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Abstract—We study real-time coding of Gauss-
Markov sources over burst-erasure channels. A time-
invariant encoder sequentially compresses a sequence
of vector Gaussian sources, which are spatially i.i.d.
and temporally correlated according to a Gauss-
Markov model. The channel is a burst erasure
channel that erases up toB packets in a single
burst. The decoder is interested in instantaneously
reconstructing all the source sequences within a
quadratic (mean square error) distortion D, except
for packets lost in the erasure burst window. We
study the minimum achievable rate for the encoder
under these constraints and define it as the lossy
rate-recovery function R(B,D). We develop lower
and upper bounds for the function and observe that
the bounds coincide in the high resolution limit.
Numerical comparisons indicate that the proposed
joint source-channel coding scheme provides signif-
icant gains over a separation based scheme.

I. I NTRODUCTION

We study fundamental limits of real-time
video streaming, where the encoder sequentially
encodes temporally correlated video frames. When
the channel is an ideal bit-pipe, it is well-known
that predictive coding [1] is optimal. However in
many video distribution systems, such as peer-to-
peer and mobile systems, packet losses are un-
avoidable. Predictive coding can lead to a signif-
icant amounts of error propagation. Various meth-
ods have been suggested to develop robust video
compression techniques in order to combat against
the packet losses in such systems. Some examples
include error control codes in (e.g., [2], [3]), leaky-
DPCM (e.g. [4], [5]), distributed video coding in
e.g. [6], etc. However fundamental limits of such
systems are not fully understood.

Information theoretic analysis of video coding
problem has been studied in [7], [8], [9]. All of
these works consider the problem from a source
coding prospective. The channel is an ideal bit-
pipe. More recently in [10], we consider the case
when the encoder sequentially encodes each source

sequence, the channel introduces an erasure-burst
and the decoder is interested in instantaneously
recovering all of the source sequences in a lossless
manner, except those that fall in an error prop-
agation window following the erasure burst. The
notion of rate-recovery functionis introduced to
capture the trade-off between compression rate and
the error propagation at the decoder. Upper and
lower bounds on this function are obtained that
coincide in some special cases.

In this paper we extend our results in [10] to
the case of Gauss-Markov sources. The decoder
is required to reconstruct the source sequences
within a certain fidelity measured according to the
quadratic (mean square error) distortion measure.
The minimum attainable rate for a time-invariant
sequential encoder is studied and the lower and
upper bounds are derived. The proposed scheme
is compared to a separation based technique and
observed to have significant gains over the latter.
In the high resolution limit our bounds coincide
yielding a tight result.

The rest of the paper is organized as follows.
The problem setup is described in Section II. Sec-
tion III includes the main results of the paper. The
proof of the lower bound on lossy rate-recovery
function and the achievability of the coding scheme
are presented in Sections IV and V, respectively.
The comparison of the performance with sub-
optimal schemes are also presented in Section V.
Section VI contains the asymptotic results of high
resolution scheme. Conclusions are provided in
Section VII.

II. PROBLEM STATEMENT

A. Source Model

We consider a semi-infinite stationary vector
source process{snt }t≥0 whose real-valued symbols



are drawn independently across the spatial dimen-
sion according to a marginal distribution equivalent
to a zero-mean unit-variance Gaussian distribution
and form a first-order Markov chain across the
temporal dimension, i.e. the consequent sources are
temporally correlated according to the following
model.

s
n
t = ρsnt−1 + n

n
t , (1)

where 0 ≤ ρ ≤ 1 is the correlation coefficient
and n

n
t are drawn i.i.d. according to zero-mean

Gaussian distribution with the variance1− ρ2, i.e.
N(0, 1− ρ2), independent ofsnt−1.

B. Encoder

A rate-R causal encoder maps the sequence
{snt }t≥0 to an indexft ∈ [1, 2nR] according to
some function

ft = Ft (s
n
0 , ..., s

n
t ) (2)

for each t ≥ 0. In general, the decoder is time-
variant, however in this paper we also consider
the steady state case where the decoders are time-
invariant and the system is in steady state at time
t = 0 i.e., we assume that the system begins
operation att = −∞ and there are no erasures
until time t = 0 so that the system is in steady
state up to that point. We will however suppress
the availability of encoded packets fort < 0 for
this case.

C. Channel Model

The channel introduces an erasure burst of
size B, i.e. for some particularj ≥ 0, it in-
troduces an erasure burst such thatgt = ⋆ for
t ∈ {j, j + 1, ..., j +B − 1} andgt = ft otherwise
i.e.,

gt =

{

⋆, t ∈ [j, j + 1, . . . , j +B − 1]

ft, else.
(3)

D. Lossy Rate-Recovery Function

Upon observing the sequence{gt}t≥0, the
decoder is required to generate the reproduction of
all the source sequencessnt , denoted bŷsnt ∈ R

n,
using decoding functions

ŝnt = Gt(g0, g1, . . . , gt), t /∈ {j, . . . , j +B − 1}.
(4)

except for a window of lengthB from the time
of channel erasure and within average quadratic
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Fig. 1. Problem Setup: The encoder outputfj is a function
of the source sequences up to timej i.e., sn

0
, sn

1
, . . . , snj . The

channel introduces an erasure burst of lengthB. The decoder
producesŝnj upon observing the sequencegj

0
. The decoder is

also required to recover the source sequence immediately after
the channel erasure.

distortionD, i.e. the reproduction sequenceŝnt need
to satisfy

lim
n→∞

1

n

n
∑

k=1

E{(st,k − ŝt,k)
2} ≤ D (5)

for all t /∈ {j, . . . , j +B − 1}.

The setup is shown in Fig. 1.

A rate R is feasible if such sequence of
encoding and decoding functions exist. We seek the
minimum feasible rateR(B,D), which we define
to be thelossy rate-recoveryfunction.

III. M AIN RESULTS

The following Theorems characterizes the
lossy rate-recovery function for the Gauss-Markov
source model.

Theorem 1. The lossy rate-recovery function of the
Gauss-Markov source satisfies1

R(B,D) ≥ R−(B,D) ,

[

1

2
log

(

1− ρ2(B+1)

D

)]+

(6)

where[x]+ = max{x, 0}. �

Theorem 2. For time-invariant encoders where the
system is in steady state, the lossy rate-recovery
function of the Gauss-Markov source satisfies

R(B,D) ≥ R−
s (B,D) (7)

,
1

2
log

(

Dρ2 + 1− ρ2(B+1) +
√
∆

2D

)

(8)

where

∆ = (Dρ2 + 1− ρ2(B+1))2 − 4Dρ2(1− ρ2B).
(9)

1All the logarithms are taken to base2.



�

The proof of the Theorems 1 and 2 is pre-
sented in Section IV. Now define the following
functions.

1

y(x)
=

1

x
+

1

Σ∞(x)
− 1. (10)

Σ∞(x) =
1

2

√

((x− 1)(1− ρ2))
2
+ 4x(1 − ρ2)

−(1− ρ2)(
x

2
− 1)

(11)

Note that, as it will become clear in sequel,Σ∞(x)
is the MMSE reconstruction error of estimating the
source at timet when all the quantized sources till
time t−1 are available and the signal-to-noise ratio
in the test-channel equals1/x.

The following theorem provides an achievable
lossy rate-recovery function.

Theorem 3. For time-invariant encoders where the
system is in steady state, the lossy rate-recovery
function is upper bounded as follows.

R(B,D) ≤ R+(B,D) =
1

2
log

(

1

D
− ρ2(B+1)

D(1 + y(x∗))

)

(12)

wherex∗ ≥ 0 is the unique solution of the following
equation.

D(1 + y(x))(1 + x)− (1 + y(x)− ρ2(B+1))x

−Dρ2(B+1) = 0. (13)

�

The proof of the Theorems 3 is presented in
Section V. In Fig. 2 the lower and upper bounds of
lossy rate-recovery function forD = 0.2, 0.3 and
B = 1, 2 are shown as a function ofρ (the corre-
lation between the sources). Obviously decreasing
distortionD and increasing channel erasure length
B increases the lossy rate-recovery function. Fig. 3
shows the lower and upper bounds as a function of
D (distortion).

The following Corollary characterizes the be-
havior of lossy rate-recovery function in high res-
olution regime.

Corollary 1. For time-invariant encoders where
the system is in steady state, in high resolution
scheme the lossy rate-recovery function satisfies the
following.

R(B,D) =
1

2
log

(

1− ρ2(B+1)

D

)

+ o(D). (14)

wherelimD→0 o(D) = 0.
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Fig. 2. Lower and Upper Bounds of Achievable Rate forD =

0.2, D = 0.3 andB = 1, B = 2.
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Fig. 3. Lower and Upper Bounds of Achievable Rate forρ =

0.9, ρ = 0.7 andB = 1, B = 2.

Corollary 1 indicates that in high resolution
the lower and upper bounds of Theorems 2 and 3
coincides which are equal to the lossy rate-recovery
function.

IV. L OWER BOUNDS FORLOSSY

RATE-RECOVERY FUNCTION

A. General Encoders: Proof of Theorem 1

According to the problem description, in the
case of channel erasure burst, the decoder is re-
quired to reconstruct the source sequences immedi-
ately after the erasure burst and all the future times
within the required distortion. In order to derive a
lower bound for the rate, we consider a sequence of
encoded packets separated byp = B+1 units i.e.,
we consider a periodic erasure channel of periodp
where the firstB packets are erased and the last
packet is received to the decoder.



By considering(t+1) such periods note that:

n(t+ 1)R ≥ H
(

fB , fp+B , . . . , f(t−1)p+B , ftp+B

)

= H(fB) +

t
∑

k=1

H
(

fkp+B |fB, fp+B , . . . , f(k−1)p+B

)

(15)

Now consider the joint entropy of

H(fkp+B |fB, fp+B , . . . , f(k−1)p+B)

≥ H(fpk+B |f kp−1
0 ) (16)

= I(fkp+B ; s
n
pk+B|f kp−1

0 ) +H(fpk+B |snpk+B , f
kp−1
0 )

≥ h(snkp+B |f kp−1
0 )− h(snpk+B |f kp−1

0 , fpk+B)
(17)

where (16) follows from the fact that conditioning
reduces the entropy.

For first term in (17) we can write

h(snkp+B |f kp−1
0 ) ≥ h(snkp+B |f kp−1

0 , snkp−1) (18)

≥ h(snkp+B |snkp−1) (19)

= nh(sB+1|s0)
=

n

2
log(2πe(1− ρ2(B+1)))

(20)

where (18) follows from the fact that conditioning
reduces the entropy, (19) follows from the Markov
property

f
kp−1
0 → s

n
kp−1 → s

n
kp+B (21)

and (20) is based on the fact that

sB+1 = ρB+1
s0 + ñ (22)

whereñ ∼N (0, 1− ρ2(B+1)).

For the second term in (17) note that according
to the problem set up one can write

h(snpk+B |f kp−1
0 , fpk+B) =

h(snpk+B − ŝ
n
pk+B|f kp−1

0 , fpk+B) ≤ h(snpk+B − ŝ
n
pk+B)

≤ n

2
log(2πeD). (23)

Where the last step follows from the fact that Gaus-
sian distribution attain highest entropy among all
the probability distributions with similar variance.

By replacing (20) and (23) into (17) and
replacing the result into (15) and lettingt → ∞,
the lower bound of (6) in Theorem 1 is derived.

B. Time-Invariant Encoders: Proof of Theorem 2

Now consider the system in which encoders
are time-invariant and the system is in steady state
at timet = 0 i.e., we assume that the system begins
operation att = −∞ and there are no erasures until
time t = 0 so that the system is in steady state up

to that point. Here we follow the same steps for
deriving the lower bound as Section IV-A, except
some slight modification which helps in improving
the lower bound. The assumption that the system is
in steady state allows to derive tighter lower bound
on the first term in (17). The following lemma is
helpful.

Lemma 1. For a > b ≥ 0, we have

h(sna |f b0 ) ≥
n

2
log

(

2πe

(

ρ2(a−b) 1− ρ2

22R − ρ2
+ 1− ρ2(a−b)

))

(24)

Proof: See Appendix A.

According to Lemma 1, we have

h(snkp+B |f kp−1
0 ) ≥ n

2
log(2πe)+

n

2
log

(

ρ2(B+1) (1− ρ2)

22R − ρ2
+ (1− ρ2(B+1))

)

.

(25)

By replacing (25) and (23) into (17) and replacing
the result into (15) and lettingt → ∞, the follow-
ing can be recovered.

D24R − (Dρ2 + 1− ρ2(B+1))22R + ρ2(1− ρ2B) ≥ 0
(26)

and by solving (26) forR, (8) is derived. This
completes the proof of Theorem 2.

V. CODING SCHEME

A. Proof of Theorem 3

The coding scheme is based on Wyner-Ziv
coding scheme [11]. In particular, the encoder at
each timet quantizes the Gaussian source sequence
s
n
t to generate an auxiliary random variableunt

jointly typical with the source. In addition the
encoder randomly and independently assigns2nR

bin indices to all possible quantized sequenceu
n
t

and while observingunt transmits its bin index,
denoted byft, through the channel.

The test channel associated with our quantizer
is

ut = st + zt (27)

where zt ∼ N(0, x) is drawn independent ofst.
Clearly the Markov chainut → st → st+1 → ut+1

holds fort > 0.

Assume that the erasure with the length
B starts at time t. At any time l ≥ t +
B, the decoder has access to the codewords
{f0, f1, . . . , ft−1, ft+B , ft+B+1, . . . , fl} and is inter-
ested in recoverinĝsnl as an estimate ofsnl within



distortionD. According to Wyner-Ziv scheme, the
decoder succeeds in recoveringunl at time l from
the bin indices{f0, . . . , ft−1, ft+B , ft+B+1, . . . , fl}
with high probability if the rateR satisfies

R ≥ I
(

sl ; ul | ut−1
0 , ul−1

t+B

)

, fl(x,B). (28)

whereuba = {ua, ua+1, . . . , ub}. On the other hand,
Define the estimation error as

λl(x,B) ,

1

n

n
∑

k=1

E{(sl,k − ŝl,k)
2 | u0,k, . . . , ut−1,k, ut+B,k, . . . , ul,k}.

Then, for anyl ≥ t + B, the estimation errors
have to satisfyλl(x,B) ≤ D. In other words, the
following conditions have to be satisfied

R ≥ max
l≥t+B

fl(x,B), (29)

D ≥ max
l≥t+B

λl(x,B). (30)

Now consider the following lemma.

Lemma 2. For any l > t+B,

fl(x,B) ≤ ft+B(x,B), (31)

λl(x,B) ≤ λt+B(x,B). (32)

Proof: See Appendix B.

According to Lemma 2, (29) reduces to

R ≥ ft+B(x,B) = I
(

st+B ; ut+B | ut−1
0

)

(33)

= h
(

st+B | ut−1
0

)

− h
(

st+B | ut+B, u
t−1
0

)

(34)

This indicates that any rateR satisfying (34) also
satisfies (28) for anyl > t + B, which guarantees
the success of the decoder in recoveringul at time
l. On the other hand, (32) indicates that if the
decoder is able to recover̂st+B within distortion
λt+B(x,B) ≤ D, it will be able to recover̂sl
within distortionλl(x,B) ≤ D, for l > t+B.

According to these arguments, the following
rate is achievable for the problem.

R+(B,D) = min
x

ft+B(x,B)

subject to λt+B(x,B) ≤ D
(35)

It is not hard to show that the function
f0(x,B) attains its minimum when the inequality
constraint satisfies equality, i.e. forx = x∗ where
λt+B(x

∗, B) = D. This equation is equivalent to
(13) in Theorem 3. Thus, (35) reduces to

R+(B,W ) = f0(x
∗, B) (36)

Now it remains to evaluate (36) in order to show
(12) in Theorem 3.

To evaluateft+B(x,B) in (34) we lets̃t−1 to
be the MMSE estimate ofst−1 given u

t−1
0 . Since

the decoder is in steady state at timet− 1 we can
express

s̃t−1 = α̃xst−1 + ñt−1 (37)

whereñt−1 ∼ N (0, σ̃2
x). Definey(x) = σ̃2

x/α̃
2
x. To

compute the noise variance we note that the system
until time t− 1 is a Kalman filter that follows

si = ρsi−1 + ni, ni ∼ N(0, 1− ρ2) (38)

ui = si + zi, zi ∼ N(0, x) (39)

According to Kalman filter model,si can be viewed
as state of the system updated according a Gauss-
Markov model andui as output of the system at
each timei, which is a noisy version of statesi.
It is known that, the decoder at timet − 1 while
observing all the previous outputs upto time{t −
1}, is able to estimate the sourcesnt−1 with the
following error

σt−1|t−1 =
Σ∞(x)

1
x
Σ∞(x) + 1

(40)

whereσt−1|t−1 is the error of estimatingst−1 at
time t − 1. The expression forΣ∞(x) defined in
(11) is well known.

For the test channel of (37) the MMSE error
of estimatingst−1 equalsσT = y(x)/(1 + y(x)).
By settingσT = σt−1|t−1 in (40), the expression
(10) is derived.

By applying the MMSE estimator and using
the fact that̃st−1 is a sufficient statistic forsj for
j ≥ t,

h
(

st+B | ut−1
0

)

= h (st+B | s̃t−1) (41)

=
1

2
log

(

2πe(1− ρ2(B+1)

1 + y(x)
)

)

. (42)

Furthermore note that, the estimation error
λt+B(x,B) can be written as

λt+B(x,B)

=
1

n

n
∑

k=1

E{(st+B,k − ŝt+B,k)
2 | u0,k, . . . , ut−1,k, ut+B,k}

=
1

n

n
∑

k=1

E{(st+B,k − ŝt+B,k)
2 | s̃t−1,k, ut+B,k}

(43)

=
1− ρ2(B+1)

1+y(x)

1 + 1
x
− ρ2(B+1)

x(1+y(x))

≤ D, (44)

where (44) follows from the fact that the decoder
is required to reconstruct the sourcesnt+B, from
{un0 , . . . , unt−1, u

n
t+B} within distortionD.



Note that the MMSE estimator operates on
jointly Gaussian signals and thus is the optimal
estimator, i.e.

h
(

st+B | ut−1
0 , ut+B

)

=
1

2
log(2πe · λt+B(x,B)).

(45)

Accordingly, from (34) we have that

ft+B(x,B) =
1

2
log

(

1

λt+B(x,B)
(1− ρ2(B+1)

1 + y(x)
)

)

(46)

=
1

2
log

(

1 +
1

x
− ρ2(B+1)

x(1 + y(x))

)

(47)

By replacingx = x∗ into (46) and noting that
λt+B(x

∗, B) = D, the expression in (12) is derived
which completes he proof of the theorem.

B. Comparison with Sub-Optimal Schemes

In this section, we compare the lower and up-
per bounds on optimal lossy rate-recovery function
with sub-optimal schemes as follows.

1) Still Image Compression:In this scheme,
the encoder ignores the decoder’s memory and
at time t ≥ 0 and encodes the sourcesni in
a memoryless manner and sends the codewords
through the channel. The rate associated to this
scheme is

RSI = I(st; ut) =
1

2
log2(

1

D
). (48)

In this scheme, the decoder is able to recover the
source whenever its codeword is available, i.e. at
all the times except when the erasure happens.

2) Source-Channel Separation-Based
Scheme: This scheme consists of predictive
coding (DPC) followed by a Forward Error
Correction (FEC) code to compensate the effect of
packet losses of the channel. As the contribution
of B erased codewords need to be recovered using
the available codeword, the rate of this scheme
can be computed as follows.

RFEC = (B + 1)R+(B = 0, D). (49)

Fig. 4 shows the rate performance of these
sub-optimal systems as well as lower and upper
bounds on optimal lossy rate-recovery function as
a function of distortionD, for ρ = 0.9 andB = 1.
In can be observe that both still image compres-
sion and source-channel separation based method
are quite sub-optimal methods and the achievable
scheme based on Wyner-Ziv outperforms the other
two schemes.
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Fig. 4. Comparison of achievable rates of sub-optimal schemes
with the Lower and Upper Bounds of lossy rate-recovery func-
tion for ρ = 0.9 andB = 1.

VI. H IGH RESOLUTION SCHEME, PROOF

SKETCH FORCOROLLARY 1

We show the high resolution results by com-
puting the limit of the upper and lower bounds on
lossy rate-recovery function in Theorems 2 and 3
whenD approaches to0 and showing that the two
limits coincides.

The high resolution behavior of the lower
bound functionR−(B,D), in (8) is straightfor-
ward, i.e. it is not hard to observe that

lim
D→0

(

R−(B,D)− 1

2
log(

1 − ρ2(B+1)

D
)

)

= 0

(50)

Maybe the more insightful way to investigate
the high resolution behavior of the upper bound
R+(B,D) is to note that

1

2
log(2πeD) ≥ h(st|ut0) ≥ h(st|ut0, st−1)

= h(st|ut, st−1) (51)

=
1

2
log

(

2πe

1/x+ 1/(1− ρ2)

)

(52)

where (51) follows from the Markov chain property
u
t−1
0 → ut, st−1 → st. From (52) it can be seen that

D → 0 requiresx → 0. In particular

x ≤ D

1−D/(1− ρ2)
. (53)

On the other hand whenx = σ2/α2 → 0,
the quantized version of the sources at each time
become very close to the original source sequences.
Thus, we have the following approximations

h(st+B|ut−1
0 ) ≈ h(st+B|st−1)

=
1

2
log
(

2πe(1− ρ2(B+1))
)

(54)



and

h(st+B|ut0, ut+B) ≈ h(st+B |ut+B) ≈ 1

2
log (2πex)

(55)

≈ 1

2
log (2πeD) (56)

where (56) follows from replacing (53) into (55)
for D → 0. By computing the limit of the achiev-
able rate (R+(B,W,D)) of Theorem 3 whenD
approaches to0, it can be obtained that

lim
D→0

(

R+(B,D)− 1

2
log(

1− ρ2(B+1)

D
)

)

= lim
D→0

(

I(st+B; ut+B|ut0)−
1

2
log(

1− ρ2(B+1)

D
)

)

= 0

(57)

(50) together with (57) characterizes the high res-
olution behavior of lossy rate-recovery function as
in Corollary 1.

VII. C ONCLUSION

In this paper, we investigated the real-time en-
coding of Gauss-Markov sources where the source
sequences are spatially i.i.d. and temporally dis-
tributed according to a first order Gauss-Markov
model. The encoder sequentially encodes the source
sequences and sends the codewords through the
channel which introduces single burst erasure of
lengthB. The decoder aims to causally reconstruct
the source sequences within a specific distortion
except for erasure times. The minimum rate attain-
able for this problem is introduced as lossy rate-
recovery function and the lower and upper bounds
for this function is derived. It is also shown that in
high resolution regime when the system is in steady
state, the lower and upper bounds coincides.

Our future work will attempt to extend the re-
sults to the case when an error propagation window
is allowed following the erasure burst.

APPENDIX A
PROOF OFLEMMA 1

According to the Gauss-Markov source model
for a > b ≥ 1,

s
n
a = ρa−b

s
n
b + ñn (58)

where ñn i.i.d.∼ N (0, 1 − ρ2(a−b)). By applying
Shannon’s EPI we have

h(sna |f b0 )
≥ n

2
log
(

ρ2(a−b)2
2
n
h(sn

b
|f b0 ) + 2πe(1− ρ2(a−b))

)

.

(59)
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Fig. 5. Knowingul−1

t+B
instead oful−B−1

t , reduces the entropy
term in (64).

On the other hand,

h(snb |f b0 ) = h(snb |f b−1
0 )− I(fb; s

n
b |f b−1

0 )

= h(snb |f b−1
0 )−H(fb|f b−1

0 ) +H(fb|snb , f b−1
0 )

≥ h(snb |f b−1
0 )−H(fb) (60)

≥ n

2
log
(

ρ22
2
n
h(sn

b−1|f
b−1
0 ) + 2πe(1− ρ2)

)

− nR

(61)

Where (60) follows from the fact that conditioning
reduces entropy and (61) again follows from Shan-
non’s EPI. Assuming that the system is in steady
state, we haveh(snb−1|f b−1

0 ) = h(snb |f b0 ). Thus (61)
reduces to

2
2
n
h(sn

b
|f b0 ) ≥ 2πe(1− ρ2)

22R − ρ2
(62)

Replacing (62) into (59), (24) is derived.

APPENDIX B
PROOF OFLEMMA 2

First note that, in the steady state whent ≫ 1,
we have

ft+B(x,B) = I
(

st+B; ut+B | ut−1
0

)

= I
(

sl ; ul| ut−1
0 , ul−B−1

t

)

= h
(

ul| ut−1
0 , ul−B−1

t

)

− h
(

ul| ut−1
0 , ul−B−1

t , sl
)

= h
(

ul| ut−1
0 , ul−B−1

t

)

− h (ul|sl) (63)

≥ h
(

ul| ut−1
0 , ul−1

t+B

)

− h (ul|sl) (64)

= h
(

ul| ut−1
0 , ul−1

t+B

)

− h
(

ul| ut−1
0 , ul−1

t+B, sl
)

(65)

= I
(

sl ; ul| ut−1
0 , ul−1

t+B

)

= fl(x,B)

where (63) and (65) follow from the test channel
model in (27). Fig. 5 clarifies the idea behind the
step (64). As a result of the Markov chain in Fig. 5,
any auxiliary random variableuj which is farther
from to ul is a more noisier representation oful
and consequently contains less information about
it. Therefore, as shown in Fig. 5, replacing any
conditioning elementuj in the first term of (63)
with another elementuj+B which is closer toul
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Fig. 6. The difference between the terms in (63) and (64) is
positive for all values ofx.

can only reduces the entropy. Fig 6, shows the
difference between the terms in (63) and (64) as
a function ofx, for B = 1, 2 and for variousls,
which confirms (64).

Now note that, as all the random variables are
jointly Gaussian, we also have

λl(x,B) =
2h(sl | u

t−1
0 ,ul

t+B)

2πe
. (66)

Also note that

h
(

st+B | ut−1
0 , ut+B

)

= h
(

sl | ut−1
0 , ul−B−1

t , ul
)

(67)

≥ h
(

sl | ut−1
0 , ult+B

)

, (68)

where (68) follows from the arguments similar
to (64). From (68) and (66), and the fact that
2(.)/2πe is a monotonically increasing function,
(32) is immediate. This completes the proof.
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