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Context
“Super-Scalable” Multicast:

e Multicast Applications with hundreds of thousand
simultaneous users

Symmetric Multicast

e Every user can generate traffic

Background |

e Internet multi-user applications use IP Multicast

e |IP Multicast:

— Connectionless, best-effort service

— No ordering or reliability guarantees
e However, multi-user applications need

— Error control
— Rate control

— Ordering mechanisms




Background 11

e Add protocol mechanisms above IP Multicast that

provide services for error, rate control, ordering

e Such mechanisms require feedback between senders and

receivers

— “Implosion Problem:” Feedback packets from

receivers overwhelm the sender

= Solution: Provide a Control Topology to manage
flow of control information

The Multicast Framework

Control Topology
Dissemination of control
information to members
of a multicast group

Basic Multicast Service
- Broadcast transmission to all
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Physical Topology
Interconnection ofmulticast
capable routers




Control Topologies |

No Control Topology

e Nack Suppression (Ramakrishnan/Jain, XTP, SRM)
— Suppressing feedback slows down application

e Correlate control traffic with data traffic (RTP)

— Feedback decreases as traffic picks up

Control Topologies Il
Ring Topologies (Chang/Maxemchuck, RMP)

e Requires token management

e Bottleneck at the token holding node




Control Topologies Il

Tree Topologies (TMPT /Yavatkar, Holbrook/Cheriton,
RMTP, Levine/Garcia-Luna-Aceves)

e Problem with multiple senders:

— One tree per sender is not practical

— “Rehang” a single tree with different nodes as root
(Shared Tree).

Shared K-ary Tree

e Use a single tree to transmit control information

e Re-hang tree on different roots depending on sender.




Introducing the Hypercube

An n-dimensional hypercube has N = 2" nodes, where

e Each node labeled &, k,_;...k; (k; = 0|1)

e Two nodes are connected by an edge only if their labels
differ in 1 position.
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Hypercube as Control Topology

e Arrange the members of the group as nodes of a
hypercube

e Embed trees into the hypercube

e Use trees to disseminate control information
Goals:

e Trees should have small height

e Hypercube should be as compact as possible

Ordering Nodes

Need to keep the dimension of the hypercube minimal.
e Can be done by the Bin ordering,.

— Interpret the node labels as binary numbers.

—a=>3"a; 27" is associated with node
Bin(a) :=ay, ...ay (a; €{0,1}).

Hypercube is kept compact if we ensure that the lowest
binary numbers are occupied.

e Not clear how to embed trees.




Gray Ordering of Nodes

e A Gray code, denoted by G(-), is defined by

— G(i) and G(i + 1) differ in exactly one bit.
— G(2%71) and G(0) differ in only one bit.

e Gray Code /(i) := Bin(i) © Bin(i/2)

e If we ensure that the lowest Gray codes are occupied,
compactness is ensured.

Gray Ordering

Bin(i) | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

G(7) 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100




Tree Embedding Algorithm

Input: G(i):=1=1,...LL, G(r):=R=Ry,... R2Rs
Output: Parent of node I in the embedded tree rooted at R.

Procedure Parent (/, R)
If (G7'(I) < G7'(R))
Parent := I, [n_1 ... [pp1 (1 — Ip) v ... 2 s
with k = min; (I; # R;).
Else
Parent := I, [n_1 ... [pp1 (1 — Ip) v ... 2 s
with k = max; (I; # R;).

Endif

Properties of Algorithm

All trees generated by the algorithm satisfy:

o Completely Contained Trees

A spanning tree can be created even in an incomplete

hypercube

e Local Computation of Trees

Given the label of the root, every node can compute its

parent simply using its own label.




Examples of Tree Embeddings

5-111 0-000

2-011

6-101

(a) Embedding (b) ResultingTree

Examples of Tree Embeddings
5-111 5-111
2-011

2-011
3-010

0-000

(a) Embedding (b) ResultingTree




Comparison of Hypercube with K-ary Tree

Performance Metrics (7} is a control tree with root
D).
wi(T;) :==Number of children of node k € V' in tree T,
v (T7) := Number of descendants of node k € V in tree
T, (including node k),
pr(T;) := Length of the path from node % to root
node [ in ;.

® wy, vy, pr are the averages averaged over all trees
e W, U, p are the averages of the averages

® W, urs Umars Pmar are the maxima of the averages

Results for v and v,,,. /7
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Results for p and p,,../p
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Empirical Evaluation

e Study the dynamics of performance metrics for actual

multicast groups.

e Traces of an MBONE session obtained from GA Tech:
NASA’s STS-80C space shuttle mission from
11/8/96-12/4/96 .
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Results for w and w,,,, /W
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Results for 7
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Results for w and v,,,, /v

100,

10

100 ;

10

100,

10

100
10 [

Hypercube
[t I \ \ ! !
150 200 250 300 350 400 450 500 550 600
Binary Tree
T T T
:‘ 1 1 1 1 1 1 1 1 1 E
150 200 250 300 350 400 450 500 550 600
5-ary Tree
e T
150 200 250 300 350 400 450 500 550 600
200-ary Tree
T | T T T
1 1 1 1 mm
150 200 250 300 350 400 450 500 550 600




Results for p
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HyperCast — The Hypercube Protocol

HyperCast is a protocol for maintaining the hypercube
architecture.

o Keeps hypercube compact

Procedures for joining and leaving of nodes

Recovery of hypercube from node failures

Soft-state protocol

e Based on 5 simple message formats: Ping, Beacon,
Leave, Kill, Bid

Java Implementation is in progress!

HyperCast: Join Procedure

(a) Steps (1) to (3). (b) Steps (4) to (6)..




Conclusions

Hypercube is new control topology for very large
multicast groups

Maintenance operations are based upon Gray ordering of
nodes

Excellent load-balancing properties

The HyperCast protocol is a soft-state protocol that
maintains the hypercube

Implementation and scalability tests will decide if
approach is viable




