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Abstract—We study real-time coding of Gauss- sequence, the channel introduces an erasure-burst
Markov sources over burst-erasure channels. Atime- and the decoder is interested in instantaneously
invariant encoder sequentially compresses a sequenceyacoyering all of the source sequences in a lossless
of vector Gaussian sources, which are spatially i.i.d. t th that fall i
and temporally correlated according to a Gauss- man_ner’ Qxcep ose_ at tall in-an error prop-
Markov model. The channel is a burst erasure agation window following the erasure burst. The
channel that erases up toB packets in a single notion of rate-recovery functioris introduced to
burst. The decoder is interested in instantaneously capture the trade-off between compression rate and
reconstructing all the source sequences within a the error propagation at the decoder. Upper and

uadratic (mean square error) distortion D, except . . .
?Or packet(s lost inq the erasu)re burst window. V\F,)e lower bounds on this function are obtained that

study the minimum achievable rate for the encoder coincide in some special cases.
under these constraints and define it as the loss : :
rate-recovery function R(B, D). We develop Iowery In this paper we extend our results in [10] to
and upper bounds for the function and observe that the case of Gauss-Markov sources. The decoder
the bounds coincide in the high resolution limit. iS required to reconstruct the source sequences
Numerical comparisons indicate that the proposed within a certain fidelity measured according to the
joint source-channel coding scheme provides signif- quadratic (mean square error) distortion measure.
icant gains over a separation based scheme. The minimum attainable rate for a time-invariant
sequential encoder is studied and the lower and
upper bounds are derived. The proposed scheme
We study fundamental limits of real-timelS compared to a s_epz?\r_ation ba_\sed technique and
video streaming, where the encoder sequentialjPServed to have significant gains over the latter.
encodes temporally correlated video frames. WheR the high resolution limit our bounds coincide
the channel is an ideal bit-pipe, it is well-knowryi€lding a tight result.
that predictive coding [1] is optimal. However in The rest of the paper is organized as follows.
many video distribution systems, such as peer-tGshe problem setup is described in Section Il. Sec-
peer and mobile systems, packet losses are uien Il includes the main results of the paper. The
avoidable. Predictive coding can lead to a signiferoof of the lower bound on lossy rate-recovery
icant amounts of error propagation. Various methunction and the achievability of the coding scheme
ods have been suggested to develop robust videe presented in Sections IV and V, respectively.
compression techniques in order to combat agairBhe comparison of the performance with sub-
the packet losses in such systems. Some exampiggimal schemes are also presented in Section V.
include error control codes in (e.g., [2], [3]), leaky-Section VI contains the asymptotic results of high
DPCM (e.g. [4], [9]), distributed video coding inresolution scheme. Conclusions are provided in
e.g. [6], etc. However fundamental limits of suclsection VII.
systems are not fully understood.

|. INTRODUCTION

Information theoretic analysis of video coding Il. PROBLEM STATEMENT
problem has been studied in [7], [8], [9]. All of
these works consider the problem from a sourc& Source Model
coding prospective. The channel is an ideal bit-
pipe. More recently in [10], we consider the case = We consider a semi-infinite stationary vector
when the encoder sequentially encodes each sousmirce process;*},>¢ whose real-valued symbols



are drawn independently across the spatial dimens- 5 s o s s s
sion according to a marginal distribution equivalent®® — °1 717 23 DAL 2B 250 E

to a zero-mean unit-variance Gaussian distribution! l l l l l l
and form a first-order Markov chain across thefo — fi fi-v fi firn fivB—1 fivB
temporal dimension, i.e. the consequent sources aré | | - - - booooo I-- - |
temporally correlated according to the following fo  f1 fi-1 ' * * x ' fi+B
model. [ [ R A
S0 & Sj-1 1 — — - | S+B
S = psity + 1 (D) S

where0 < p < 1 is the correlation coefficient
and n}’ are drawn i.i.d. according to zero-mean

: sl . : 9 Fig. 1. Problem Setup: The encoder outgitis a function
Gaussian distribution with the variante- p=, i.e. 4 2 cource sequences up o tijée., ¢, sf, .., s7'. The

N(0,1— pg), independent o8 ;. channel introduces an erasure burst of lenfthThe decoder
producesé;‘ upon observing the sequengé. The decoder is
also required to recover the source sequence immediatily af

B. Encoder the channel erasure.

A rate-R causal encoder maps the sequence
{sP"}+>0 to an indexf; € [1,2"%] according to

some function distortionD, i.e. the reproduction sequengieneed

to satisfy
ft:ft (87013-'-38?) (2)

n

lim > E{(sk—5x)°} <D (5)
for eacht > 0. In general, the decoder is time- e
variant, however in this paper we also considapy all ¢ ¢ {j,...,j+ B —1}.
the steady state case where the decoders are time-
invariant and the system is in steady state at time _ _ )
t = 0 ie., we assume that the system begins A rate R is feasible if such sequence of
operation att = —oco and there are no erasureser?cf)ding and glecoding functions e_xist. We sgekthe
until time ¢ = 0 so that the system is in steadyMinimum feasible rate(B, D), which we define
state up to that point. We will however supprest© be thelossy rate-recoveryunction.
the availability of encoded packets for< 0 for
this case.

The setup is shown in Fig. 1.

IIl. MAIN RESULTS

The following Theorems characterizes the
C. Channel Model lossy rate-recovery function for the Gauss-Markov
source model.

The channel introduces an erasure burst
size B, i.e. for some particularj > 0, it in-
troduces an erasure burst such that= x for .

.. . _ _ : 2(B+1
?.86”{],] +1,...,j+B—1} andg, = f; otherwise R(B.D)> R(B.D) & [1 log (ppfg))]

cFheorem 1. The lossy rate-recovery function of the
Gauss-Markov source satisfiés

6
)% telj i+, i+ B-1] 3 ©
gt = fi, else ©) where[z]" = max{z, 0}. O

Theorem 2. For time-invariant encoders where the
) system is in steady state, the lossy rate-recovery
D. Lossy Rate-Recovery Function function of the Gauss-Markov source satisfies

Upon observing the sequendgy}:>o, the R(B,D) > R;(B,D) (7)

decoder is required to generate the reproduction of L1 1 <Dp2 1o ) | \/Z> ©

all the source sequence®, denoted bys* € R”, =5l 5D

using decoding functions

4 . . where
S?:gt(907glv"'7gt)a t%{]av]—i_B_l}
(4) A:(Dp2+1—p2(B+l))2—4D02(1—p23)
: : 9)
except for a window of lengtB from the time
of channel erasure and within average quadraticlAll the logarithms are taken to bage
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The proof of the Theorems 1 and 2 is pre
sented in Section IV. Now define the following 1t
functions.
1 1 1 n 08
— =4 -1 (10) 5
y@) T De(a)
1 21\ 2 2 §04
Loo(@) = 5/ (@ = 1)(1 = p%))" + da(1 - p?)
—(1 — pQ)(_ — 1) 02r) - Ex/z 223:3: Time-Invariant Encoder| ‘\ \\\\ W
— - — Lower Bound: General Encoder . {1
(11) ‘ ‘ ‘ .
0O 0.2 0.4 0.6 0.8 1

Note that, as it will become clear in sequElL ()

is the MMSE reconstruction error of estimating tht?:_ , L 4u Bounds of Achicvable Rate i
. . -1 Flg. 2. ower an pper bounas of Achievable Rate 10—

source at time when all the quantized sources tillg 5" 55 350 = 1, B — 2.

time¢—1 are available and the signal-to-noise ratio

in the test-channel equalyz.

The following theorem provides an achievable
lossy rate-recovery function.

Upper Bound
— — — Lower Bound: Time-Invariant Encodet

Theorem 3. For time-invariant encoders where the 3 ~ = Lower Bound: General Encoder
system is in steady state, the lossy rate-recove
function is upper bounded as follows.

+ 1 P2B+1) 3
R(B,D) < R*(B, D) = = log (5 s
(12) ¢

wherez* > 0 is the unique solution of the following

equation.
D +y())(1 +2) = (1+y(z) - p* P D)z
— Dp*BY — . (13)

Fig. 3. Lower and Upper Bounds of Achievable Rate foe=
O 09, p=07andB=1, B=2.

The proof of the Theorems 3 is presented in
Section V. In Fig. 2 the lower and upper bounds of o o .
lossy rate-recovery function fab = 0.2,0.3 and Corollary 1 indicates that in high resolution
B = 1,2 are shown as a function ¢f (the corre- thg Io_wer anq upper bounds of Theorems 2 and 3
lation between the sources). Obviously decreasiffgincides which are equal to the lossy rate-recovery
distortion D and increasing channel erasure lengtftinction.
B increases the lossy rate-recovery function. Fig. 3
shows the lower and upper bounds as a function of
D (distortion).

The following Corollary characterizes the beA. General Encoders: Proof of Theorem 1
havior of lossy rate-recovery function in high res-
olution regime.

IV. LOWERBOUNDS FORLOSSY
RATE-RECOVERY FUNCTION

According to the problem description, in the
case of channel erasure burst, the decoder is re-
Corollary 1. For time-invariant encoders where quired to reconstruct the source sequences immedi-
the system is in steady state, in high resolutioately after the erasure burst and all the future times
scheme the lossy rate-recovery function satisfies tigthin the required distortion. In order to derive a
following. lower bound for the rate, we consider a sequence of
1 — p2(B+D) encoded_ packets §ep_arated]b§t B +1 units i.e._,
7) +o(D). (14) we consider a periodic erasure channel of pefiod

D where the firstB packets are erased and the last
wherelimp_,o o(D) = 0. packet is received to the decoder.

R(B,D) = %log (



By considering(t + 1) such periods note that: to that point. Here we follow the same steps for
deriving the lower bound as Section IV-A, except
n(t+ )R = H(fp, e foyprn fiprn) some slight modification which helps in improving

i the lower bound. The assumption that the system is

= H(fp) + Z H (fips8lfo, o, fin1)pe ) in steady state allows to derive tighter lower bound
k=1 (15) on the first term in (17). The following lemma is

helpful.
Now consider the joint entropy of
Lemma 1. For a > b > 0, we have

H(f B, for By Fie
Wareolfor o) Wy 1)) >
> Hlfpkrslfo™ ) (16) n 2a—b)_L— p? 2(a—b)
= I(fkp+B;Sgk+B|f0kP*1) + H(@’k+3|5;k+3, fokpfl) 5 log (27Te (p 22R7—p2 +1—p ))
> h(spnl ") = Mt sl forrn) N

(17)

where (16) follows from the fact that conditioning
reduces the entropy.

Proof: See Appendix A. ]
According to Lemma 1, we have

_ n
For first term in (17) we can write h(sppeplfy? ™) > B log(2me)+
n - n - n — p?
h(skp+B|f0kp 1) > h(skp+B|r}J’“p 1,skp,1) (18) n log (pZ(Bﬂ—l)% +(1- p2(B+1)) .
2 h(sl?erB |Sl?p71) (19) —f

(25)

By replacing (25) and (23) into (17) and replacing
the result into (15) and letting— oo, the follow-
(20) ing can be recovered.

= nh(sp+1|so)

= 5 log(2me(1 — p*P*+1))

where (18) follows from the fact that conditioningpo4®k _ (Dp? +1— p2(B+1))22R +p21-p*P)>0

reduces the entropy, (19) follows from the Markov (26)
property . . . .
and by solving (26) forR, (8) is derived. This
fokp_l = Sipy1 = Skpt B (21) completes the proof of Theorem 2.

and (20) is based on the fact that V. CODING SCHEME

_ B+1 ~
SB+1=p S0+ 7N (22) A, Proof of Theorem 3

whereq ~A(0,1 — p?(B+D), The coding scheme is based on Wyner-Ziv
For the second term in (17) note that accordingoding scheme [11]. In particular, the encoder at
to the problem set up one can write each timef quantizes the Gaussian source sequence
h(s |fkp,1 p ) = _st"_ to gen_erate an auxiliary random vgr_iabde
pk+BIT0 2 Pkt B jointly typical with the source. In addition the
h(shs s — Smerlfo” " foren) < h(Sh 5 — $1s encoder randomly and independently assigh&
< Elog(27reD). (23) bin indi<_:es to all possible quar_1tiz_ed sgqu_emnﬁe
2 and while observingu] transmits its bin index,
Where the last step follows from the fact that Gauglenoted byf;, through the channel.
sian distribution attain highest entropy among all  The test channel associated with our quantizer
the probability distributions with similar variance. js
By replacing (20) and (23) into (17) and
replacing the result into (15) and letting— oo,
the lower bound of (6) in Theorem 1 is derived. wherez ~ N(0,z) is drawn independent of;.

) ) Clearly the Markov chainy, — s; — sg11 — Uy
B. Time-Invariant Encoders: Proof of Theorem 2 5145 fort > 0.

ug = s+ 2z (27)

Now consider the system in which encoders Assume that the erasure with the length
are time-invariant and the system is in steady stafe¢ starts at timet¢. At any time !l > ¢ +
at timet = 0 i.e., we assume that the system beginB, the decoder has access to the codewords
operation at = —co and there are no erasures untik fy, f1, ..., -1, fe+-B, i+ B+1,. - -, fi} @nd is inter-
time ¢t = 0 so that the system is in steady state upsted in recovering* as an estimate of within



distortion D. According to Wyner-Ziv scheme, the To evaluatef, g (x, B) in (34) we lets,_; to
decoder succeeds in recoverinp at time! from be the MMSE estimate of,_; given uffl. Since

the bin indices{f,..., fi_1, fi+B, firB+1,..., 1} the decoder is in steady state at time 1 we can
with high probability if the rateR satisfies express

R>1(s; w|uf ' uly) 2 filz, B). (28) S0 = QuSi—1 + M1 (37)
whereu? = {ug, Ua41, - - -, up}. On the other hand, wheren,_; ~ N(0,52). Definey(z) = 52/a2. To
Define the estimation error as compute the noise variance we note that the system

A until time ¢t — 1 is a Kalman filter that follows

)\l (CL‘, B) =
1 n 9 Si = PSi—1 + n;, n; ~ N(O, 1-— p2) (38)
- > E{(stk = 8k)? | Uoks - U1k Ut Boks - - U 2, ~ N(0,z) (39)

k=1

Then, for anyl > t + B, the estimation errors According to Kalman filter modek; can be viewed
have to satisfy\;(z, B) < D. In other words, the aS state of the system updated according a Gauss-

following conditions have to be satisfied Markov model andu; as output of the system at
each timei:, which is a noisy version of state.
R> max fi(z, B), (29) 1t is known that, the decoder at time— 1 while
- observing all the previous outputs upto tirie—
Dz max i@, B). (30) 11, is able to estimate the sours# , with the

. . following error
Now consider the following lemma. g

Yoo ()
Lemma 2. For any! >t + B, el = T 40
filw, B) < fe5(, B), (31) whereo, |, is the error of estimating; ; at
Ai(@, B) < Myp(, B). (32) time t — 1. The expression foE.(z) defined in

(112) is well known.

For the test channel of (37) the MMSE error
of estimatings;—; equalsor = y(z)/(1 + y(z)).
R> fiip(z,B) = I(5t+B C Uep | u(t)q) (33) By settingor = o,_1;—1 in (40), the expression
i1 1 (10) is derived.
=h (5t+B | ug )— h (5t+B | utt-B, Uy ) . . .
(34) By applying the MMSE estimator and using

o o the fact thats,_; is a sufficient statistic fos; for
This indicates that any rat® satisfying (34) also ji>t,

satisfies (28) for any > ¢ + B, which guarantees

Proof: See Appendix B.
According to Lemma 2, (29) reduces to

the success of the decoder in recoveringt time h(sep | uh ™) =h(sin | 5-1) (41)
[. On the other hand, (32) indicates that if the 1 2(B+1)
decoder is able to recovéy, g within distortion = 510g (Zﬂe(l T 1xuln) +y(x))> ‘ (42)
Myp(z,B) < D, it will be able to recovers;
within distortion \;(z, B) < D, for ! > t + B. Furthermore note that, the estimation error
According to these arguments, the following™:+2 (%, B) can be written as
rate is achievable for the problem. Aesn (@, B)
R+(BaD) = min ft+B(va) 1 - ~ 2
sabject © Ap(e.B) < D = Z E{(st+B.k — St4+B,k)" | U0k Ut—1k, Ut Bk }
t+B\<L, I k=
(@5
It is not hard to show that the function = EZE{(SH-B,I@ —548.8)° | St—1k Urs Bk}
fo(x, B) attains its minimum when the inequality k=1 43
constraint satisfies equality, i.e. far= x* where . (43)
Mets(z*, B) = D. This equation is equivalent to 1— %
(13) in Theorem 3. Thus, (35) reduces to -G <D, (44)

z  z(lt+y(x)
RY(B,W) = * B 36
(B,W) = fo(a", B) (36) where (44) follows from the fact that the decoder

Now it remains to evaluate (36) in order to shows required to reconstruct the souref, 5, from
(12) in Theorem 3. {ug, ..., uf 1, ul g} within distortion D.



Note that the MMSE estimator operates or
jointly Gaussian signals and thus is the optime

3

estimator, |e -=-- EEVE: Szﬂ:g: Time-Invariant Encoder
25 - Lo_werBound: General Encoder
1 —— Still Image Cpmpressmn
h (st+B | u6—17 ut+B) — 5 10g(2ﬂ'€ . )\t-ﬁ-B(xa B)) —e— S-C Separation-Based Scheme
45 =7
Accordingly, from (34) we have that 2 L5y
B 11 p2(B+1) § 1k
z,B)=-1lo 1-
e ) = gox (5o~ )
(46) 0.5
1 1 2(B+1)
(1o £ :
2 v a(l+y(@)
(47)

. . . Fig. 4. Comparison of achievable rates of sub-optimal sesem
By replacingx = z* into (46) and noting that yith the Lower and Upper Bounds of lossy rate-recovery func-

M+p(2*, B) = D, the expression in (12) is derivedtion for p = 0.9 and B = 1.
which completes he proof of the theorem.

B. Comparison with Sub-Optimal Schemes VI. HIGH RESOLUTION SCHEME, PROOF

) ] SKETCH FORCOROLLARY 1
In this section, we compare the lower and up-

per bounds on optimal lossy rate-recovery function e show the high resolution results by com-
with sub-optimal schemes as follows. puting the limit of the upper and lower bounds on
lossy rate-recovery function in Theorems 2 and 3

1) Still Image Compressionin this scheme, when D approaches t6 and showing that the two
the encoder ignores the decoder's memory and o coincides

at time ¢ > 0 and encodes the sourcg in i ) )
a memoryless manner and sends the codewords 'n€ high resolution behavior of the lower

through the channel. The rate associated to tH}und functionR™(B, D), in (8) is straightfor-
scheme is ward, i.e. it is not hard to observe that

i (R (B, D) - Liog( L
) (48 Dlglo( (B, D) ~ 5 log(——F—) ) =0

. . 50
In this scheme, the decoder is able to recover the o _ ( _ )
source whenever its codeword is available, i.e. Maybe the more insightful way to investigate

all the times except when the erasure happens. thi-‘ high resolution behavior of the upper bound
2) Source-Channel Separation—Baseé2 (B, D) s to note that

Scheme: This scheme consists of predictive llog(zwep) > h(si|ub) > h(s;|ub, si-1)

coding (DPC) followed by a Forward Error 2

1 1
Rsi = I(s;;u) = 3 log,(

Correction (FEC) code to compensate the effect of = h(s|ug, st—1) (51)
packet losses of the channel. As the contribution _ 110 2me (52)
of B erased codewords need to be recovered using —2%® 1/z+1/(1— p?)

the available codeword, the rate of this schemgnere (51) follows from the Markov chain property
can be computed as follows. ub™" = i, 51 — s;. From (52) it can be seen that
Rrec = (B + 1)R*(B = 0, D). (49) D — 0 requiresz — 0. In particular
. T < #
Fig. 4 shows the rate performance of these ~1-D/(1-p?
sub-optimal systems as well as lower and UppP@§n the other hand whem: — o2/a? = 0
bounds on optimal lossy rate-recovery function age quantized version of the sources at each time

a function of distortionD, for p = 0.9 and B = 1. pecome very close to the original source sequences.

In can be observe that both still image Compresrhys, we have the following approximations
sion and source-channel separation based method

are quite sub-optimal methods and the achievable’l(st+B|U(tfl) ~ h(si+B|st-1)
_Zi 1

scheme based on Wyner-Ziv outperforms the other — Zlog (27T6(1 _ pQ(BH))) (54)

two schemes. 2

(53)



and
t—1

1 ug — St — St41— -S|—-B—1>- St+B—St+B+1>---Sl—1 — U]
h(se+Blug, ur+B) = h(se+BlursB) =~ 5 log (2mex) ! l l ! l l
(55) Ut Ut+1 Ul—B—1 - Ut+B  Ut4+B+1 - Ul-1
1 — > 1+ 1
~ 3 log (2weD) (56)

where (56) follows from replacing (53) into (55)

for D — 0. By computing the limit of the achiev- fig. 5. Knowingu, 1, instead ofu; ~” ", reduces the entropy
able rate R*(B,W, D)) of Theorem 3 whenD term in (64).

approaches t@, it can be obtained that

1 — p2(B+D)
Jim (R*(B D) — = log(T)) On the other hand,
1= 2B\ B = h(sp 67 = L(hs sy 1)
Tm)) = RSIRTY — HOGG ) + H(Rls, 67
> h(sy|fy ™) — H(f) (60)
(50) together with (57) characterizes the high ress, n 1Og( 20 2h(sp1f ") el — pz)) —nR

olution behavior of lossy rate-recovery function as™ 2
in Corollary 1. (61)

Where (60) follows from the fact that conditioning
VIl. CONCLUSION reduces entropy and (61) again follows from Shan-

. . . _ non’s EPI. Assuming that the system is in steady
In this paper, we investigated the real-time enstate we havé (s |fb = h(sP|£2). Thus (61)
coding of Gauss-Markov sources where the SOUrGE 1 1ces to b-1

sequences are spatially i.i.d. and temporally dis- )
tributed according to a first order Gauss-Markov o 2h(s 1)  2me(l = P ) (62)
model. The encoder sequentially encodes the source T 22R

sequences and sends the codewords through fgplacing (62) into (59), (24) is derived.
channel which introduces single burst erasure of

length B. The decoder aims to causally reconstruct APPENDIXB

the source sequences within a specific distortion PROOE OELEMMA 2

except for erasure times. The minimum rate attain-

able for this problem is introduced as lossy rate- ~First note that, in the steady state when- 1,
recovery function and the lower and upper boung¥e have

for this function is derived. It is also shown that in

. 1
= 11)1310 (I(5t+B§ U+ BlUp) — 3 log(

x,B)=1(si1B;u ut
high resolution regime when the system is in stea y +8( )= . (1”? Bt+lB o )
state, the lower and upper bounds coincides. (st3 wlug s u )

(U t 1 l B— 1) (U | t 1 ulfol S)

Our future work will attempt to extend the re- — ! t 12l
sults to the case when an error propagation window 7 (u;| t 1 l By — (ul|sl) (63)
is allowed following the erasure burst. (u t 1 “tIB) h(uls) (64)
t—1 — t—1 1—1
APPENDIXA h(w] ug sy p) = (] up™ s, )

PROOF OFLEMMA 1 (65)

=1 (st5 ul uy ', u)yp)
According to the Gauss-Markov source model )

fora>b>1,
where (63) and (65) follow from the test channel

model in (27). Fig. 5 clarifies the idea behind the
step (64). As a result of the Markov chain in Fig. 5,
any auxiliary random variable; which is farther
from to u; is a more noisier representation of
h(s™|£D) _and consequently contains Ie_ss informati(_)n about

o7 2(ab)o 2 h(sP|F1) 2(a—b) it. Therefore, as shown in Fig. 5, replacing any

=508 (P 2n o)+ 2me(1 — p )) -conditioning element; in the first term of (63)

(59) with another element;;; 5 which is closer toy,

"= pobsl 4 an (58)

a

where a» "¢ A(0,1 — p2a=b). By applying

Shannon’s EPI we have
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positive for all values ofr.

[10]

(11]

The difference between the terms in (63) and (64) is

[8] N. Ma and P. Ishwar, “On delayed sequential coding of
correlated sourcesJEEE Trans. Inform. Theorwol. 57,

pp. 3763-3782, 2011.

E. Yang, L. Zheng, D. He, and Z. Zhang, “Rate distortion
theory for causal video coding: Characterization, compu-
tation algorithm, and comparison|EEE Trans. Inform.
Theory vol. 57, pp. 5258-5280, 2011.

F. Etezadi, A. Khisti, and M. Trott, “Sequential coding
markov sources over burst erasure channels,” available at
http://arxiv.org/abs/1202.5259, Feb. 2012.

A. D. Wyner and J. Ziv, “The rate-distortion functionrfo
source coding with side information at the decod#eEE
Trans. Inform. Theoryvol. 22, pp. 1-10, Jan. 1976.

El

can only reduces the entropy. Fig 6, shows the
difference between the terms in (63) and (64) as

a function ofz, for B = 1,2 and for variousis,
which confirms (64).

Now note that, as all the random variables are

jointly Gaussian, we also have

2h($l ‘ Uéil,uiJrB)

Ai(z,B) = 5o (66)

Also note that
h (stJrB | ué_l, ut+B) =h (sl | ué_l, ui_B_l, ul)
(67)
>h(s | up ™t ulp), (68)

where (68) follows from the arguments similar
to (64). From (68) and (66), and the fact that
2() /21e is a monotonically increasing function,
(32) is immediate. This completes the proof.
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