48 MB Flash ROM memory, and a 802.11b wireless
network card. The 802.11b card is configured to run in
peer-to-peer mode, where data is exchanged directly between
wireless cards without access points. The software platform is
Windows Mobile 2003 and the Jeode Runtime 1.9 Java Virtual
Machine (JVM). The Jeode JVM implements the PersonalJava

2The implementation of Pastry is based on the FreePastry distribution [1].

without overlay (plain TCP)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t (

kb
ps

)

Sequence Number

with overlay

 0

(a) Throughput.

with overlay

 250

 500

 750

 1000

 1250

 1500

 0 2000 4000 6000 8000 10000

R
ou

nd
 T

rip
 T

im
e

(m
s)

Sequence Number

without overlay (plain TCP)
 0

(a) Round-trip delay.

Fig. 2. Single-hop measurements.

specification, which is a subset of Java 1.1. External class
libraries are added for functions not supplied by the Jeode
JVM.

The experiments in this section evaluate the throughput
and delay performance of a static ad-hoc overlay network
with fixed topologies. All PDAs run a single application
program, each with a single identically configured overlay
socket. The following experiments attempt to give insight in
the performance limitations of the PDAs and the overhead of
the overlay software.
Single-Hop (Unicast). In this experiment, two PDAs located
in a room at a distance of about 30 feet exchange traffic. One
PDA (sender) transmits 10,000 messages with a payload of
512 bytes to another PDA (receiver). For each message, the
receiver transmits a short acknowledgment with a payload of
32 bytes. The sender transmits messages in a greedy fashion.

We use TCP connections over an IP network as substrate
network (i.e., the overlay sockets are configured with socket
adapters that establish TCP connections for transmitting ap-
plication messages). With this choice, the flow and congestion
control algorithms of TCP settle the transmission rate of the
sender to the maximum sustainable transmission rate. We
compare the results with a data transfer over a plain TCP
connection without an overlay network.

Figure 2(a) depicts the throughput values, where the
throughput is calculated at the receiver by computing the
number of messages received over a sliding window of

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

with overlay

 200

 400

 600

 800

 1000

 1200

 1400

75321

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

kb
ps

)

Number of Receivers

without overlay (plain TCP)

 0

Fig. 3. Single-hop measurements (Multicast).

500 messages. Figure 2(b) shows the round-trip time for each
transmitted message. The round-trip time is the elapsed time
between the transmission of a message at the sender and the
return of the corresponding acknowledgment. The measured
data exhibits a high degree of variability, which is typical for
IEEE 802.11b traffic measurements. The throughput hovers
around 500 kbps when an overlay network is used, and around
700 kbps for a direct TCP connection. We conclude that the
overhead of the overlay software is noticeable, but does not
stymie performance.
Single-Hop Measurements (Multicast). We repeat the pre-
vious experiment with multiple receivers. We transmit appli-
cation data with a multicast operation of the overlay socket
API, which is translated into unicast TCP transmissions to
each receiver by the overlay socket. The distance between the
sending PDA and the receiving PDAs is again 30 feet, and all
receivers are placed next to each other. To avoid that the sender
becomes overwhelmed with acknowledgments, receivers do
not send acknowledgments.

Figure 3 shows the average throughput of all data transmis-
sion, averaged over all receivers, as a function of the number
of receivers. The error bars indicate the range of throughput
values for any window of 500 messages. As receivers are
added, the throughput expectedly declines. The performance
difference of the results with and without an overlay decreases
with the number of receivers. The reason is that, with many
receivers, the bottleneck is the transmission of multiple copies
of the same message, regardless of the presence of an overlay
network.
Multi-Hop Measurements (Unicast). Here we present the
results from a multi-hop outdoor experiment. For the mea-
surement experiments, we set up six PDAs in a line as shown
in Figure 4 at a distance of 30, 60, or 90 feet. The leftmost
PDA in the scenario is the sender. (Increasing the distance
between PDAs to 120 feet or more did not result in reliable
measurements as the communication between neighboring
PDAs became intermittent.) Each PDA is fixed to a pole at
a height of approximately 4 feet off the ground. Figure 5
depicts the physical setup. As in the first experiment, the
sender transmits 10,000 unicast messages to a single receiver,
which are each acknowledged by the receiver. We compute
the round-trip time and the throughput of the transmissions as
described in the first experiment.

Figure 6 depicts the average throughput values when in-

30-90ft 30-90ft 30-90ft 30-90ft 30-90ft

Fig. 4. Six PDAs in a line topology.

Fig. 5. Outdoor experimental setup with PDAs.

 0

 100

 200

 300

 400

 500

 600

 700

54321

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

kb
ps

)

Hop Count

30 feet
60 feet
90 feet

Fig. 6. Multi-hop throughput.

creasing the number of hops, for different distances between
PDAs. With 1 hop, the sender and the receiver communicate
directly, with 2 hops, there is 1 PDA between the sender
and the receiver, and so forth. The fact that the performance
sometimes seems to improve when the distance is increased
can be attributed to the limitations of running wireless ex-
periments. Our experiments were conducted over a period of
several days, since the battery lifetime of the PDAs limited
the number of experiments that can be conducted at one time.
However, as has been observed elsewhere [3], [7], conducting
the identical wireless measurement at different times of the
day or under different weather conditions may have widely
varying outcomes.

III. N EIGHBORHOODKEY METHOD

We present a new key management and encryption scheme,
called theneighborhood key method, that can assure integrity
and confidentiality of application data in overlay networks,
with backward secrecy and forward secrecy. Even though our
evaluation will focus on ad-hoc networks, we note that the
method can be applied to overlays connected to a network
infrastructure. We remark that the solutions presented in this
section are orthogonal to the problem of secure routing, which
seeks protection against attacks to the routing protocol [11],
[13].

The security mechanisms discussed in this section are
implemented as a layer between the adapters and the overlay
protocol in the overlay socket (see Section II). This has
the benefit that the implementation of the mechanisms is
independent of a particular overlay protocol. Details of the
security protocols and their implementation can be found in
[2].

In most approaches to secure group communications in
overlays or network-layer multicast, members share a single
symmetric group key for encrypting and decrypting messages
[26]. The group key is updated and distributed each time the
group membership changes [25], [28], [31]. This is referred
to as group re-keying. Since group re-keying can be complex
and often assumes access to a common server, we resort to
a different solution. In our approach, each group member has
its own key that it shares only with its immediate neighbors
in the overlay network. As a result, re-keying becomes a local
operation. The drawback of a straightforward implementation
of local keys is that each message must be decrypted and re-
encrypted each time it is forwarded. Our proposed scheme
avoids this pitfall by encrypting message with message-
specific keys which are attached to a message. In this way, only
the message key must be decrypted and re-encrypted when a
message is forwarded.

A. Authentication

The difficulty of authentication and trust management with-
out access to an infrastructure with trusted third parties or
intermediaries is well-documented [11], [24], [32]. Several so-
lutions have been proposed, including advance dissemination
of private keys for all node pairs, threshold cryptography ap-
proaches [18], [32], and many more, each offering a particular
trade-off with respect to overhead, scalability, availability, and
the ability to perform trust revocation.

We employ an authentication method based on public key
certificates. We assume that each node has a certificate that has
been previously signed by a trusted third party. Each node also
holds certificates of trusted third parties. Without online access
to certificate authorities, trust revocation is not resolved by this
method, unless it is enhanced by a distributed authentication
protocol, e.g., [18].

In our scheme, an exchange and verification of certificates
between neighbors in the overlay occurs only when needed.
When a node receives an overlay protocol message from an-
other node for the first time it requests a signed certificate from
this node and includes its own certificate in the request. Once
certificates are exchanged, the nodes exchange secret keys
that are used to encrypt or sign messages. Each node accepts
protocol and application messages only from authenticated
nodes.

The exchange of certificates is illustrated in Figure 7 for
two nodes A and B. When B receives an overlay protocol
message from A and the certificate of A is unknown, node B
discards the message (Step 1), and sends a certification request
(CertRequest) message to A (Step 2), which includes B’s cer-
tificate. When A receives the request, it verifies the signature
of B’s certificate and, if valid, stores the certificate. Verification
of the signature requires that the private key that signed the
certificate in question be the private counterpart of the public
key known to belong to a trusted third party. In the next step
(Step 3), A sends a certification reply (CertReply) message
containing its own certificate. In Figure 7, B’s authentication
at A is completed in Step 2, and A’s authentication at B is

A BProtocol message

1. Check for certificate
2. If not found, discard message

and send CertRequest

Step 1.

A BCertRequest

1. Check certificate validity
2. If valid, store certificate and send CertReply

A BCertReply

1. Check certificate validity
2. If valid, store certificate

Step 3.

Step 2.

Fig. 7. Authentication of nodes.

completed in Step 3. Once authenticated, the nodes can process
each others protocol messages and application messages.

B. Exchange of Private Keys and Data Encryption

Encryption of data and the signing of hashes is done with
symmetric keys. Each node maintains a single symmetric key
with all authenticated nodes. We call this key aneighborhood
key. Note that a node authenticates each node from which it
receives a protocol message. This includes the current neigh-
bors in the overlay, but also potential future neighbors. When-
ever the set of (current or potential) authenticated neighbors
changes, i.e., a new neighbor appears or an existing neighbor
disappears, the node computes a new neighborhood key and
sends this new key to all authenticated nodes. Neighborhood
keys are securely exchanged in aKeyUpdatemessage, by
encrypting the key with the public key of the receiver using the
RSA algorithm. The public key is obtained from the certificate
that was exchanged during the authentication.

The generation of a new neighborhood key and the trans-
mission of aKeyUpdatemessage to authenticated neighbors is
triggered when (1) a new authenticated neighbor has appeared;
(2) an authenticated neighbor requests the neighborhood key;
(3) an authenticated neighbor leaves the neighborhood or has
not sent a message for a long time; (4) the node has reached the
maximum sequence number;3 or (5) the current neighborhood
key has exceeded a specified maximum lifetime.

In Figure 7, theKey Updatemessages are sent immediately
after the authentication is complete. That is, A sends aKeyUp-
date immediately following theCertReplymessage, and A
sends aKeyUpdateafter it has verified the certificate contained
in the CertReply. A KeyRequestmessage is transmitted when
a integrity check fails on a message. Here, the node assumes
that it does not have an updated neighborhood key. To prevent
a malicious adversary from staging a DoS attack by sending
forged messages that never pass an integrity test, the frequency
of transmittedKeyRequestmessages is limited.

If messages are encrypted or signed with neighborhood
keys, only neighbors in the overlay network can decrypt or

3Every node maintains a sequence number for outgoing protocol and
application messages, which is recorded at the receiver of a message. A
receiver only accepts messages with increasing sequence numbers. The
sequence number is reset when a new key is generated. When the sequence
number wraps around, a new key must be generated.

verify transmitted messages. Since a note changes its neigh-
borhood key each time a new neighbor appears or an existing
neighbor departs, a newly joined node is unable to read
messages sent before the node joined, and a departing node
cannot read messages that are transmitted after it leaves. In
this fashion, the neighborhood key method realizes backward
and forward secrecy.

An alternative to a neighborhood key is a scheme where
a node maintains a separate key for each neighbor. This,
however, not only involves additional overhead for maintaining
and storing the keys, it also requires that an outgoing message
be encrypted separately for each neighbor.

In compassion to shared group keys where all nodes in the
overlay network must update (re-key) the shared key whenever
the membership in the overlay network changes, updating keys
in the neighborhood method is a local operations, i.e., each
node updates keys only with current neighbors in the overlay
network. On the other hand, the workload due to updating
neighborhood keys can be high. For example, when a new
node joins the overlay network it may establish a neighborhood
relationship with many other nodes before it converges to its
final position in the overlay network. Since each change to
the neighborhood requires that a node builds and distributes
a new neighborhood key, the security features may delay
the convergence of the overlay protocol. The problem is
exacerbated during failures in the substrate network when the
overlay topology must be reconstructed and many nodes join
and leave the overlay network at the same time. When the time
interval between changes to the neighborhood is smaller than
the time required to update a neighborhood key, the overlay
protocol may no longer converge to a stable topology. As a
remedy, it is possible to relax the requirement of generating
new keys each time the neighborhood of a node changes the
overlay topology is unstable, at the cost of weakening forward
and backward secrecy.

C. Data Confidentiality and Integrity

In the neighborhood key method, when an encrypted mes-
sage is forwarded in the overlay network, the message must
be decrypted and re-encrypted at each hop. Clearly, this is
very time-consuming and not practical in large networks. To
reduce the overhead incurred at each node we employ separate
keys for each message. Here, when a node wants to transmit a
message, it generates a new symmetric key for this message,
called amessage key, and encrypts the payload of the message
with the message key. Then, the message key is encrypted with
the neighborhood key and appended to the message. When
a node receives an encrypted message it first decrypts the
message key. (Recall that each node has the neighborhood
keys of all authenticated neighbors.) If the message must be
forwarded to another node, it re-encrypts the message key with
its own neighborhood key.

In Figure 8(a) we show the encryption of a message that is
transmitted by a node A with neighborhood keyNKey(A).
The node generates a message keyMKey(M) for a message
M , encrypts the message with the message key, encrypts

1. Local peer creates a message
key.

2. Message is encrypted a with
message key.

3. Message key is encrypted
with neighborhood key.

M

MKey(M)

EMKey(M)(M)ENKey(A)(MKey(M))

EMKey(M)(M)

MKey(M)

1. Arrived Message

2. Message key is decrypted with
 neighborhood key of neighbor

3. Message key is encrypted
 with own neighborhood key

EMKey(M)(M)ENKey(B)(MKey(M))

MKey(M)

EMKey(M)(M)ENKey(A)(MKey(M))

EMKey(M)(M)

(b) Forwarding.

(a) Transmission.

Fig. 8. Processing an encrypted application message (M is the message,
MKey(M) is the message key for messageM , NKey(A) andNKey(B)
are the neighborhood keys of nodesA and B, EMKey(M)(M) is the
message encrypted with the message key,ENKey(B)(MKey(M)) is the
message key encrypted with the neighborhood key ofB).

the message key with its neighborhood key, appends the
encrypted message key to the message, and, finally forwards
the message to a neighbor. In Figure 8(b) we show how node
A forwards an encrypted message received from a neighbor B.
First, A decrypts the message with B’s neighborhood key, re-
encrypts the message key with its own neighborhood key, and
then forwards the message. Note that the encrypted message
payload is not modified in this process. Merely, the encrypted
message key must be processed. Since a message key is short
(128 bits in our implementation, which reflects current best
practices), the delay incurred by decrypting and re-encrypting
the message key is limited.

The neighborhood key method is also involved in ensuring
integrity of application messages and protocol messages. Both
the neighborhood key and messages keys are involved in
creating signed hashes, referred to as message authentication
codes (MACs)4. There is a separate MAC for the message
payload and the message header. First, a message key is
used to compute the MAC of the message payload. The
message key is added and encrypted with the neighborhood
key, as described earlier. Then, the neighborhood key is used
to compute a MAC for the message header. Both MACs,
together with the encrypted message key, are transmitted as an
extension header of the application message. Integrity is also
provided for protocol messages. Here, the MAC is computed
over the entire protocol message with the neighborhood key.
Note that the MACs provides some level of route security in
the sense of [11]. In our implementation, with the assumption
that data confidentiality implies a desire for integrity, the
MACs for the payload and header of application messages,
and the MAC for protocol messages are always computed,
when encryption of application payload is requested.

4Precisely, we use a keyed-hash message authentication code (HMAC),
which involves a cryptographic hash function in combination with a secret
key.

Confidentiality and Integrity

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t (

kb
ps

)

Sequence Number

Integrity

 0

(a) Throughput.

Confidentiality and Integrity

Integrity

 4000

 6000

 0

 1000

 2000

 3000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000

R
ou

nd
 T

rip
 T

im
e

(m
s)

Sequence Number

 5000

 7000

(b) Round-trip time.

Fig. 9. Single-hop measurements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

54321

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

kb
ps

)

Hop Count

30 feet
60 feet
90 feet

Fig. 10. Multi-hop throughput with neighborhood keys.

D. Neighborhood Key Method in Ad-Hoc Networks

We evaluate the neighborhood key method in single-hop
indoor measurements and multi-hop outdoor measurements,
in the same setup as discussed in Subsection II-B. We again
evaluate the throughput and delay performance of a static
application-layer ad-hoc overlay network. All required certifi-
cates are distributed before the measurements take place. (Due
to space restrictions we cannot include our measurements of
the authentication process and we refer to [2].)

We measure the performance of two following security
settings. WithIntegrity, the software computes MACs for the
message payload, the message header, and protocol messages,
as described at the end of the previous subsection. With
Confidentiality and Integrity, in addition, the message payload
is encrypted as shown in Figure 8. A new message key is
generated for each message. We only measure the performance
of application messages.

The results of the throughput and (round-trip) delay mea-
surements are shown in Figure 9. A comparison with the mea-

surements without security from Section II shows that there
is a noticeable performance penalty. The results also reflect
that the operations performed for integrity and confidentiality
are quite similar. The additional cost of data confidentiality is
limited.

In Figure 10 we present throughput results of a multi-hop
outdoor experiments, where PDAs are set up as shown in
Figure 4. The values present the average throughput values
over the duration of the experiment. The results show that the
degradation of the throughput is small as the hop count is
increased.

Our data lets us conclude that currently available PDAs can
support our neighborhood key method at the application layer
at data rates below 100 kbps or more. It remains open how
these rates can be improved upon with an implementation that
does not require a JVM.

IV. SPANNING TREE PROTOCOL

In this section, we describe a protocol that establishes
and maintains a spanning tree overlay network topology. The
protocol is referred to asSpanning Tree Protocolor SPT
protocol. The SPT protocol assumes that the substrate network
supports a broadcast operation for sending protocol messages.
Our target environment for the SPT protocol is a mobile ad-
hoc network, however, the protocol can also be used over non-
wireless substrate networks.

The protocol has been implemented as an overlay protocol
of the overlay socket in Figure 1. In our implementation, the
overlay socket is configured with a node adapter that supports
UDP multicast. Each node has a randomly assigned 32-bit
long logical address that serves as unique identifier within an
overlay network.

As other tree based approaches to ad-hoc routing, e.g.,
[22], the SPT protocol is inspired by Perlman’s spanning tree
algorithm for bridges [21] to a wireless environment. In the
SPT protocol, all nodes agree on one node to be the root (core)
of the spanning tree, and each node selects another node as
its upstream neighbor (ancestor) in the rooted tree. Also, a
node keeps track if it has downstream neighbors (children)
in the rooted tree. The ancestor and the children of a node
are referred to as its neighbors. A node exchanges application
data only with its neighbors. Information about the neighbors
is maintained in aneighbor table. A node also maintains a an
adjacency tablewhich contains a list of all nodes with which
it can exchange messages.

Each node periodically broadcasts abeacon messagein the
substrate network. The information in the beacon messages is
used (1) to accomplish a rendezvous of a new node with an
existing spanning tree network, (2) to eliminate asymmetric
links, (3) to select an ancestor in the tree, and (4) to repair
partitions of the tree topology. Each node processes every
beacon message that it receives.

The format of the beacon message is shown in Figure 11.
The first field, theoverlay hashcontains a checksum computed
over the overlay network identifier. Nodes use the hash to
detect protocol messages from other overlays, which are then

Overlay Hash4 bytes

SenderID

Physical Address

Core ID

Ancestor ID

Hop Count

Metric

Sequence Number

Adjacency Table

4 bytes

variable

4 bytes

4 bytes

2 bytes

2 bytes

8 bytes

4 bytes +
5 bytes per

entry

Size

4 bytesID 1

Link Quality

ID 2

1 byte

4 bytes

1 byte

. . .

Adjacency Table
Entry

Beacon Message

Link Quality

4 bytes

Fig. 11. Format of a beacon message.

discarded. TheSenderIDis the logical address of the sender
of the message, andPhysical Addressis the address of the
sender in the substrate network. If the TCP/IP suite is used as
substrate network (which is the case in all our experiments),
the physical address consists of an IP address and a port
number. TheCoreID is the logical address of a node, which
is, according of the sender of this message, the root of the
spanning tree. TheAncestorIDindicates the upstream neighbor
of the sender of this message. TheHopCountis the path length
of the sender of this message to the core. The content of the
Metric field plays a role when selecting an ancestor. Below
we discuss two metrics and ancestor selection algorithms. The
beacon message also contains the content of the adjacency
table of the sender. Each entry of the table consists of an
identifier and a link quality metric.

A. Measuring Link Quality

Many existing ad-hoc routing protocols attempt to minimize
the number of hops of a route. While such protocols may
exhibit good performance in simulation programs, they often
look less favorably in actual networks, particularly IEEE
802.11b networks [3]. The reason is that minimizing the hop
count tends to increase the geographical distance between
nodes. This, however, leads to higher losses and possibly
unstable links [5], [12], [17].

Alternative approaches, e.g., as proposed in [6], [7], [29],
estimate the latency or the reachability between nodes when
computing a path, and attempt to find routes that have low
latency or good reachability. In the SPT protocol, we use an
application-layer equivalent of these strategies. Specifically,
we interpret the rate of successful beacon transmissions as
a metric for the link quality between adjacent nodes. Using
beacon messages to measure link quality does not introduce
additional control traffic. We express the link quality of the
unidirectional link between a node A and a node B,LQB(A),
as the ratio of beacon messages that B received from A, mea-
sured over a time period ofN beacon transmission intervals
(We setN = 10 in all of our experiments.). The quality of a
bidirectional link quality is computed as

LQ(A, B) = min(LQB(A), LQA(B)) .

Each node A keeps track of the valueLQA(B) for all received
beacon messages from adjacent nodes. When A sends a beacon
message, it includes all valuesLQA(q) for each nodeq in

its adjacency table.5 When A receives a beacon message
from node B, the adjacency table in the message contains
LQB(A). With this information, A can computeL(A, B).
WhenLQ(A, B) is below a threshold value (30% by default),
then B is ineligible to become the ancestor of A.

When A receives a beacon message, and A is not listed in
the adjacency list of the message, then A has discovered an
asymmetric link, that is, A knows that B does not receive A’s
beacon messages. If an asymmetric link persists for a longer
period of time, B is not eligible to be a neighbor of A.

B. Ancestor Selection

Each node uses the beacon messages received from adjacent
nodes to select its ancestor in the spanning tree. In the SPT
protocol, we have realized two ancestor selection algorithm.
They both create a spanning tree, yet with different properties.
The first seeks to minimize the number of hops to the core,
the other seeks to maximize the quality of the path to the
core. Both algorithms are extension of Perlman’s spanning
tree algorithm to a mobile ad-hoc environment. Due to space
constraints, the following discussion is abbreviated, and we
refer to [2] for details of the protocol.

The fields in the beacon message that play a role in the
selection of the ancestor are theSenderID, Core ID, and the
Metric. Initially, each node believes that it is the core and sends
a beacon message withSenderID = CoreID. If a node receives
a beacon that advertises a core with a smaller identifier, it will
try to get connected to that tree and select the sender of the
message as its ancestor. For messages with identicalCoreIDs,
a node selects a node as new ancestor if it advertises a smaller
metric value. To prevent oscillatory behavior, a new ancestor
is selected only if the metric is improved by a threshold value.
Minimum Hop Count to Core.Here, each node selects an
ancestor that minimizes the path length to the core. This results
in a minimum-hop spanning tree. Each node sets the metric to
the value of theHopCountfield. A node changes its ancestor
whenever it reduces the hop count by at least one.
Path Quality to Core.This metric tries to optimize the quality
of the path to the core, by considering the link quality along
the path to the core when selecting the ancestor. IfL =
{1, 2, . . . , K} denotes a set of links that form a path in the
network andpi (0 ≤ pi ≤ 1) is the bidirectional link quality
of the i-th link, we calculate the path quality as

∏
i∈L pi.

By expressing the metric of a path as the product of the link
metrics of the path, the metric can be related to the probability
of a successful message transmission on the path (assuming
independence of the link quality at each link). In our protocol
we write the link metric asδi = − log pi, which yields

∏

i∈L

pi = e
−

∑
i∈L

δi .

When transmitting the path quality, we transmit the sum in the
exponent

∑
i∈L δi. A core node sets the value of the metric

5The actual value transmitted in the message is the number of received
beacon messages, and not a ratio.

to 1. The values in theMetric field are scaled to yield good
accuracy in the relevant range.

As most distributed shortest path or minimum spanning tree
algorithms, the algorithm presented above is susceptible to
creating transient loops and to the count-to-infinity problem.
The latter problem occurs when the network state has changed
and information about the old state is still propagated in
the network. As suggested in the DSDV protocol [19], the
problem is mitigated by adding a sequence number field to a
message. In our context, a core node sets the sequence number
in its beacon message and increments the number for each
subsequent message. Other nodes do not change the sequence
number. Every node stores the sequence number of each core,
and takes action when the sequence number has not increased
for a longer time period.

C. Forwarding of Data

The spanning tree established by the SPT protocol is suited
for forwarding application messages to a specific destination
(unicast) or to all nodes (multicast).
Multicast routing.At the source, an application transmits a
new multicast message to each neighbor. At intermediate
nodes, the message is forwarded to all neighbors except the
neighbor form which the message was received. A message is
forwarded to a neighbor with a unicast send operation over the
substrate network. We also support broadcast operations in the
substrate network (e.g., UDP multicast over 802.11b), where
a single transmission can forward a message to all neighbors.
We refer to [2] for the problems that can arise and how the
SPT protocol deals with it.
Unicast routing.Unicast routing in a spanning tree poses a
challenge since a node does not know if a particular destination
is located upstream or downstream in the tree. Thus, as
in the spanning tree algorithm for bridges [21], a node
maintains a forwarding table for routing unicast messages.
New entries to the forwarding table are added in two ways.
The first method is a passive learning algorithm analogous to
the learning algorithm for bridges [21]. The second method
is an active search for a route that is triggered by sending a
RouteRequestmessage. This is a control message that triggers
the establishment of routing table entries. Nodes that receiver
a RouteRequesteither forward the request or respond to it by
sending aRouteReply.

In the SPT protocol, if an address is not found in the
forwarding table, the message is forwarded to all neighbors
(with exception of the neighbor from which the message was
received). As an alternative, the node could buffer messages
until a RouteReplymessage delivers the desired entry. Such
a modification would give the protocol the flavor of an on-
demand protocol, such as DSR or AODV.

D. Evaluation of the SPT Protocol

We evaluate the spanning tree protocol in terms of sim-
ulation experiments using the Glomosim [30] simulator for
ad-hoc networks. We evaluate how well the SPT protocol
can maintain connectivity between nodes in a mobile ad-hoc

Parameter Value
Simulated Area 1500 m× 500 m
Number of Nodes 50
Number of Sending Nodes 10
Wireless range 250 m
Simulation Time 900 sec
Data Rate 1 packet/sec
Message Size 512 Bytes
Max. speed 0 − 20 m/sec
Mobility Mode Random Waypoint

Speed Uniform[0, max. speed]
Pausing Time 20 sec

Transmission mode unicast

TABLE I

SIMULATION PARAMETERS.

network. The parameters of the simulations, shown in Table I,
are typical for simulations in the published literature that
evaluate ad-hoc routing protocols. There are 50 mobile nodes
and 10 members transmit unicast packets to 10 receivers at a
constant rate.

We compare the two versions of the SPT protocol (hop
count and path quality) to the AODV protocol [20], which
is one of the main on-demand ad-hoc routing protocols. The
term ‘on-demand’ refers to the fact that AODV builds a path
to a destination only if there is data to be transmitted. The
path established by AODV follow the shortest reverse path
to the source. Data is buffered at the source until a path is
established. AODV has a MAC layer notification mechanism
that detects when a link of a path becomes unavailable, and
repairs an interrupted path.

We consider the following performance metrics, which are
frequently used to evaluate ad-hoc routing protocols. The
Delivery Ratio, defined as the fraction of transmitted packets
that are successfully delivered to the destination, measures how
well a protocol finds routing paths in a network with mobile
nodes. TheAverageEnd-to-End Delayis the time to deliver a
packet to the destination averaged over all transmissions. The
Normalized Forwarding Overheadis the ratio of the number
of events when packet transmissions occur (either sent at the
source or forwarded at intermediate nodes) and the number of
events when a packet arrives at the receiver. The optimal ratio
is achieved when packets are always forwarded on the shortest
path to their destination. Inefficient routes, routes that are out
of date because of mobile nodes, and inefficient forwarding,
e.g., flooding of packets, increase the normalized forwarding
overhead.

Figure 12 depicts the performance measures as a function
of increasing mobility of nodes. Each data point represents
the average of ten simulation runs, Figure 12(a) shows that
the delivery ratio of the SPT protocol is lower than that of the
AODV protocol, with a larger difference at higher speeds. We
also consider a modification to AODV where we disable the
MAC notification for unavailable links. The purpose of this
is to show how an application-layer version of AODV may
perform that does not have access from lower layers of the
protocol stack.

The graph in Figure 12(b) shows that the SPT protocol has

SPT (path quality)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 4 8 12 16 20

D
el

iv
er

y
R

at
io

Maximum Speed (m/s)

AODV

AODV (no MAC notification)

SPT (minimum hop)

 0

(a) Delivery ratio.

SPT (minimum hop)
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

Maximum Speed (m/s)

AODV (no MAC notification)

AODV

SPT (path quality)

 0

(b) Delay.

SPT (minimum hop)

 5

 10

 15

 20

 0 4 8 12 16 20

N
or

m
al

iz
ed

 F
or

w
ar

di
ng

 O
ve

rh
ea

d

Maximum Speed (m/s)

AODV (no MAC notification)

AODV

SPT (path quality)

 0

(c) Forwarding overhead.

Fig. 12. Simulation of mobile network.

lower delays. This is intuitive, since AODV buffers packets
when it does not know how to forward a packet, whereas the
SPT protocol floods a packet in such a situation. Figure 12(c)
illustrates the cost of the SPT protocol in terms of forwarding
overhead. The forwarding overhead is higher than in AODV
since unicast routes in the SPT protocol do not minimize the
path between senders and receivers. Also, when a route is
not known a message is flooded to all neighbors resulting in
multiple transmissions of the same packet. In all graphs, the
minimum-hop version of SPT has a better performance than
the path quality variant. In the next section, we will see that
this is not true in our measurement experiments.

Overall, the simulation results show that the SPT protocol
provides favorable results, which, in comparison to a popular
ad-hoc protocol, improves delay performance at the cost of a
lower delivery ratio and higher forwarding overhead.

V. SPT PROTOCOL WITH DATA SECURITY

In this section we put together all protocols developed in this
paper to evaluate how the neighborhood key method performs
in an ad-hoc network with mobile nodes that self-organize
using the SPT protocol.

The experiments are outdoor measurements with PDAs as
shown in Figure 5. The setup of the PDAs is shown in
Figure 13. Six PDAs (A, B, C, D, E, F) are placed in a line with
a distance of approximately 90 ft between them. In addition,
a person holding a PDA (labeled as M) walks parallel to the
fixed PDAs at a distance of about 50 ft, covering a round-trip
distance of about 1260 ft.

In the experiment, A transmits unicast messages with a 512
byte payload to the mobile PDA at a rate of 10 messages per
second. All messages are transmitted using UDP unicast as
substrate network. The spanning tree protocol is configured
so that E is the core of the tree.

Sender

Receiver

90ft 90ft 90ft 90ft 90ft

50ft

90ft 90ft

Core

M

A B C D E F

Fig. 13. Measurement scenario with a mobile receiver.

E/2

C/3 A/1 C/3

E/2
C/3 A/1

C
on

se
cu

tiv
e

M
es

sa
ge

 L
os

se
s

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500
Sequence Number

 40

 30

 20

 10

 0

 50

(a) Minimum hop count metric.

B/4B/3F/4 D/3D/3 F/4 D/3C/2

 0

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

C
on

se
cu

tiv
e

M
es

sa
ge

 L
os

se
s

Sequence Number

 40

 30

 20

 10

 50

(b) Path quality metric.

Fig. 14. Measurements with mobile receiver (confidentiality not enabled).

E/2 B/2 E/2 B/3 E/2A/1 E/2

 0

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

C
on

se
cu

tiv
e

M
es

sa
ge

 L
os

se
s

Sequence Number

 20

 10

 30

(a) Minimum hop count metric.

C/3 B/3 C/3 F/4 E/2 F/4 E/2 F/4 E/2 D/4 B/3 C/3

 0

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

C
on

se
cu

tiv
e

M
es

sa
ge

 L
os

se
s

Sequence Number

 10

 20

(b) Path quality metric.

Fig. 15. Measurements with mobile receiver (confidentiality enabled).

We present results of two sets of measurements. For each
set, we run the spanning tree protocol with the minimum hop
metric and the path quality metric. We measure the degradation
due to mobility by recording gaps of the transmission stream
at the receiver. Specifically, we plot the consecutive number
of lost messages at the receiver. We also record changes to the
route between the sender and the receiver.

Figure 14 shows the outcome a measurement when security
features are not enabled. The crosses (×)) in the plots indicate
a change of the spanning tree topology that affects the mobile
PDA. We also include the length of the route form the sender
to the receiver. For example, a label ‘C/3’ indicates that C
is the ancestor of the mobile PDA, and that the path from
the sender (A) to the mobile receiver (M) is 3 hops long. A
comparison of Figures 14(a) and 14(b) shows that the path
quality metric has significantly fewer losses.

In Figure 15 we repeat the first measurement, but, in
addition, provide data confidentiality and integrity with the
neighborhood key method. Here, each time the mobile PDA
exchanges a beacon message with one of the fixed PDAs
for the first time, there is an exchange of certificates and
neighborhood keys. For message encryption, we generate
a new message key for each transmitted message. Recall
that the message key is decrypted and re-encrypted at each
hop between the sender and the receiver. A comparison of
Figures 14 and 15 shows that the security mechanisms only
cause a limited degradation of the recorded message losses.

VI. CONCLUSIONS

We presented overlay network protocols for ad-hoc net-
works that ensure forward and backward secrecy for applica-
tion data. All routing and security functions were realized and
evaluated in an operational application-layer overlay network
system. Measurement experiments with PDAs shed light on
the throughput and delay performance achievable with state-
of-the-art handheld wireless devices. While throughput and
delay performance of currently available PDAs limit their
applicability to low-bandwidth scenarios, this paper has em-
pirically demonstrated the efficacy of application layer ad-hoc
networking with (and without) data security.

REFERENCES

[1] Freepastry. http://freepastry.rice.edu.
[2] Hypercast design documents and materials.

http://www.cs.virginia.edu/hypercast/material.html, 2005.
[3] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-

level measurements from an 802.11b mesh network. InProc. of ACM
Sigcomm’04, Aug. 2004.

[4] K. Chen and K. Nahrstedt. Effective location-guided overlay multicast
in mobile ad hoc networks, 2005. To appear.

[5] K.W. Chin, J. Judge, A. Williams, and R. kermode. Implementation
experience with manet routing protocols.ACM Sigcomm Computer
Communications Review, 32(5), Nov. 2002.

[6] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. InProc. of ACM
MobiCom’03, Sep. 2003.

[7] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for
static multi-hop wireless networks. InProc. of ACM Sigcomm’04, Aug.
2004.

[8] M. Ge, S. V. Krishnamurthy, and M. Faloutsos. Overlay multicasting for
ad hoc networks. InProc. of Third Mediteranean Ad Hoc Networking
Workshop (Med-Hoc-Net), Bordum, Turkey, 2004.

[9] C. Gui and P. Mohapatra. Efficient overlay multicast for mobile ad hoc
networks. InProc. of IEEE Wireless Communications and Networking
Conference (WCNC), pages 1118–1123, March 2003.

[10] Y. C. Hu, S. M. Das, and H. Pucha. Exploiting the synergy between
peer-to-peer and mobile ad hoc networks. InProc. of 9th Workshop on
Hot Topics in Operating Systems (HotOS IX), May 2003.

[11] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing.
IEEE Security and Privacy, 2(3):28–39, May/June 2004.

[12] Y.C. Hu and D.B. Johnson. Design and demonstration of live audio
and video over multihop wireless ad hoc networks. InProc. of IEEE
Milcom’02, 2002.

[13] C. Karlof and D. Wagner. Secure routing in wireless sensore networks:
attacks and countermeasures.Ad Hoc Networks (Elsevier), 1(3):293–
315, 2003.

[14] J. Liebeherr and Tyler K. Bean. Hypercast: a protocol for maintaining
multicast group members in a logical hypercube topology.Proc. of First
Workshop on Networked Group Communications (NGC), Jul 1999.

[15] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicast with
delaunay triangulations.IEEE Journal on Selected Areas in Communi-
cations, 40(8):1472–1488, Oct 2002.

[16] J. Liebeherr, J. Wang, and G. Zhang. Programming overlay networks
with overlay sockets. InProc. 5th COST 264 Workshop on Networked
Group Communications (NGC 2003), LNCS 2816, pages 242–253, Sep.
2003.

[17] H. Lundgren, E. Nordstrom, and C. Tschudin. Coping with communi-
cation grayzones in IEEE 802.11b. InProc. of 5th ACM International
Workshop on Wireless Mobile Multimedia (WoWMoM 2002), Sep. 2002.

[18] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang. Ursa: Ubiquitous
and robust access control for mobile ad hoc networks.ACM/IEEE
Transactions on Networking, 2005. To appear.

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance vector routing (DSDV). InProc. of ACM Sigcomm, pages 234–
244, Sep. 1994.

[20] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector
routing. In Proc. 2nd IEEE Workshop on Mobile Computing Systems
and Applications, pages 90–100, Feb. 1999.

[21] R. Perlman. An algorithm for distributed computation of spanning trees
in an extended LAN. InProc. of 9th Data Communications Symposium,
pages 44–53, Sep. 1985.

[22] S. Radhakrishnan and G. Racherla. Protocol for dynamic ad-hoc
networks using distributed spanning trees.Wireless Networks, 9:673–
686, 2003.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. InProc. of
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, Nov. 2001.

[24] R. Shollmeier, I. Gruber, and M. Finkenzeller. Routing in mobile ad-
hoc and peer-to-peer networks: A comparison. InProc. of International
Workshop on Peer-to-Peer Computing, Pisa, Italy, May 2002.

[25] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic
peer groups.IEEE Transactions on Parallel and Distributed Systems,
11(8):769–780, Aug. 2000.

[26] D. Wallner, E. Harder, and R. Agee. Key management for multicast:
Issues and architectures. IETF RFC 2627, June 1999.

[27] L. Xiao and et. al. Prioritized overlay multicast in mobile ad hoc
environments.IEEE Computer, 37(2):67–74, Feb 2004.

[28] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable group
rekeying: A performance analysis. InProc. of ACM Sigcomm, pages
27–38, Aug. 2001.

[29] M. Yarvis, W. S. Conner, and L. Krishnamurthy. Real-world experience
with an interactive ad hoc sensor network. InProc. of the International
Workshop on Ad Hoc Networks, Aug. 2002.

[30] X. Zeng, R. Bagrodia, and M Gerla. Glomosim: A library for parallel
simulation of large-scale wireless networks. InProc. of Workshop on
Parallel and Distributed Simulation, pages 154–161, 1998.

[31] X. B. Zhang, S. S. Lam, and H. Liu. Efficient group rekeying using
application-layer multicast. InProc. of the 25th IEEE International
Conference on Distributed Computing Systems (ICDCS 2005), Jun.
2005. To appear.

[32] L. Zhou and Z. J. Haas. Securing ad hoc networks.IEEE Network,
13(6):24–30, Nov./Dec. 1999.

