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Zero-Delay Sequential Transmission of Markov
Sources over Burst Erasure Channels

Farrokh Etezadi, Ashish Khisti and Mitchell Trott

Abstract—A setup involving zero-delay sequential transmission
of a vector Markov source over a burst erasure channel is studied.
A sequence of source vectors is compressed in a causal fashion at
the encoder, and the resulting output is transmitted over a burst
erasure channel. The destination is required to reconstruct each
source vector with zero-delay, but those source sequences that are
observed either during the burst erasure, or in the interval of
length W following the burst erasure need not be reconstructed.
The minimum achievable compression rate is called the rate-
recovery function. We assume that each source vector is sampled
i.i.d. across the spatial dimension and from a stationary, first-
order Markov process across the temporal dimension.

For discrete sources the case of lossless recovery is considered,
and upper and lower bounds on the rate-recovery function are
established. Both these bounds can be expressed as the rate for
predictive coding, plus a term that decreases at least inversely
with the recovery window length W . For Gauss-Markov sources
and a quadratic distortion measure, upper and lower bounds on
the minimum rate are established when W = 0. These bounds
are shown to coincide in the high resolution limit. Finally another
setup involving i.i.d. Gaussian sources is studied and the rate-
recovery function is completely characterized in this case.

Index Terms—Joint Source-Channel Coding, Distributed
Source Coding, Gauss-Markov Sources, Kalman Filter, Burst
Erasure Channels, Multi-terminal Information Theory, Rate-
distortion Theory.

I. INTRODUCTION

REal-time streaming applications require both the sequen-
tial compression, and playback of multimedia frames

under strict latency constraints. Linear predictive techniques
such as DPCM have long been used to exploit the source
memory in such systems. However predictive coding schemes
also exhibit a significant level of error propagation in the
presence of packet losses [1]. In practice one must develop
transmission schemes that satisfy both the real-time constraints
and are robust to channel errors.

There exists an inherent tradeoff between the underlying
transmission-rate and the error-propagation at the receiver
in all video streaming applications. Commonly used video
compression formats such as H.264/MPEG and HEVC use a
combination of intra-coded and predictively-coded frames to
limit the amount of error propagation. The predictively-coded
frames are used to improve the compression efficiency whereas
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the intra-coded frames limit the amount of error propagation.
Other techniques including forward error correction codes [2],
leaky DPCM [3] and distributed video coding [4] can also be
used to trade off the transmission rate with error propagation.
Despite this, such a tradeoff is not well understood even in
the case of a single isolated packet loss [5].

In this paper we study the information theoretic tradeoff be-
tween the transmission rate and error propagation in a simple
source-channel model. We assume that the channel introduces
an isolated erasure burst of a certain maximum length, say
B. The encoder observes a sequence of vector sources and
compresses them in a causal fashion. The decoder is required
to reconstruct each source vector with zero delay, except those
that occur during the error propagation window. The decoder
can declare a don’t-care for all the source sequences that occur
in this window. We assume that is period spans the duration of
the erasure burst, as well an interval of length W immediately
following it. We study the minimum rate required R(B,W ),
and define it as the rate-recovery function.

We first consider the case of discrete sources and lossless
reconstruction and establish upper and lower bounds on the
minimum rate. Both these bounds can be expressed as the
rate of the predictive coding scheme, plus an additional
term that decreases at-least as H(s)/(W + 1) where H(s)
denotes the entropy of the source symbol. Our lower bound
is obtained through connection to a certain multi-terminal
source coding problem that captures the tension in encoding
a source sequence during the error-propagation period, and
outside it. The upper bound is based on a natural random-
binning scheme. We also consider the case of Gauss-Markov
sources and a quadratic distortion measure. We again establish
upper and lower bounds on the minimum rate when W = 0,
i.e., when instantaneous recovery following the burst erasure
is imposed. We observe that our upper and lower bounds
coincide in the high resolution limit, thus establishing the
rate-recovery function in this regime. Finally we consider a
different setup involving i.i.d. Gaussian sources, and a special
recovery constraint, and obtain an exact characterization of the
rate-recovery function in this special case. Many of our results
also naturally extend to the case when the channel introduces
multiple erasure bursts.

The remainder of the paper is organized as follows. We
discuss related literature in Section II. The problem setup is
described in Section III and a summary of the main results is
provided in Section IV. We treat the case of discrete sources
and lossless recovery in Section V and establish upper and
lower bounds on the minimum rate. The optimality of binning
for the special case of symmetric sources and memoryless
encoders is established in Section VI. In Section VII we
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consider the case of Gauss-Markov source with a quadratic
distortion constraint. Section VIII studies another setup in-
volving independent Gaussian sources and a sliding window
recovery constraint, where an exact characterization of the
minimum rate is obtained. Conclusions appear in Section IX.

Notations: Throughout this paper we represent the Eu-
clidean norm operator by || · || and the expectation operator
by E[·]. The notation “log” is used for the binary logarithm,
and rates are expressed in bits. The operations H(.) and h(.)
denote the entropy and the differential entropy, respectively.
The “slanted sans serif” font a and the normal font a repre-
sent random variables and their realizations respectively. The
notation ani = {ai,1, . . . , ai,n} represents a length-n sequence
of symbols at time i. The notation [f ]ji for i < j represents
fi, fi+1, . . . , fj .

II. RELATED WORKS

Problems involving real-time coding and compression have
been studied from many different perspectives in related
literature. The compression of a Markov source, with zero
encoding and decoding delays, was studied in an early work by
Witsenhausen [6]. In this setup, the encoder must sequentially
compress a (scalar) Markov source and transmit it over an ideal
channel. The decoder must reconstruct the source symbols
with zero-delay and under an average distortion constraint. It
was shown in [6] that for a k-th order Markov source model,
an encoding rule that only depends on the k most recent source
symbols, and the decoder’s memory, is sufficient to achieve the
optimal rate. Similar structural results have been obtained in a
number of followup works, see e.g., [7] and references therein.
The authors in [8] considered real-time communication of
a memoryless source over memoryless channels, with or
without the presence of unit-delay feedback. The encoding
and decoding is sequential with a fixed finite lookahead at
the encoder. The authors propose conditions under which
symbol-by-symbol encoding and decoding, without lookahead,
is optimal and more generally characterize the optimal encoder
as a solution to a dynamic programming problem.

In another line of work, the problem of sequential coding
of correlated vector sources in a multi-terminal source coding
framework was introduced by Viswanathan and Berger [9].
In this setup, a set of correlated sources must be sequentially
compressed by the encoder, whereas the decoder at each stage
is required to reconstruct the corresponding source sequence,
given all the encoder outputs up to that time. It is noted in [9]
that the correlated source sequences can model consecutive
video frames and each stage at the decoder maps to sequential
reconstruction of a particular source frame. This setup is an
extension of the well-known successive refinement problem
in source coding [10]. In followup works, in reference [11]
the authors consider the case where the encoders at each time
have access to previous encoder outputs rather than previous
source frames. Reference [12] considers an extension where
the encoders and decoders can introduce non-zero delays. All
these works assume ideal channel conditions. Reference [13]
considers an extension of [9] where at any given stage the
decoder has either all the previous outputs, or only the present

output. A robust extension of the predictive coding scheme
is proposed and shown to achieve the minimum sum-rate.
However this setup does not capture the effect of packet losses
over a channel, where the destination has access to all the
non erased symbols. To our knowledge, only reference [3]
considers the setting of sequential coding over a random
packet erasure channel. The source is assumed to be Gaussian,
spatially i.i.d. and temporally autoregressive. A class of linear
predictive coding schemes is studied and an optimal scheme
within this class, with respect to the excess distortion ratio met-
ric is proposed. Our proposed coding scheme is qualitatively
different from [3], [13] and involves a random binning based
approach, which is inherently robust to the side-information
at the decoder.

In other related works, the joint source-channel coding of a
vector Gaussian source over a vector Gaussian channel with
zero reconstruction delay has also been extensively studied.
While optimal analog mappings are not known in general,
a number of interesting approaches have been proposed in
e.g. [14], [15] and related references. Reference [16] studies
the problem of sequential coding of the scalar Gaussian source
over a channel with random erasures. In [5], the authors
consider a joint source-channel coding setup and propose the
use of distributed source coding to compensate the effect of
channel losses. However no optimality results are presented for
the proposed scheme. Sequential random binning techniques
for streaming scenarios have been proposed in e.g. [17], [18]
and the references therein.

To the best of our knowledge, there has been no prior work
that studies an information theoretic tradeoff between error-
propagation and compression efficiency in real-time streaming
systems.

III. PROBLEM STATEMENT

In this section we introduce our source and channel models
and the associated definition of the rate-recovery function.

We assume that the communication spans the interval
i ∈ [−1,L]. At each time i, a source vector {sni } is sampled,
whose symbols are drawn independently across the spatial
dimension, and from a first-order Markov chain across the
temporal dimension, i.e.,

Pr( sni = sni | sni−1 = sni−1, sni−2 = sni−2, . . . , s
n
−1 = sn−1)

=

n∏
k=1

p1(si,k|si−1,k), 0 ≤ i ≤ L. (1)

The underlying random variables {si} constitute a time-
invariant, stationary and a first-order Markov chain with a
common marginal distribution denoted by ps(·) over an al-
phabet S. The sequence sn−1 is sampled i.i.d. from ps(·) and
revealed to both the encoder and decoder before the start of the
communication. It plays the role of a synchronization frame.

A rate-R encoder computes an index fi ∈ [1, 2nR] at time
i, according to an encoding function

fi = Fi
(
sn−1, s

n
0 , ..., s

n
i

)
, 0 ≤ i ≤ L. (2)

Note that the encoder in (2) is a causal function of the source
sequences. A memoryless encoder satisfies Fi(·) = Fi(sni )
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Fig. 1: Problem Setup: The encoder output fi is a function of all the past source sequences. The channel introduces a burst
erasure of length up to B. The decoder produces ŝni upon observing the channel outputs up to time i. As indicated, the decoder
is not required to produce those source sequences that are observed either during the burst erasure, or a period of W following
it. The first sequence, sn−1 is a synchronization frame available to both the source and destination.

i.e., the encoder does not use the knowledge of the past
sequences. Naturally a memoryless encoder is very restrictive,
and we will only use it to establish some special results.

The channel takes each fi as input and either outputs gi = fi
or an erasure symbol i.e., gi = ?. We consider the class of
burst erasure channels. For some particular j ≥ 0, it introduces
a burst erasure such that gi = ? for i ∈ {j, j+1, ..., j+B′−1}
and gi = fi otherwise i.e.,

gi =

{
?, i ∈ [j, j + 1, . . . , j +B′ − 1]

fi, else,
(3)

where the burst length B′ is upper bounded by B.
Upon observing the sequence {gi}i≥0, the decoder is re-

quired to reconstruct each source sequence with zero delay
i.e.,

ŝni = Gi(g0, g1, . . . , gi, s
n
−1), i /∈ {j, . . . , j +B′ +W − 1}

(4)

where ŝni denotes the reconstruction sequence and j denotes
the time at which burst erasure starts in (3). The destination is
not required to produce the source vectors that appear either
during the burst erasure or in the period of length W following
it. We call this period the error propagation window. Fig. 1
provides a schematic of the causal encoder (2), the channel
model (3), and the decoder (4).

A. Rate-Recovery Function

We define the rate-recovery function under lossless and
lossy reconstruction constraints.

1) Lossless Rate-Recovery Function: We first consider the
case when the reconstruction in (4) is required to be lossless.
We assume that the source alphabet is discrete and the entropy
H(s) is finite. A rate RL(B,W ) is feasible if there exists a
sequence of encoding and decoding functions and a sequence
εn that approaches zero as n→∞ such that, Pr(sni 6= ŝni ) ≤
εn for all source sequences reconstructed as in (4). We seek
the minimum feasible rate RL(B,W ), which is the lossless

TABLE I: Summary of notation used in the paper.

Source
Parameters

Source Symbol s
Source Reproduction ŝ

Temporal Correlation Coefficient
of Gauss-Markov Source Model ρ

Channel
Parameters

Channel Input f
Channel Output g

Maximum Burst Length B
Guard Length between Consecutive Bursts L

System
Parameters

Length of Source Sequences n
Communication Duration L
Recovery Window Length W

Performance
Metrics

Rate R
Average Distortion D

rate-recovery function. In this paper, we will focus on infinite-
horizon case, R(B,W ) = limL→∞RL(B,W ), which will be
called the rate-recovery function for simplicity.

2) Lossy Rate-Recovery Function: We also consider the
case where reconstruction in (4) is required to satisfy an
average distortion constraint:

lim sup
n→∞

E

[
1

n

n∑
k=1

d(si,k, ŝi,k)

]
≤ D (5)

for some distortion measure d : R2 → [0,∞). The rate R
is feasible if a sequence of encoding and decoding functions
exists that satisfies the average distortion constraint. The min-
imum feasible rate RL(B,W,D), is the lossy rate-recovery
function. The study of lossy rate-recovery function for the
general case appears to be quite challenging. In this paper
we will focus on the class of Gaussian-Markov sources, with
quadratic distortion measure, i.e. d(s, ŝ) = (s− ŝ)2, where the
analysis simplifies. We will again focus on infinite-horizon
case, R(B,W,D) = limL→∞RL(B,W,D) which we simply
call the rate-recovery function. Table I summarizes the notation
used throughout the paper.

Remark 1. Note that our proposed setup only considers a
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single burst erasure during the entire duration of communi-
cation. When we consider lossless recovery at the destination
our results immediately extend to channels involving multi-
ple burst erasures with a certain guard interval separating
consecutive bursts. When we consider Gauss-Markov sources
with a quadratic distortion measure, we will explicitly treat
the channel with multiple burst erasures and compare the
achievable rates with that of a single burst erasure channel.

B. Practical Motivation

Note that our setup assumes that the size of both the
source frames and channel packets is sufficiently large. A
relevant application for the proposed setup is video streaming.
Video frames are generated at a rate of approximately 60 Hz
and each frame typically contains several hundred thousand
pixels. The inter-frame interval is thus ∆s ≈ 17 ms. Suppose
that the underlying broadband communication channel has a
bandwidth of Ws = 2.5 MHz. Then in the interval of ∆s

the number of symbols transmitted using ideal synchronous
modulation is N = 2∆sWs ≈ 84, 000. Thus the block length
between successive frames is sufficiently long that capacity
achieving codes could be used and the erasure model and
large packet sizes is justified. The assumption of spatially i.i.d.
frames could reasonably approximate the video innovation
process generated by applying suitable transform on original
video frames. Such models have been also used in earlier
works e.g., [3], [9], [11]–[13].

Possible applications of the burst loss model considered
in our setup include fading wireless channels and congestion
in wired networks. We note that the present paper does not
consider a statistical channel model but instead considers a
worst case channel model. As mentioned before even the effect
of such a single burst loss has not been well understood in
the video streaming setup and therefore our proposed setup
is a natural starting point. Furthermore while the statistical
models are used to capture the typical behaviour of channel
errors, the atypical behaviour is often modelled (see e.g., [19,
Sec. 6.10]) using a worst-case approach. Therefore in low-
latency applications where the local channel dynamics are
relevant such models are often used (see e.g., [20]–[23]).
Finally we note that earlier works (see e.g., [3]) that consider
statistical channel models, also ultimately simplify the system
by analyzing the effect of each burst erasure separately in
steady state.

IV. MAIN RESULTS

We summarize the main results of this paper. We note
in advance that throughout the paper, the upper bound on
the rate-recovery function indicates the rate achievable by a
proposed coding scheme and the lower bound corresponds to
a necessary condition that the rate-recovery function of any
feasible coding scheme has to satisfy. Section IV-A treats the
lossless rate-recovery function and presents lower and upper
bounds in Theorem 1. Corollary 2 presents the lossless rate-
recovery function for a special case of symmetric sources,
when restricted to memoryless encoders. Section IV-B treats
the lossy rate-recovery function for the class of Gauss-Markov

sources. Prop. 1 presents a lower bound, whereas Prop. 2 and
Prop. 3 present upper bounds on lossy rate-recovery function
for the single and multiple burst erasure channel models
respectively. Our bounds coincide in the high resolution limit,
as stated in Corollary 3. Finally Section IV-C treats another
setup involving independent Gaussian sources, with a sliding
window recovery constraint, and establishes the associated
rate-recovery function.

A. Lossless Rate-Recovery Function

Theorem 1. (Lossless Rate-Recovery Function) For the sta-
tionary, first-order Markov, discrete source process, the loss-
less rate-recovery function satisfies the following upper and
lower bounds: R−(B,W ) ≤ R(B,W ) ≤ R+(B,W ), where

R+(B,W )=H(s1|s0) +
1

W + 1
I(sB ; sB+1|s0), (6)

R−(B,W )=H(s1|s0) +
1

W + 1
I(sB ; sB+W+1|s0). (7)

�

Notice that the upper and lower bounds (6) and (7) coincide
for W = 0 and W → ∞, yielding the rate-recovery function
in these cases. We can interpret the term H(s1|s0) as the
amount of uncertainty in si when the past sources are perfectly
known. This term is equivalent to the rate associated with ideal
predictive coding in absence of any erasures. The second term
in both (6) and (7) is the additional penalty that arises due
to the recovery constraint following a burst erasure. Notice
that this term decreases at-least as H(s)/(W + 1), thus the
penalty decreases as we increase the recovery period W . Note
that the mutual information term associated with the lower
bound is I(sB ; sB+W+1|s0) while that in the upper bound is
I(sB ; sB+1|s0). Intuitively this difference arises because in the
lower bound we only consider the reconstruction of snB+W+1

following an erasure bust in [1, B] while, as explained below in
Corollary 1 the upper bound involves a binning based scheme
that reconstructs all sequences (snB+1, . . . , s

n
B+W+1) at time

t = B +W + 1.
A proof of Theorem 1 is provided in Section V. The lower

bound involves a connection to a multi-terminal source coding
problem. This model captures the different requirements im-
posed on the encoder output following a burst erasure and in
the steady state. The following Corollary provides an alternate
expression for the achievable rate and makes the connection
to the binning technique explicit.

Corollary 1. The upper bound in (6) is equivalent to the
following expression

R+(B,W ) =
1

W + 1
H(sB+1, sB+2, . . . , sB+W+1|s0). (8)

�

The proof of Corollary 1 is provided in Appendix A.
We make several remarks. First, the entropy term in (8)
is equivalent to the sum-rate constraint associated with the
Slepian-Wolf coding scheme in simultaneously recovering
{snB+1, s

n
B+2, . . . , s

n
B+W+1} when sn0 is known. Note that due

to the stationarity of the source process, the rate expression in
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(8) suffices for recovering from any burst erasure of length
up to B, spanning an arbitrary interval. Second, note that
in (8) we amortize over a window of length W + 1 as
{snB+1, . . . , s

n
B+W+1} are recovered simultaneously at time

t = B+W +1. Note that this is the maximum window length
over which we can amortize due to the decoding constraint.
Third, the results in Theorem 1 immediately apply when the
channel introduces multiple bursts with a guard spacing of at
least W + 1. This property arises due to the Markov nature
of the source. Given a source sequence at time i, all the
future source sequences {snt }t>i are independent of the past
{snt }t<i when conditioned on sni . Thus when a particular
source sequence is reconstructed at the destination, the decoder
becomes oblivious to past erasures. Finally, while the results
in Theorem 1 are stated for the rate-recovery function over an
infinite horizon, upon examining the proof of Theorem 1, it
can be verified that both the upper and lower bounds hold for
the finite horizon case, i.e. RL(B,W ), when L ≥ B +W .

A symmetric source is defined as a Markov source such that
the underlying Markov chain is also reversible i.e., the random
variables satisfy (s0, . . . , sl)

d
= (sl, . . . , s0), where the equality

is in the sense of distribution [24]. Of particular interest to us
is the following property satisfied for each t:

pst+1,st(sa, sb) = pst−1,st(sa, sb), ∀sa, sb ∈ S (9)

i.e., we can “exchange” the source pair (snt+1, s
n
t ) with

(snt−1, s
n
t ) without affecting the joint distribution. An exam-

ple of a symmetric source is the binary symmetric source:
snt = snt−1 ⊕ znt , where {znt }t≥0 is an i.i.d. binary source
process (in both temporal and spatial dimensions) with the
marginal distribution Pr(zt,i = 0) = p, the marginal distribu-
tion Pr(st,i = 0) = Pr(st,i = 1) = 1

2 and ⊕ denotes modulo-2
addition.

Corollary 2. For the class of symmetric Markov sources that
satisfy (9), the lossless rate-recovery function when restricted
to the class of memoryless encoders i.e., fi = Fi(sni ), is given
by

R(B,W ) =
1

W + 1
H(sB+1, sB+2, . . . , sB+W+1|s0). (10)

�

The proof of Corollary 2 is presented in Section VI. The
converse is obtained by again using a multi-terminal source
coding problem, but obtaining a tighter bound by exploiting
the memoryless property of the encoders and the symmetric
structure (9).

B. Gauss-Markov Sources

We study the lossy rate-recovery function when {sni }
is sampled i.i.d. from a zero-mean Gaussian distribution,
N (0, σ2

s), along the spatial dimension and forms a first-order
Markov chain across the temporal dimension i.e.,

si = ρsi−1 + ni (11)

where ρ ∈ (0, 1) and ni ∼ N (0, σ2
s(1 − ρ2)). Without loss

of generality we assume σ2
s = 1. We consider the quadratic

distortion measure d(si, ŝi) = (si − ŝi)
2 between the source

symbol si and its reconstruction ŝi. In this paper we focus
on the special case of W = 0, where the reconstruction must
begin immediately after the burst erasure. We briefly remark
about the case when W > 0 at the end of Section VII-B.
As stated before unlike the lossless case, the results of Gauss-
Markov sources for single burst erasure channels do not readily
extend to the multiple burst erasures case. Therefore, we treat
the two cases separately.

1) Channels with Single Burst Erasure: In this channel
model, as stated in (3), we assume that the channel can intro-
duce a single burst erasure of length up to B during the trans-
mission period. Define RGM-SE(B,D) , R(B,W = 0, D) as
the lossy rate-recovery function of Gauss-Markov sources with
single burst erasure channel model.

Proposition 1 (Lower Bound–Single Burst). The lossy rate-
recovery function of the Gauss-Markov source for single burst
erasure channel model when W = 0 satisfies

RGM-SE(B,D) ≥ R−GM-SE(B,D) ,

1

2
log

(
Dρ2 + 1− ρ2(B+1) +

√
∆

2D

)
(12)

where ∆ , (Dρ2 + 1− ρ2(B+1))2 − 4Dρ2(1− ρ2B). �

The proof of Prop. 1 is presented in Section VII-A. The
proof considers the recovery of a source sequence snt , given a
burst erasure in the interval [t−B, t−1] and extends the lower
bounding technique in Theorem 1 to incorporate the distortion
constraint.

Proposition 2 (Upper Bound–Single Burst). The lossy rate-
recovery function of the Gauss-Markov source for single burst
erasure channel model when W = 0 satisfies

RGM-SE(B,D) ≤ R+
GM-SE(B,D) , I(st; ut|s̃t−B) (13)

where ut , st + zt, and zt is sampled i.i.d. from N (0, σ2
z).

Also s̃t−B , st−B + e and e ∼ N
(
0,Σ(σ2

z)/(1− Σ(σ2
z))
)

with

Σ(σ2
z) ,

1

2

√
(1− σ2

z)2(1− ρ2)2 + 4σ2
z(1− ρ2) +

1− ρ2

2
(1− σ2

z),

(14)

is independent of all other random variables. The test channel
noise σ2

z > 0 is chosen to satisfy[
1

σ2
z

+
1

1− ρ2B(1− Σ(σ2
z))

]−1

≤ D. (15)

This is equivalent to σ2
z satisfying

E
[
(st − ŝt)

2
]
≤ D, (16)

where ŝt denotes the minimum mean square estimate (MMSE)
of st from {s̃t−B , ut}. �

The following alternative rate expression for the achievable
rate in Prop. 2, provides a more explicit interpretation of the
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coding scheme.

R+
GM-SE(B,D) = lim

t→∞
I(st; ut|[u]t−B−1

0 ) (17)

where the random variables ut are obtained using the same
test channel in Prop. 2. Notice that the test channel noise
σ2
z > 0 is chosen to satisfy E

[
(st − ŝt)

2
]
≤ D where ŝt

denotes the MMSE of st from {[u]t−B−1
0 , ut} in steady state,

i.e. t→∞. Notice that (17) is based on a quantize and binning
scheme when the receiver has side information sequences
{un0 , . . . , unt−B−1}. The proof of Prop. 2 which is presented
in Section VII-B also involves establishing that the worst case
erasure pattern during the recovery of ŝnt spans the interval
[t − B − 1, t − 1]. The proof is considerably more involved
as the reconstruction sequences {unt } do not form a Markov
chain.

As we will show subsequently, the upper and lower bounds
in Prop. 1 and Prop. 2 coincide in the high resolution limit.
Numerical evaluations suggest that the bounds are close for
a wide range of parameters. Fig. 2 and Fig. 3 illustrate some
sample comparison plots.

2) Channels with Multiple Burst Erasures: We also con-
sider the case where the channel can introduce multiple burst
erasures, each of length no greater than B and with a guard
interval of length at-least L separating consecutive bursts. The
encoder is defined as in (2). We again only consider the case
when W = 0. Upon observing the sequence {gi}i≥0, the
decoder is required to reconstruct each source sequence with
zero delay, i.e.,

ŝni = Gi(g0, g1, . . . , gi, s
n
−1), whenever gi 6= ? (18)

such that the reconstructed source sequence ŝni satisfies an
average mean square distortion of D. The destination is not
required to produce the source vectors that appear during any
of the burst erasures. The rate R(L,B,D) is feasible if a se-
quence of encoding and decoding functions exists that satisfies
the average distortion constraint. The minimum feasible rate
RGM-ME(L,B,D), is the lossy rate-recovery function.

Proposition 3 (Upper Bound–Multiple Bursts). The lossy
rate-recovery function RGM-ME(L,B,D) for Gauss-Markov
sources over the multiple burst erasures channel satisfies the
following upper bound:

RGM-ME(L,B,D) ≤ R+
GM-ME(L,B,D) ,

I(ut; st|s̃t−L−B , [u]t−B−1
t−L−B+1) (19)

where s̃t−L−B = st−L−B + e, where e ∼ N (0, D/(1−D)).
Also for any i, ui , si + zi and zi is sampled i.i.d. from
N (0, σ2

z) and the noise in the test channel, σ2
z > 0 satisfies

E
[
(st − ŝt)

2
]
≤ D (20)

and ŝt denotes the MMSE estimate of st from
{s̃t−L−B , [u]t−B−1

t−L−B+1, ut}. �

The proof of Prop. 3 presented in Section VII-C is again
based on quantize-and-binning technique and involves charac-
terizing the worst-case erasure pattern by the channel. Note
also that the rate expression in (19) depends on the minimum
guard spacing L, the maximum burst erasure length B and
distortion D, but is not a function of time index t, as the test
channel is time invariant and the source process is stationary.
An expression for computing σ2

z is provided in Section VII-C.
While we do not provide a lower bound for RGM-ME(L,B,D)
we remark that the lower bound in Prop. 1 also applies to the
multiple burst erasures setup.

Fig. 4 provides numerical evaluation of the achievable rate
for different values of L. We note that even for L as small
as 4, the achievable rate in Prop. 3 is virtually identical to
the rate for single burst erasure in Prop. 2. This strikingly fast
convergence to the single burst erasure rate appears due to
the exponential decay in the correlation coefficient between
source samples as time-lag increases.

3) High Resolution Regime: For both the single and multi-
ple burst erasures models, the upper and lower bounds on lossy
rate-recovery function for W = 0 denoted by R(L,B,D)
coincide in the high resolution limit as stated below.
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Fig. 5: A comparison of achievable rates for the Gauss-Markov
source (B = 1).

Corollary 3. In the high resolution limit, the Gauss-Markov
lossy rate-recovery function satisfies the following:

R(L,B,D) =
1

2
log

(
1− ρ2(B+1)

D

)
+ o(D). (21)

where limD→0 o(D) = 0. �

The proof of Corollary 3 is presented in Section VII-D.
It is based on evaluating the asymptotic behaviour of the
lower bound in (12) and the upper bound in Prop. 3, in high
resolution regime. Notice that the rate expression in (21) does
not depend on the guard separation L. The intuition behind
this is as follows. In the high resolution regime, the output
of the test channel, i.e. ut, becomes very close to the original
source st. Therefore the Markov property of the original source
is approximately satisfied by these auxiliary random variables
and hence the past sequences are not required. The rate in (21)
can also be approached by a Naive Wyner-Ziv coding scheme

that only makes use of the most recently available sequence
at the decoder [25]. The rate of this scheme is given by:

RNWZ(B,D) , I(st; ut|ut−B−1) (22)

where for each i, ui = si + zi and zi ∼ N (0, σ2
z) and σ2

z

satisfies the following distortion constraint

E[(st − ŝt)
2] ≤ D (23)

where ŝt is the MMSE estimate of st from {ut−B−1, ut}.
Fig. 5 reveals that while the rate in (22) is near optimal

in the high resolution limit, it is in general sub-optimal when
compared to the rates in (19) when ρ = 0.9. As we decrease
ρ, the performance loss associated with this scheme appears
to reduce.

C. Gaussian Sources with Sliding Window Recovery Con-
straints

In this section we consider a specialized source model and
distortion constraint, where it is possible to improve upon the
binning based upper bound. Our proposed scheme attains the
rate-recovery function for this special case and is thus optimal.
This example illustrates that the binning based scheme can be
sub-optimal in general.

1) Source Model: We consider a sequence of i.i.d. Gaussian
source sequences i.e., at time i, sni is sampled i.i.d. according
to a zero mean unit variance Gaussian distribution N (0, 1),
independent of the past sources. At each time we associate an
auxiliary source

tni =
(
sni sni−1 . . . sni−K

)
(24)

which is a collection of the past K + 1 source sequences. Note
that tni constitutes a first-order Markov chain. We will define
a reconstruction constraint with the sequence tni .

2) Encoder: The (causal) encoder at time i generates an
output given by fi = Fi(sn−1, . . . , s

n
i ) ∈ [1, 2nR].

3) Channel Model: The channel can introduce a burst
erasure of length up to B in an arbitrary interval [j, j+B−1].
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{ŝi−2}d2

{ŝi−1}d1

{ŝi}d0

t̂it̂i−1t̂i−2t̂i−3

si−2

si−1

si

titi−1ti−2ti−3

sisi−1si−2si−3

timeii−1i−2i−3

Fig. 6: Schematic of the Gaussian sources with sliding window
recovery constraints for K = 2. The source si, drawn as
white circles, are independent sources and ti is defined as
a collection of K + 1 = 3 most recent sources. The source
symbols along the diagonal lines are the same. The decoder
at time i recovers si, si−1 and si−2 within distortions d0, d1

and d2, respectively where d0 ≤ d1 ≤ d2. In figure the colour
density of the circle represents the amount of reconstruction
distortion.

4) Decoder: At time i the decoder is interested in re-
producing a collection of past K + 1 sources1 within a
distortion vector d = (d0, d1, · · · , dK) i.e., at time i the
decoder is interested in reconstructing (ŝni , . . . , ŝ

n
i−K) where

E
[
||sni−l − ŝni−l||2

]
≤ ndl must be satisfied for l ∈ [0,K].

We assume throughout that d0 ≤ d1 ≤ . . . ≤ dK which
corresponds to the requirement that the more recent source
sequences must be reconstructed with a smaller average dis-
tortion.

In Fig. 6, the source symbols si are shown as white circles.
The symbols ti and t̂i are also illustrated for K = 2. The
different shading for the sub-symbols in t̂i corresponds to
different distortion constraints.

If a burst erasure spans the interval [j, j+B−1], the decoder
is not required to output a reproduction of the sequences tni
for i ∈ [j, j +B +W − 1].

The lossy rate-recovery function denoted by R(B,W,d) is
the minimum rate required to satisfy these constraints.

Remark 2. One motivation for considering the above setup is
that the decoder might be interested in computing a function
of the last K + 1 source sequences at each time e.g.,, vi =∑K
j=0 α

jsi−j . A robust coding scheme, when the coefficient
α is not known to the encoder is to communicate sni−j with
distortion dj at time i to the decoder.

Theorem 2. For the proposed Gaussian source model with a
non-decreasing distortion vector d = (d0, . . . , dK) with 0 <

1In this section it is sufficient to assume that any source sequence with a
time index j < −1 is a constant sequence.

di ≤ 1, the lossy rate-recovery function is given by

R(B,W,d) =
1

2
log

(
1

d0

)
+

1

W + 1

min{K−W,B}∑
k=1

1

2
log

(
1

dW+k

)
. (25)

�

The proof of Theorem 2 is provided in Section VIII.
The coding scheme for the proposed model involves using
a successive refinement codebook for each sequence sni to
produce B + 1 layers and carefully assigning the sequence of
layered codewords to each channel packet. A simple quantize
and binning scheme in general does not achieve the rate-
recovery function in Theorem 2. A numerical comparison
of the lossy rate-recovery function with other schemes is
presented in Section VIII.

This completes the statement of the main results in this
paper.

V. GENERAL UPPER AND LOWER BOUNDS ON LOSSLESS
RATE-RECOVERY FUNCTION

In this section we present the proof of Theorem 1. In
particular, we show that the rate-recovery function satisfies
the following lower bound.

R ≥ R−(B,W ) = H(s1|s0) +
1

W + 1
I(sB , sB+W+1|s0).

(26)

which is inspired by a connection to a multi-terminal source
coding problem introduced in Section V-A. Based on this
connection, the proof of the lower bound in general form in
(26) is presented in Section V-B. Then by proposing a coding
scheme based on random binning, we show in Section V-C
that the following rate is achievable.

R ≥ R+(B,W ) = H(s1|s0) +
1

W + 1
I(sB , sB+1|s0). (27)

A. Connection to Multi-terminal Source Coding Problem

We first present a multi-terminal source coding setup which
captures the tension inherent in the streaming setup. We focus
on the special case when B = 1 and W = 1. At any
given time j the encoder output fj must satisfy two objectives
simultaneously: 1) if j is outside the error propagation period
then the decoder should use fj and the past sequences to
reconstruct snj ; 2) if j is within the recovery period then fj
must only help in the recovery of a future source sequence.

Fig. 7 illustrates the multi-terminal source coding problem
with one encoder and two decoders that captures these con-
straints. The sequences (snj , s

n
j+1) are revealed to the encoder

and produces outputs fj and fj+1. Decoder 1 needs to recover
snj given fj and snj−1 while decoder 2 needs to recover snj+1

given snj−2 and (fj , fj+1). Thus decoder 1 corresponds to the
steady state of the system when there is no loss while decoder
2 corresponds to the recovery immediately after an erasure
when B = 1 and W = 1. We note in advance that the multi-
terminal source coding setup does not directly correspond to
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snj , s
n
j+1

Encoder

Decoder
1

ŝnj
fj

snj−1

Decoder
2

ŝnj+1

fj+1

snj−2

Fig. 7: Multi-terminal problem setup associated with our
proposed streaming setup when W = B = 1. The erasure
at time t = j − 1 leads to two virtual decoders with different
side information as shown.

providing genie-aided side information in the streaming setup.
In particular this setup does not account for the fact that the
encoder has access to all previous source sequences and the
decoders have access to past channel outputs. Nevertheless the
main steps of the lower bound developed in the multi-terminal
setup are then generalized rather naturally in the formal proof
of the lower bound in the next sub-section.

For the above multi-terminal problem, we establish a lower
bound on the sum rate as follows:

n(R1 +R2)

≥ H(fj , fj+1)

≥ H(fj , fj+1|snj−2)

= H(fj , fj+1, s
n
j+1|snj−2)−H(snj+1|fj , fj+1, s

n
j−2)

= H(fj , s
n
j+1|snj−2) +H(fj+1|fj , snj−2, s

n
j+1)

−H(snj+1|fj , fj+1, s
n
j−2) (28)

≥ H(fj , s
n
j+1|snj−2)− nεn (29)

= H(snj+1|snj−2) +H(fj |snj+1, s
n
j−2)− nεn

≥ H(snj+1|snj−2)+H(fj |snj+1, s
n
j−1, s

n
j−2)− nεn (30)

≥ H(snj+1|snj−2)+H(snj |snj+1, s
n
j−1, s

n
j−2)− 2nεn (31)

= H(snj+1|snj−2)+H(snj |snj+1, s
n
j−1)− 2nεn (32)

= nH(s3|s0) + nH(s1|s2, s0)− 2nεn (33)

where (28) follows from the chain rule of entropy, (29) follows
from the fact that snj+1 must be recovered from {fj , fj+1, s

n
j−2}

at decoder 2 hence Fano’s inequality applies and (30) follows
from the fact that conditioning reduces entropy. Eq. (31)
follows from Fano’s inequality applied to decoder 1 and (32)
follows from the Markov chain associated with the source
process. Finally (33) follows from the fact that the source
process is memoryless. Dividing throughout by n in (33) and
taking n→∞ yields

R1 +R2 ≥ H(s1|s0, s2) +H(s3|s0). (34)

Tightness of Lower Bound: As a side remark, we note that
the sum-rate lower bound in (34) can be achieved if Decoder
1 is further revealed snj+1. Note that the lower bound (34)
also applies in this case since the Fano’s Inequality applied

to decoder 1 in (31) has snj+1 in the conditioning. We claim
that R1 = H(sj |sj+1, sj−1) and R2 = H(sj+1|sj−2) are
achievable. The encoder can achieve R1 by random binning of
source snj with {snj−1, s

n
j+1} as decoder 1’s side information

and achieve R2 by random binning of source snj+1 with
snj−2 as decoder 2’s side information. Thus revealing the
additional side information of snj+1 to decoder 1, makes the
link connecting fj to decoder 2 unnecessary.

Also note that the setup in Fig. 7 reduces to the source
coding problem in [26] if we set snj−2 = φ. It is also a suc-
cessive refinement source coding problem with different side
information at the decoders and special distortion constraints
at each of the decoders. However to the best of our knowledge
the multi-terminal problem in Fig. 7 has not been addressed in
the literature nor has the connection to our proposed streaming
setup been considered in earlier works.

In the streaming setup, the symmetric rate i.e., R1 = R2 =
R is of interest. Setting this in (34) we obtain:

R ≥ 1

2
H(s1|s0, s2) +

1

2
H(s3|s0). (35)

It can be easily shown that the expression in (35) and the
right hand side of the general lower bound in (7) for B =
W = 1 are the equivalent using a simple calculation.

R−(B = 1,W = 1)

= H(s1|s0) +
1

2
I(s1; s3|s0)

= H(s1|s0) +
1

2
H(s3|s0)− 1

2
H(s3|s0, s1)

=
1

2
H(s1, s2|s0) +

1

2
H(s3|s0)− 1

2
H(s3|s1) (36)

=
1

2
H(s2|s0) +

1

2
H(s1|s0, s2) +

1

2
H(s3|s0)− 1

2
H(s3|s1)

(37)

=
1

2
H(s1|s0, s2) +

1

2
H(s3|s0) (38)

where the first term in (36) follows from the Markov Chain
property s0 → s1 → s2, the last term in (36) follows from the
Markov Chain property s1 → s2 → s3 and (38) follows from
the fact that the source model is stationary, thus the first and
last term in (37) are the same.

As noted before the above proof does not directly apply to
the streaming setup as it does not take into account that the
decoders have access to all the past encoder outputs, and that
the encoder has access to all the past source sequences. We
next provide a formal proof of the lower bound that shows
that this additional information does not help.

B. Lower Bound on Lossless Rate-Recovery Function

For any sequence of (n, 2nR) codes we show that there is
a sequence εn that vanishes as n→∞ such that

R ≥ H(s1|s0) +
1

W + 1
I(sB+W+1; sB |s0)− εn. (39)

We consider that a burst erasure of length B spans the
interval [t − B − W, t − W − 1] for some t ≥ B + W . It
suffices to lower bound the rate for this erasure pattern. By
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considering the interval [t−W, t], following the burst erasure
we have the following.

(W + 1)nR ≥ H([f ]tt−W )

≥ H([f ]tt−W |[f ]t−B−W−1
0 , sn−1) (40)

where (40) follows from the fact that conditioning reduces
the entropy. By definition, the source sequence snt must be
recovered from {[f ]t−B−W−1

0 , [f ]tt−W , s
n
−1} Applying Fano’s

inequality we have that

H(snt |[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1) ≤ nεn. (41)

Therefore we have

H([f ]tt−W | [f ]t−B−W−1
0 , sn−1)

= H(snt , [f ]tt−W | [f ]t−B−W−1
0 , sn−1)

−H(snt |[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1) (42)

≥ H(snt | [f ]t−B−W−1
0 , sn−1)

+H([f ]tt−W | snt , [f ]t−B−W−1
0 , sn−1)− nεn. (43)

where (42) and the first two terms of (43) follow from the
application of chain rule and the last term in (43) follows
form (41). Now we bound each of the two terms in (43). First
we note that:

H(snt |[f ]t−B−W−1
0 , sn−1)

≥ H(snt |[f ]t−B−W−1
0 , snt−B−W−1, s

n
−1) (44)

= H(snt |snt−B−W−1) (45)
= H(snB+W+1|sn0 ) (46)
= nH(sB+W+1|s0), (47)

where (44) follows from the fact that conditioning reduces
entropy and (45) follows from the Markov relation

(sn−1, [f ]t−B−W−1
0 )→ snt−B−W−1 → snt .

Eq. (46) and (47) follow from the stationary and memoryless
source model.

Furthermore the second term in (43) can be lower bounded
using the following series of inequalities.

H
(
[f ]tt−W | snt , [f ]t−B−W−1

0 , sn−1

)
≥ H

(
[f ]t−1

t−W
∣∣ snt , [f ]t−W−1

0 , sn−1

)
(48)

= H
(
[f ]t−1

t−W , s
n
t−W , . . . , s

n
t−1|snt , [f ]t−W−1

0 , sn−1

)
−H

(
snt−W , . . . , s

n
t−1

∣∣snt , [f ]t−1
0 , sn−1

)
≥ H

(
[f ]t−1

t−W , s
n
t−W , . . . , s

n
t−1|snt , [f ]t−W−1

0 , sn−1

)
−Wnεn

(49)

≥ H
(
snt−W , . . . , s

n
t−1

∣∣snt , [f ]t−W−1
0 , sn−1

)
−Wnεn

≥ H
(
snt−W , . . . , s

n
t−1

∣∣snt , [f ]t−W−1
0 , snt−W−1, s

n
−1

)
−Wnεn

= H
(
snt−W , s

n
t−W+1, . . . , s

n
t−1

∣∣snt , snt−W−1

)
−Wnεn (50)

= nH(sB+1, sB+2, . . . , sB+W |sB , sB+W+1)−Wnεn (51)
= nH(sB+1, sB+2, . . . , sB+W , sB+W+1|sB)

− nH(sB+W+1|sB)−Wnεn

= n(W + 1)H(s1|s0)− nH(sB+W+1|sB)−Wnεn (52)

Note that in (48), in order to lower bound the entropy term,
we reveal the codewords [f ]t−W−1

t−B−W which is not originally

available at the decoder and exploit the fact that conditioning
reduces the entropy. This step in deriving the lower bound may
not be necessarily tight, however it is the best lower bound
we have for the general problem. Also (49) follows from the
fact that according to the problem setup {snt−W , . . . , snt−1}
must be decoded when sn−1 and all the channel codewords
before time t, i.e. [f ]t−1

0 , are available at the decoder, Hence
Fano’s inequality again applies. The expression above (50) also
follows from conditioning reduces entropy. Eq. (50) follows
from the fact that

(sn−1, [f ]t−W−1
0 )→ snt−W−1 → (snt−W , . . . , s

n
t−1). (53)

Eq. (51) and (52) follow from memoryless and stationarity of
the source sequences. Combining (43), (47) and (52) we have
that

H
(
[f ]tt−W

∣∣ [f ]t−B−W−1
0 , sn−1

)
≥ nH(sB+W+1|s0)+

n(W + 1)H(s1|s0)− nH(sB+W+1|sB)− (W + 1)nεn
(54)

Finally from (54) and (40) we have that,

nR ≥ nH(s1|s0)+
n

W + 1
[H(sB+W+1|s0)−H(sB+W+1|sB)− (W + 1)εn]

= nH(s1|s0)+
n

W + 1
[H(sB+W+1|s0)−H(sB+W+1|sB , s0)− (W + 1)εn]

= nH(s1|s0) +
n

W + 1
I(sB+W+1; sB |s0)− nεn (55)

where the second step above follows from the Markov con-
dition s0 → sB → sB+W+1. As we take n → ∞ we
recover (39). This completes the proof of the lower bound
in Theorem 1.

We remark that the derived lower bound holds for any t ≥
B + W . Therefore, the lower bound (39) on lossless rate-
recovery function also holds for finite-horizon rate-recovery
function whenever L ≥ B +W .

Finally we note that in our setup we are assuming a peak
rate constraint on ft. If we assume the average rate constraint
across ft the lower bound still applies with minor modifications
in the proof.

C. Upper Bound on Lossless Rate-Recovery Function

In this section we establish the achievability of R+(B,W )
in Theorem 1 using a binning based scheme. At each time the
encoding function fi in (2) is the bin-index of a Slepian-Wolf
codebook [27], [28]. Following a burst erasure in [j, j+B−1],
the decoder collects fj+B , . . . , fj+W+B and attempts to jointly
recover all the underlying sources at t = j + W + B. Using
Corollary 1 it suffices to show that

R+ =
1

W + 1
H(sB+1, . . . , sB+W+1|s0) + ε (56)

is achievable for any arbitrary ε > 0.
We use a codebook C which is generated by randomly

partitioning the set of all typical sequences Tnε (s) into 2nR
+

bins. The partitions are revealed to the decoder ahead of time.
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Upon observing sni the encoder declares an error if sni /∈
Tnε (s). Otherwise it finds the bin to which sni belongs to and
sends the corresponding bin index fi. We separately consider
two possible scenarios at the decoder.

First suppose that the sequence sni−1 has already been
recovered. Then the destination attempts to recover sni from
(fi, s

n
i−1). This succeeds with high probability if R+ >

H(s1|s0), which is guaranteed via (56). If we define prob-
ability of the error event Ei , {ŝni 6= sni } conditioned on the
correct recovery of sni−1, i.e. E i−1, as follows

P
(n)
e,1 , P (Ei|E i−1) (57)

then for the rates satisfying R+ > H(s1|s0) and in particular
for R+ in (56), it is guaranteed that

lim
n→∞

P
(n)
e,1 = 0. (58)

Next consider the case where sni is the first sequence to
be recovered after the burst erasure. In particular the burst
erasure spans the interval [i−B′ −W, i−W − 1] for some
B′ ≤ B. The decoder thus has access to sni−B′−W−1, before
the start of the burst erasure. Upon receiving fi−W , . . . , fi the
destination simultaneously attempts to recover (sni−W , . . . , s

n
i )

given (sni−B′−W−1, fi−W , . . . , fi). This succeeds with high
probability if,

(W + 1)nR =

i∑
j=i−W

H(fj) (59)

> nH(si−W , . . . , si|si−B′−W−1) (60)
= nH(sB′+1, . . . , sB′+W+1|s0) (61)

where (61) follows from the fact that the sequence of variables
si is a stationary process. Whenever B′ ≤ B it immediately
follows that (61) is also guaranteed by (56). Define P (n)

e,2 as
the probability of error in sni given (sni−B−W−1, fi−W , . . . , fi),
i.e.

P
(n)
e,2 , P (Ei|E i−B−W−1). (62)

For rate satisfying (61), which is satisfied through (56), it is
guaranteed that

lim
n→∞

P
(n)
e,2 = 0. (63)

Analysis of the Streaming Decoder: As described in
problem setup, the decoder is interested in recovering all
the source sequences outside the error propagation window
with vanishing probability of error. Assume a communication
duration of L and a single burst erasure of length 0 < B′ ≤ B
spanning the interval [j, j + B′ − 1], for 0 ≤ j ≤ L. The
decoder fails if at least one source sequences outside the error
propagation window is erroneously recovered, i.e. ŝni 6= sni for
some i ∈ [0, j − 1] ∪ [j +B′ +W + 1,L]. For this particular
channel erasure pattern, the probability of decoder’s failure,

denoted by P (n)
F , can be bounded as follows.

P
(n)
F ≤

j−1∑
k=0

P (Ek|E0, E1, . . . , Ek−1)+

P (Ej+B′+W+1|E0, . . . , Ej−1)+
L∑

k=j+B′+W+2

P (Ek|E0, . . . , Ej−1, Ej+B′+W+1, . . . , Ek−1)

(64)

= (L −B′ −W )P
(n)
e,1 + P

(n)
e,2 ≤ LP

(n)
e,1 + P

(n)
e,2 (65)

where P (n)
e,1 and P

(n)
e,2 are defined in (57) and (62). Eq. (65)

follows from the fact that, because of the Markov property
of the source model, all the terms in the first and the last
summation in (64) are the same and equal to P (n)

e,1 .
According to (58) and (63), for any rate satisfying (56) and

for any L, n can be chosen large enough such that the upper
bound on P

(n)
F in (65) approaches zero. Thus the decoder

fails with vanishing probability for any fixed L. This in turn
establishes the upper bound on R(B,W ), when L → ∞. This
completes the justification of the upper bound.

VI. SYMMETRIC SOURCES: PROOF OF COROLLARY 2
In this section we establish that the lossless rate-recovery

function for symmetric Markov sources restricted to class of
memoryless encoders is given by

R(B,W ) =
1

W + 1
H(sB+1, . . . , sB+W+1|s0). (66)

The achievability follows from Theorem 1 and Corollary 1.
We thus only need to prove the converse to improve upon the
general lower bound in (7). The lower bound for the special
case when W = 0 follows directly from (7) and thus we only
need to show the lower bound for W ≥ 1. For simplicity in
exposition we illustrate the case when W = 1. Then we need
to show that

R(B,W = 1) ≥ 1

2
H(sB+1, sB+2|s0) (67)

The proof for general W > 1 will follow along similar lines
and will be sketched thereafter.

Assume that a burst erasure spans time indices
j −B, . . . , j − 1. The decoder must recover

ŝnj+1 = Gj+1

(
[f ]j−B−1

0 , fj , fj+1, s
n
−1

)
. (68)

Furthermore if there is no erasure until time j then

ŝnj = Gj
(

[f ]j0, s
n
−1

)
(69)

must hold. Our aim is to establish the following lower bound
on the sum-rate.

2R ≥ H(sj+1|sj) +H(sj |sj−B−1). (70)

The lower bound (67) then follows since

R ≥ 1

2
(H(sj+1|sj) +H(sj |sj−B−1))

=
1

2
(H(sj+1|sj , sj−B−1) +H(sj |sj−B−1)) (71)

=
1

2
H(sj+1, sj |sj−B−1) =

1

2
H(sB+1, sB+2|s0), (72)
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Fig. 8: Connection between the streaming problem and the multi-terminal source coding problem. The setup on the right is
identical to the setup on the left, except with the side information sequence snj−1 replaced with snj+1. However the rate region
for both problems are identical for symmetric Markov sources.

where (71) follows from the Markov chain property sj−B−1 →
sj → sj+1, and the last step in (72) follows from stationarity
of the source model.

To establish (70) we make a connection to a multi-terminal
source coding problem in Fig. 8(a). We accomplish this in
several steps as outlined below.

A. Multi-Terminal Source Coding

Consider the multi-terminal source coding problem with
side information illustrated in Fig. 8(a). In this setup there are
four source sequences drawn i.i.d. from a joint distribution
p(sj+1, sj , sj−1, sj−B−1). The two source sequences snj and
snj+1 are revealed to the encoders j and j+ 1 respectively and
the two sources snj−1 and snj−B−1 are revealed to the decoders
j and j + 1 respectively. The encoders operate independently
and compress the source sequences to fj and fj+1 at rates
Rj and Rj+1 respectively. Decoder j has access to (fj , s

n
j−1)

while decoder j + 1 has access to (fj , fj+1, s
n
j−B−1). The two

decoders are required to reconstruct

s̃nj = G̃j(fj , snj−1) (73)

s̃nj+1 = G̃j+1(fj , fj+1, s
n
j−B−1) (74)

respectively such that Pr(sni 6= s̃ni ) ≤ εn for i = {j, j + 1}.
Note that the multi-terminal source coding setup in Fig. 8(a)

is similar to the setup in Fig. 7, except that the encoders do not
cooperate and fi = Fi(sni ), due to the memoryless property.
We exploit this property to directly show that a lower bound
on the multi-terminal source coding setup in Fig. 8(a) also
constitutes a lower bound on the rate of the original streaming
problem.

Lemma 1. For the class of memoryless encoding functions,
i.e. fj = Fj(snj ), the decoding functions ŝnj = Gj([f ]j0, s

n
−1)

and ŝnj+1 = Gj+1([f ]j−2
0 , fj , fj+1, s

n
−1) can be replaced by the

following decoding functions

s̃nj = G̃j(fj , snj−1) (75)

s̃nj+1 = G̃j+1(fj , fj+1, s
n
j−2, ) (76)

such that

Pr(s̃nj 6= snj ) ≤ Pr(ŝnj 6= snj ) (77)

Pr(s̃nj+1 6= snj+1) ≤ Pr(ŝnj+1 6= snj+1). (78)

�

Proof. Assume that the extra side-informations snj−1 is re-
vealed to the decoder j. Now define the maximum a posteriori
probability (MAP) decoder as follow.

s̃nj = Gj([f ]j0, s
n
−1, s

n
j−1) , argmax

snj

p(snj |[f ]j0, s
n
−1, s

n
j−1)

(79)

where we dropped the subscript in conditional probability
density for sake of simplicity. It is known that the MAP de-
coder is optimal and minimizes the decoding error probability,
therefore

Pr(s̃nj 6= snj ) ≤ Pr(ŝnj 6= snj ) (80)

Also note that

s̃nj = Gj([f ]j0, s
n
−1, s

n
j−1) = argmax

snj

p(snj |[f ]j0, s
n
−1, s

n
j−1)

(81)
= argmax

snj

p(snj |fj , snj−1) (82)

, G̃j(fj , snj−1) (83)

where (82) follows form the following Markov property.(
[f ]j−1

0 , sn−1

)
→ (fj , s

n
j−1)→ snj . (84)

It can be shown through similar steps that the decoder defined
in (76) exists with the error probability satisfying (78). This
completes the proof.

The conditions in (75) and (76) show that any rate that is
achievable in the streaming problem in Fig. 1 is also achieved
in the multi-terminal source coding setup in Fig. 8(a). Hence
a lower bound to this source network also constitutes a lower
bound to the original problem. In the next section we find a
lower bound on the rate for the setup in Fig. 8(a).
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B. Lower Bound for Multi-terminal Source Coding Problem

In this section, we establish a lower bound on the sum-
rate of the multi-terminal source coding setup in Fig. 8(a)
i.e., R ≥ 1

2H(sB+1, sB+2|s0). To this end, we observe the
equivalence between the setup in Fig. 8(a) and Fig. 8(b) as
stated below.

Lemma 2. The set of all achievable rate-pairs (Rj , Rj+1)
for the problem in Fig. 8(a) is identical to the set of all
achievable rate-pairs for the problem in Fig. 8(b) where the
side information sequence snj−1 at decoder 1 is replaced by
the side information sequence snj+1.

The proof of Lemma 2 follows by observing that the ca-
pacity region for the problem in Fig. 8(a) depends on the joint
distribution p(sj , sj+1, sj−1, sj−B−1) only via the marginal
distributions p(sj , sj−1) and p(sj+1, sj , sj−B−1). Indeed the
decoding error at decoder j depends on the former whereas the
decoding error at decoder j + 1 depends on the latter. When
the source is symmetric, the joint distributions p(sj , sj−1) and
p(sj , sj+1) are identical and thus exchanging snj−1 with snj+1

does not change the error probability at decoder j and leaves
the functions at all other terminals unchanged. The formal
proof is straightforward and will be omitted.

Thus it suffices to lower bound the achievable sum-rate for
the problem in Fig. 8(b). First note that

nRj+1 = H(fj+1)

≥ I(fj+1; snj+1|snj−B−1, fj)

= H(snj+1|snj−B−1, fj)−H(snj+1|snj−B−1, fj , fj+1)

≥ H(snj+1|snj−B−1, fj)− nεn (85)

where (85) follows by applying Fano’s inequality for de-
coder j + 1 in Fig. 8(b) since snj+1 can be recovered from
(snj−B−1, fj , fj+1). To bound Rj

nRj = H(fj)

≥ I(fj ; s
n
j |snj−B−1)

= H(snj |snj−B−1)−H(snj |snj−B−1, fj)

≥ nH(sj |sj−B−1)−H(snj |snj−B−1, fj)

+H(snj |snj−B−1, s
n
j+1, fj)− nεn (86)

= nH(sj |sj−B−1)− I(snj ; snj+1|snj−B−1, fj)− nεn
= nH(sj |sj−B−1)−H(snj+1|snj−B−1, fj)

+H(snj+1|snj−B−1, s
n
j , fj)− nεn

= nH(sj |sj−B−1)−H(snj+1|snj−B−1, fj)

+ nH(sj+1|sj)− nεn (87)

where (86) follows by applying Fano’s inequality for decoder
j in Fig. 8(b) since snj can be recovered from (snj+1, fj)
and hence H(snj |snj−B−1, s

n
j+1, fj) ≤ nεn holds and (87)

follows from the Markov relation snj+1 → snj → (fj , s
n
j−B−1).

By summing (85) and (87) and using Rj = Rj+1 = R, we
have

Rj +Rj+1 ≥ H(sj+1|sj) +H(sj |sj−B−1) (88)
= H(sj , sj+1|sj−B−1). (89)

which is equivalent to (70).

Remark 3. One way to interpret the lower bound in (89) is
by observing that the decoder j + 1 in Fig. 8(b) is able to
recover not only snj+1 but also snj . In particular, the decoder
j + 1 first recovers snj+1. Then, similar to decoder j, it also
recovers snj from fj and snj+1 as side information. Hence, by
only considering decoder j+1 and following standard source
coding argument, the lower bound on the sum-rate satisfies
(89).

C. Extension to Arbitrary W > 1

To extend the result for arbitrary W , we use the following
result which is a natural generalization of Lemma 1.

Lemma 3. Consider memoryless encoding functions fk =
Fk(snk ) for k ∈ {j, . . . , j+W}. Any set of decoding functions

ŝnk = Gk([f ]k0 , s
n
−1) k ∈ {j, . . . , j +W − 1} (90)

ŝnj+W = Gj+W ([f ]j−B−1
0 , [f ]j+Wj , sn−1) (91)

can be replaced by a new set of decoding functions as

s̃nk = G̃k(fk, s
n
k−1) k ∈ {j, . . . , j +W − 1} (92)

s̃nj+W = G̃j+W (snj−B−1, [f ]j+Wj ) (93)

where

Pr(s̃nl 6= snl ) ≤ Pr(ŝnl 6= snl ) j ≤ l ≤ j +W. (94)

�

The proof is an immediate extension of Lemma 1 and is
excluded here. The lemma suggests a natural multi-terminal
problem for establishing the lower bound with W+1 encoders
and decoders. For concreteness we discuss the case when
W = 2. Consider three encoders t ∈ {j, j+1, j+2}. Encoder
t observes snt and compresses it into an index ft ∈ [1, 2nRt ].
snt−1 for t ∈ {j, j + 1} are revealed to the corresponding
decoders and snj−B−1 is revealed to the decoder j + 2.
Using an argument analogous to Lemma 2 the rate region
is equivalent to the case when snj+1 and snj+2 are instead
revealed to decoders j and j + 1 respectively. For this new
setup we can argue that decoder j + 2 can always reconstruct
(snj , s

n
j+1, s

n
j+2) given (snj−B−1, fj , fj+1, fj+2). In particular,

following the same argument in Remark 3, the decoder j + 2
first recovers snj+2, then using {fj+1, s

n
j+2} recovers snj+1 and

finally using {fj , snj+1} recovers snj . And hence if we only
consider decoder j + 2 with side information snj−B−1 the sum-
rate must satisfy:

3R = Rj +Rj+1 +Rj+2 ≥ H(sj , sj+1, sj+2|sj−B−1).
(95)

Using Lemma 3 for W = 2 it follows that the proposed
lower bound also continues to hold for the original streaming
problem. This completes the proof. The extension to any
arbitrary W is completely analogous.
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VII. LOSSY RATE-RECOVERY FOR GAUSS-MARKOV
SOURCES

We establish lower and upper bounds on the lossy rate-
recovery function of Gauss-Markov sources when an imme-
diate recovery following the burst erasure is required i.e.,
W = 0. For the single burst erasure case, the proof of the
lower bound in Prop. 1 is presented in Section VII-A whereas
the proof of the upper bound in Prop. 2 is presented in
Section VII-B. The proof of Prop. 3 for the multiple burst era-
sures case is presented in Section VII-C. Finally the proof of
Corollary 3, which establishes the lossy rate-recovery function
in the high resolution regime is presented in Section VII-D.

A. Lower Bound: Single Burst Erasure

Consider any rate R code that satisfies an average distortion
of D as stated in (5). For each i ≥ 0 we have

nR ≥ H(fi)

≥ H(fi|[f ]i−B−1
0 , sn−1) (96)

= I(sni ; fi|[f ]i−B−1
0 , sn−1) +H(fi|sni , [f ]i−B−1

0 , sn−1)

≥ h(sni |[f ]i−B−1
0 , sn−1)− h(sni |fi, [f ]i−B−1

0 , sn−1) (97)

where (96) follows from the fact that conditioning reduces the
entropy.

We now present an upper bound for the second term and
a lower bound for the first term in (97). We first establish an
upper bound for the second term in (97). Suppose that the burst
erasure occurs in the interval [i−B, i− 1]. The reconstruction
sequence ŝni must be a function of (fi, [f ]i−B−1

0 , sn−1). Thus
we have

h(sni |[f ]i−B−1
0 , fi, s

n
−1) = h(sni − ŝni | [f ]i−B−1

0 , fi, s
n
−1)

≤ h(sni − ŝni )

≤ n

2
log(2πeD), (98)

where the last step uses the fact that the expected average
distortion between sni and ŝni is no greater than D, and applies
standard arguments [29, Ch. 13].

To lower bound the first term in (97), we successively use
the Gauss-Markov relation (11) to express:

si = ρ(B+1)si−B−1 + ñ (99)

for each i ≥ B and ñ ∼ N (0, 1− ρ2(B+1)) is independent of
si−B−1. Using the Entropy Power Inequality [29] we have

2
2
nh(sni |[f ]i−B−1

0 ,sn−1) ≥

2
2
nh(ρB+1sni−B−1|[f ]i−B−1

0 ,sn−1) + 2
2
nh(ñn) (100)

This further reduces to

h(sni | [f ]i−B−1
0 , sn−1) ≥

n

2
log
(
ρ2(B+1)2

2
nh(sni−B−1|[f ]i−B−1

0 ,sn−1)+2πe(1−ρ2(B+1))
)
.

(101)

It remains to lower bound the entropy term in the right hand
side of (101). We show the following in Appendix B.

Lemma 4. For any k ≥ 0

2
2
nh(snk |[f ]k0 ,s

n
−1) ≥ 2πe(1− ρ2)

22R − ρ2

(
1−

(
ρ2

22R

)k)
(102)

�

Upon substituting, (102), (101), and (98) into (97) we obtain
that for each i ≥ B + 1

R ≥ 1

2
log

[
ρ2(B+1)(1− ρ2)

D(22R − ρ2)

(
1−

(
ρ2

22R

)i−B−1
)

+
1− ρ2(B+1)

D

]
. (103)

Selecting the largest value of i, i.e. L, yields the tightest
lower bound. As mentioned earlier, we are interested in infinite
horizon when L → ∞, which yields the tightest lower bound,
we have

R ≥ 1

2
log

(
ρ2(B+1)(1− ρ2)

D(22R − ρ2)
+

1− ρ2(B+1)

D

)
(104)

Rearranging (104) we have that

D24R − (Dρ2 + 1− ρ2(B+1))22R + ρ2(1− ρ2B) ≥ 0
(105)

Since (105) is a quadratic equation in 22R, it can be easily
solved. Keeping the root that yields R > 0 results in the lower
bound in (12) in Prop. 1. This completes the proof.

Remark 4. Upon examining the proof of the lower bound of
Prop. 1, we note that it applies to any source process that
satisfies (11) and where the additive noise is i.i.d. N (0, 1 −
ρ2). We do not use the fact that the source process is itself a
Gaussian process.

B. Coding Scheme: Single Burst Erasure

The achievable rate is based on quantization and binning.
For each i ≥ 0, we consider the test channel

ui = si + zi, (106)

where zi ∼ N (0, σ2
z) is independent Gaussian noise. At time

i we sample a total of 2n(I(ui;si)+ε) codeword sequences i.i.d.
from N (0, 1 + σ2

z). The codebook at each time is partitioned
into 2nR bins. The encoder finds the codeword sequence uni
typical with the source sequence sni and transmits the bin index
fi assigned to uni .

The decoder, upon receiving fi attempts to decode uni at
time i, using all the previously recovered codewords {unj :
0 ≤ j ≤ i − 1, gj 6= ?} and the source sequence sn−1 as side
information. The reconstruction sequence ŝni is the minimum
mean square error (MMSE) estimate of sni given uni and the
past sequences. The coding scheme presented here is based on
binning, similar to lossless case discussed in Section V-C. The
main difference in the analysis is that, unlike the lossless case,
neither the recovered sequences uni nor reconstructed source
sequences ŝni inherit the Markov property of the original
source sequences sni . Therefore, unlike the lossless case, the
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Lemma 5:
Connection to Gaussian Many-help-one

Source Coding Problem.

Lemma 6:
Worst-case Characterization of Burst

Erasure and Steady State Analysis.

Lemma 7 and Section VII-B2:
Rate Evaluation

Fig. 9: Flowchart summarizing the proof steps of Prop. 2.

B′

s−1 X X X X X X X X X? ? ? ? ?

1 t−B′−k t−k−1 t

Fig. 10: Schematic of single burst erasure channel model. The
channel inputs in the interval [t−B′−k, t−k−1] is erased for
some 0 ≤ B′ ≤ B and k ∈ [0, t− B′]. The rest are available
at the decoder, as shown by check mark in the figure.

decoder does not reset following a burst erasure, once the
error propagation is completed. Since the effect of a burst
erasure persists throughout, the analysis of achievable rate is
significantly more involved.

Fig. 9 summarizes the main steps in proving Prop. 2. In
particular, in Lemma 5, we first derive necessary parametric
rate constraints associated with every possible erasure pattern.
Second, through the Lemma 6, we characterize the the worst-
case erasure pattern that dominates the rate and distortion
constraints. Finally in Lemma 7 and Section VII-B2, we
evaluate the achievable rate to complete the proof of Prop. 2.

1) Analysis of Achievable Rate: Given a collection of
random variables V , we let the MMSE estimate of si be
denoted by ŝi(V), and its associated estimation error is denoted
by σ2

i (V), i.e.,

ŝi(V)= E [si | V] (107)

σ2
i (V)= E[(si − ŝi(V))

2
]. (108)

We begin with a parametric characterization of the achiev-
able rate.

Lemma 5. A rate-distortion pair (R,D) is achievable, if for
every t ≥ 0, B′ ∈ [0, B] and k ∈ [0, t−B′] we have

R ≥ λt(k,B′) , I(st; ut | [u]t−B
′−k−1

0 , [u]t−1
t−k, s−1), (109)

and the test-channel (106) satisfies

γt(k,B
′) , E

[(
st − ŝt([u]t−B

′−k−1
0 , [u]tt−k, s−1)

)2
]

= σ2
t ([u]t−B

′−k−1
0 , [u]tt−k, s−1) ≤ D. (110)

where σ2
t (·) and ŝt(·) are defined in (108) and (107) respec-

tively. �

Proof. Consider the decoder at any time t ≥ 0 outside the
error propagation window. Assume that a single burst erasure
of length B′ ∈ [0, B] spans the interval [t−B′− k, t− k− 1]
for some k ∈ [0, t−B′] i.e.,

gj =

{
?, j ∈ {t−B′ − k, . . . , t− k − 1}
fj , else.

(111)

The schematic of the erasure channel is illustrated in Fig. 10.
Notice that k = 0 represents the case of the most recent
burst erasure spanning the interval [t − B′ − 1, t − 1]. The
decoder is interested in first successfully recovering unt and
then reconstructing snt within distortion D by performing
MMSE estimation of snt from all the previously recovered
sequences uni where i ≤ t and gi 6= ?. The decoder succeeds
with high probability if the rate constraint satisfies (109) (see
e.g., [30]) and the distortion constraint satisfies (110). If these
constraints hold for all the possible triplets (t, B′, k), the
decoder is guaranteed to succeed in reproducing any source
sequence within desired distortion D.

Finally in the streaming setup, we can follow the argument
similar to that in Section V-C to argue that the decoder
succeeds in the entire horizon of L provided we select the
source length n to be sufficiently large. The formal proof is
omitted here.

As a result of Lemma 5, in order to compute the achievable
rate, we need to characterize the worst case values of (t, k, B′)
that simultaneously maximize λt(k,B) and γt(k,B). We
present such a characterization next.

Lemma 6. The functions λt(k,B) and γt(k,B) satisfy the
following properties:

1) For all t ≥ B′ and k ∈ [0, t−B′], λt(k,B′) ≤ λt(0, B′)
and γt(k,B

′) ≤ γt(0, B
′), i.e. the worst-case erasure

pattern contains the burst erasure in the interval [t −
B, t− 1].

2) For all t ≥ B and 0 ≤ B′ ≤ B, λt(0, B′) ≤ λt(0, B)
and γt(0, B

′) ≤ γt(0, B), i.e. the worse-case erasure
pattern includes maximum burst length.

3) For a fixed B, the functions λt(0, B) and γt(0, B) are
both increasing with respect to t, for t ≥ B, i.e. the
worse-case erasure pattern happens in steady state (i.e.,
t→∞) of the system.

4) For all t < B, 0 ≤ B′ ≤ t and k ∈ [0, t − B′],
λt(k,B

′) ≤ λB(0, B) and γt(k,B
′) ≤ γB(0, B) i.e.,

the burst erasure spanning [0, B−1] dominates all burst
erasures that terminate before time B − 1.

�

Proof. Before establishing the proof, we state two inequalities
which are established in Appendix C. For each k ∈ [1 : t−B′]
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s−1 s0 st−B′−k−1 st−B′−k st−k st−k+1 st−1 st

u0 ut−B′−k−1 ut−B′−k ut−k ut−k+1 ut−1 ut

Fig. 11: Replacing ut−B′−k by ut−k improves the estimate of
st and ut.

we have that:

h(ut|[u]t−B
′−k−1

0 , [u]t−1
t−k, s−1)

≤ h(ut|[u]t−B
′−k

0 , [u]t−1
t−k+1, s−1), (112)

h(st|[u]t−B
′−k−1

0 , [u]tt−k, s−1)

≤ h(st|[u]t−B
′−k

0 , [u]tt−k+1, s−1). (113)

The above inequalities state that the conditional differential
entropy of ut and st is reduced if the variable ut−B′−k is re-
placed by ut−k in the conditioning and the remaining variables
remain unchanged. Fig. 11 provides a schematic interpretation
of the above inequalities. The proof in Appendix C exploits
the specific structure of the Gaussian test channel (106) and
Gaussian sources to establish these inequalities.

In the remainder of the proof, we establish each of the four
properties separately.

1) We show that both λt(k,B′) and γt(k,B′) are decreasing
functions of k for k ∈ [1 : t−B′].

λt(k,B
′) = I(st; ut|[u]t−B

′−k−1
0 , [u]t−1

t−k, s−1)

= h(ut|[u]t−B
′−k−1

0 , [u]t−1
t−k, s−1)− h(ut|st)

≤ h(ut|[u]t−B
′−k

0 , [u]t−1
t−k+1, s−1)− h(ut|st)

(114)

= I(st; ut|[u]t−B
′−k

0 , [u]t−1
t−k+1, s−1)

= λt(k − 1, B′) (115)

where (114) follows from using (112). In a similar fashion
since

γt(k,B
′) = σ2

t

(
[u]t−B

′−k
0 , [u]tt−k+1, s−1

)
is the MMSE estimation error of st given(

[u]t−B
′−k

0 , [u]tt−k+1, s−1

)
, we have

1

2
log (2πe · γt(k,B′)) = h(st|[u]t−B

′−k−1
0 , [u]tt−k, s−1)

≤ h(st|[u]t−B
′−k

0 , [u]tt−k+1, s−1)
(116)

=
1

2
log (2πe · γt(k − 1, B′)) (117)

where (116) follows from using (113). Since f(x) =
1
2 log(2πex) is a monotonically increasing function it follows
that γt(k,B′) ≤ γt(k − 1, B′). By recursively applying (115)
and (117) until k = 1, the proof of property (1) is complete.

2) We next show that the worst case erasure pattern also
has the longest burst. This follows intuitively since the decoder

can just ignore some of the symbols received over the channel.
Thus any rate achieved with the longest burst is also achieved
for the shorter burst. The formal justification is as follows. For
any B′ ≤ B we have,

λt(0, B
′) = I(st; ut|[u]t−B

′−1
0 , s−1)

= h(ut|[u]t−B
′−1

0 , s−1)− h(ut|st) (118)

= h(ut|[u]t−B−1
0 , [u]t−B

′−1
t−B , s−1)− h(ut|st)

≤ h(ut|[u]t−B−1
0 , s−1)− h(ut|st) (119)

= I(st; ut|[u]t−B−1
0 , s−1) (120)

= λt(0, B) (121)

where (118) and (120) follows from the Markov chain
property

ut → st → {[u]t−j−1
0 , s−1}, j ∈ {B,B′} (122)

and (119) follows from the fact that conditioning reduces
differential entropy. In a similar fashion the inequality
γt(0, B

′) ≤ γt(0, B) follows from the fact that the estimation
error can only be reduced by having more observations.

3) We show that both λt(0, B) and γt(0, B) are increasing
functions with respect to t. Intuitively as t increases the effect
of having s−1 at the decoder vanishes and hence the required
rate increases. Consider

λt+1(0, B) = I(st+1; ut+1|[u]t−B0 , s−1)

= h(ut+1|[u]t−B0 , s−1)− h(ut+1|st+1)

= h(ut+1|[u]t−B0 , s−1)− h(ut|st) (123)

≥ h(ut+1|[u]t−B0 , s−1, s0)− h(ut|st) (124)

= h(ut+1|[u]t−B1 , s0)− h(ut|st) (125)

= h(ut|[u]t−B−1
0 , s−1)− h(ut|st) (126)

= I(st; ut|[u]t−B−1
0 , s−1)

= λt(0, B) (127)

where (123) and (126) follow from time-invariant property of
the source model and the test channel, (124) follows from the
fact that conditioning reduces differential entropy and (125)
uses the following Markov chain property

{u0, s−1} → {[u]t−B1 , s0} → ut+1. (128)

Similarly,

1

2
log (2πe · γt+1(0, B)) = h(st+1|[u]t−B0 , ut+1, s−1)

≥ h(st+1|[u]t−B0 , ut+1, s0, s−1)

= h(st+1|[u]t−B1 , ut+1, s0) (129)

= h(st|[u]t−B−1
0 , ut, s−1)

=
1

2
log (2πe · γt(0, B)) (130)

where (129) follows from the following Markov chain property

{u0, s−1} → {[u]t−B1 , ut+1, s0} → st+1. (131)

Since (127) and (130) hold for every t ≥ B the proof of
property (3) is complete.
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4) Note that for t < B we have 0 ≤ B′ ≤ t and thus we
can write

λt(k,B
′) ≤ λt(0, B′) (132)
≤ λt(0, t) (133)
= h(ut|s−1)− h(ut|st)
= h(ut|s−1)− h(uB |sB)

= h(uB |sB−t−1)− h(uB |sB)

≤ h(uB |s−1)− h(uB |sB) (134)
= λB(0, B) (135)

where (132) follows from part 1 of the lemma, (133) is based
on the fact that the worse-case erasure pattern contains most
possible erasures and follows from the similar steps used in
deriving (121) and using the fact that if t < B, the burst
erasure length is at most t. Eq. (134) follows from the fact
that whenever t < B the relation s−1 → sB−t−1 → uB holds
since t < B is assumed. In a similar fashion we can show that
γt(k,B

′) ≤ γB(0, B).
This completes the proof of lemma 6.

Following the four parts of Lemma 6, it follows that the
worst-case erasure pattern happens at steady state i.e. t→∞
when there is a burst of length B which spans [t−B, t− 1].
According to this and Lemma 5, any pair (R,D) is achievable
if

R ≥ lim
t→∞

λt(0, B) (136)

D ≥ lim
t→∞

γt(0, B) (137)

Lemma 7. Consider ui = si + zi and suppose the noise
variance σ2

z satisfies

Γ(B, σ2
z) , lim

t→∞
E
[(
st − ŝt([u]t−B−1

0 , ut)
)2]

(138)

= lim
t→∞

σ2
t

(
[u]t−B−1

0 , ut
)
≤ D. (139)

The following rate is achievable:

R = Λ(B, σ2
z) , lim

t→∞
I(st; ut|[u]t−B−1

0 ). (140)

�

Proof. It suffices to show that any test channel satisfying (139)
also implies (137) and any rate satisfying (140) implies (136).
These relations can be established in a straightforward manner
as shown below.

R = Λ(B, σ2
z) = lim

t→∞
I(st; ut|[u]t−B−1

0 )

= lim
t→∞

(
h(ut|[u]t−B−1

0 )− h(ut|st)
)

(141)

≥ lim
t→∞

(
h(ut|[u]t−B−1

0 , s−1)− h(ut|st)
)

(142)
= lim
t→∞

λt(0, B) (143)

and

D ≥ Γ(B, σ2
z) = lim

t→∞
E
[(
st − ŝt([u]t−B−1

0 , ut)
)2]

(144)

≥ lim
t→∞

E
[(
st − ŝt([u]t−B−1

0 , ut, s−1)
)2]
(145)

= lim
t→∞

γt(0, B) (146)

We conclude that Γ(B, σ2
z) = D, the rate R+

GM-SE(B,D) =
Λ(B, σ2

z) is achievable.
2) Numerical Evaluation: We derive an expression for

numerically evaluating the noise variance σ2
z in (106) and also

establish (13) and (16).
To this end it is helpful to consider the following single-

variable discrete-time Kalman filter for i ∈ [0, t−B − 1],

si = ρsi−1 + ni, ni ∼ N(0, 1− ρ2) (147)

ui = si + zi, zi ∼ N(0, σ2
z). (148)

Note that si can be viewed as the state of the system updated
according a Gauss-Markov model and ui as the output of the
system at each time i, which is a noisy version of the state si.
Consider the system in steady state i.e. t → ∞. The MMSE
estimation error of st−B given all the previous outputs up to
time t − B − 1 i.e. [u]t−B−1

0 is expressed as (see, e.g., [31,
Example V.B.2]):

Σ(σ2
z) , lim

t→∞
σ2
t−B([u]t−B−1

0 ) (149)

=
1

2

√
(1− σ2

z)2(1− ρ2)2 + 4σ2
z(1− ρ2) +

1− ρ2

2
(1− σ2

z)

(150)

Also using the orthogonality principle for MMSE estimation
we have

[u]t−B−1
0 → ŝt−B([u]t−B−1

0 )→ st−B → st (151)

Thus we can express

st−B = ŝt−B([u]t−B−1
0 ) + ê (152)

where the noise ê ∼ N (0,Σ
(
σ2
z

)
) is independent of the

observation set [u]t−B−1
0 . Equivalently we can express (see

e.g. [32])

ŝt−B([u]t−B−1
0 ) = α̃st−B + ẽ (153)

where

α̃ , 1− Σ
(
σ2
z

)
(154)

and ẽ ∼ N
(
0,Σ

(
σ2
z

) (
1− Σ

(
σ2
z

)))
is independent of st−B .

Thus we have

Λ(B, σ2
z) = lim

t→∞
I(st; ut|[u]t−B−1

0 )

= lim
t→∞

I(st; ut|ŝt−B([u]t−B−1
0 ))

= lim
t→∞

I(st; ut|α̃st−B + ẽ)

= lim
t→∞

I(st; ut|st−B + e)

= I(st; ut|s̃t−B) (155)
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where we have used (153) and
e ∼ N (0,Σ

(
σ2
z

)
/(1− Σ

(
σ2
z

)
)). This establishes (13)

in Prop. 2. In a similar manner,

Γ(B, σ2
z) = lim

t→∞
σ2
t ([u]t−B−1

0 , ut)

= lim
t→∞

σ2
t (ŝt−B([u]t−B−1

0 ), ut)

= lim
t→∞

σ2
t (α̃st−B + ẽ, , ut)

= lim
t→∞

σ2
t (st−B + e, ut)

= σ2
t (s̃t−B , ut) (156)

which establishes (16). Furthermore since

st = ρBst−B + ñ (157)

where ñ ∼ N (0, 1− ρ2B),

Γ(B, σ2
z) = σ2

t (s̃t−B , ut) (158)

=

[
1

σ2
z

+
1

1− ρ2B (1− Σ(σ2
z))

]−1

(159)

where (159) follows from the application of MMSE estimator
and using (157), (152) and the definition of the test channel in
(106). Thus the noise σ2

z in the test channel (106) is obtained
by setting

Γ(B, σ2
z) = D. (160)

This completes the proof of Prop. 2.

Remark 5. When W > 0, the generalization of Lemma 6
appears to involve a rate-region corresponding to the Berger-
Tung inner bound [33] and the analysis is considerably more
involved. Furthermore hybrid schemes involving predictive
coding and binning may lead to an improved performance
over the binning-only scheme. Thus the scope of this problem
is well beyond the results in this paper.

C. Coding Scheme: Multiple Burst Erasures with Guard In-
tervals

We study the achievable rate using the quantize and binning
scheme with test channel (106) when the channel introduces
multiple burst erasures each of length no greater than B
and with a guard interval of at-least L symbols separating
consecutive burst erasures. While the coding scheme is the
same as the single burst erasure channel model and is based
on quantize and binning and MMSE estimation at the decoder,
characterizing the worst case erasure pattern of the channel is
main challenge and requires some additional steps.

1) Analysis of Achievable Rate: We introduce the following
notation in our analysis. Let Ωt denote the set of time indices
up to time t− 1 when the channel packets are not erased i.e.,

Ωt = {i : 0 ≤ i ≤ t− 1, gi 6= ?}, (161)

and let us define

sΩ = {si : i ∈ Ω}, (162)
uΩ = {ui : i ∈ Ω}. (163)

B BL L

sts−1

? ? ? ? ?X X X X X X X X X X X X X X

(0) (1) (2) (3) (4) (5) (6) (8) (9) (10) (13)(14)(15)

(a) Ω?
18(13)={0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15}
B B B BL L L

sts−1

? ? ? ? ? ? ? ?X X X X X X X X X X X

(0) (3) (4) (5) (8) (9) (10) (13)(14)(15)

(b) Ω?
18 ={0, 3, 4, 5, 8, 9, 10, 13, 14, 15}

Fig. 12: Schematic of the erasure patterns in Lemma 9 for
t = 18, L = 3 and B = 2. Fig. 12a illustrates, Ω?t (θ) in part 1
of Lemma 9. The non-erased symbols are denoted by check-
marks. Fig. 12b illustrates Ω?t as stated in part 2 of Lemma 9.

Given the erasure sequence Ωt, and given gt = ft, the
decoder can reconstruct unt provided that the test channel is
selected such that the rate satisfies (see e.g., [30])

R ≥ λt(Ωt) , I(st; ut|uΩt
, s−1). (164)

and the distortion constraint satisfies

γt(Ωt) , E
[
(st − ŝt(uΩt

, ut, s−1))
2
]

= σ2
t (uΩt , ut, s−1) ≤ D (165)

for each t ≥ 0 and each feasible set Ωt. Thus we are
again required to characterize the Ωt for each value of t
corresponding to the worst-case erasure pattern. The following
two lemmas are useful towards this end.

Lemma 8. Consider the two sets A,B ⊆ N each of size
r as A = {a1, a2, · · · , ar}, B = {b1, b2, · · · , br} such that
1 ≤ a1 < a2 < · · · < ar and 1 ≤ b1 < b2 < · · · < br and
for any i ∈ {1, . . . , r}, ai ≤ bi. Then the test channel (106)
satisfies the following:

h(st|uA, s−1) ≥ h(st|uB , s−1), ∀t ≥ br (166)
h(ut|uA, s−1) ≥ h(ut|uB , s−1), ∀t > br. (167)

�

The proof of Lemma 8 is available in Appendix D.

Lemma 9. Assume that at time t, gt = ft and let Ωt be as
defined in (161) .

1) Among all feasible sets Ωt of size |Ωt| = θ, λt(Ωt)
and γt(Ωt) are maximized by a set Ω?t (θ) where all the
erasures happen in the closest possible locations to time
t.

2) For each fixed t, both λt(Ω?t (θ)) and γt(Ω?t (θ)) are max-
imized by the minimum possible value of θ. Equivalently,
the maximizing set, denoted by Ω?t , corresponds to the
erasure pattern with maximum number of erasures.

3) Both λt(Ω
?
t ) and γt(Ω

?
t ) are increasing functions with

respect to t.
�

The proof of Lemma 9 is presented in Appendix E. We
present an example in Fig. 12 to illustrate Lemma 9. We
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assume t = 18. The total number of possible erasures up
to time t = 18 is restricted to be 5, or equivalently the
number of non-erased packets is θ = 13 in Fig 12a. The set
Ω?18(13) indicates the set of non-erased indices associated with
the worst case erasure pattern. Based on part 2 of Lemma 9,
Fig. 12b shows the worst case erasure pattern for time t = 18,
which includes the maximum possible erasures.

Following the three steps in Lemma 9 a rate-distortion pair
(R,D) is achievable if

R ≥ lim
t→∞

λt(Ω
?
t ) (168)

D ≥ lim
t→∞

γt(Ω
?
t ) (169)

Lemma 10. Any test channel noise σ2
z satisfying (19) and (20)

in Prop. 3, i.e.

R ≥ I(st; ut|s̃t−L−B , [u]t−B−1
t−L−B+1) (170)

D ≥ σ2
t (s̃t−L−B , [u]t−B−1

t−L−B+1, ut) (171)

where s̃t−L−B = st−L−B + e, where e ∼ N (0, D/(1−D)),
also satisfies (168) and (169).

Proof. See Appendix F.

This completes the proof of Prop 3.
2) Numerical Evaluation: We derive the expression for nu-

merically evaluating σ2
z . To this end, first note that the estima-

tion error of estimating st−B−1 from {s̃t−L−B , [u]t−B−1
t−L−B+1}

can be computed as follows.

η(σ2
z) , σ2

t−B−1(s̃t−L−B , [u]t−B−1
t−L−B+1)

= E
[
s2
t−B−1

]
− E [st−B−1U]

(
E
[
UTU

])−1
E
[
st−B−1U

T
]

(172)

= 1−A1(A2)−1AT1 (173)

where we define

U ,
[
ut−B−1 ut−B−2 . . . ut−L−B+1 s̃t−L−B

]
and (.)T denotes the transpose operation. Also note that A1

and A2 can be computed as follows.

A1 = (1, ρ, ρ2, · · · , ρL−1) (174)

A2 =


1 + σ2

z ρ · · · ρL−2 ρL−1

ρ 1 + σ2
z · · · ρL−3 ρL−2

...
...

. . .
...

...
ρL−2 ρL−3 · · · 1 + σ2

z ρ
ρL−1 ρL−2 · · · ρ 1 + D

1−D

 (175)

According to (171) we can write

D = σ2
t (s̃t−L−B , [u]t−B−1

t−L−B+1, ut) (176)

= σ2
t

(
ŝt−B−1(s̃t−L−B , [u]t−B−1

t−L−B+1), ut
)

=

[
1

σ2
z

+
1

1− ρ2(B+1)(1− η(σ2
z))

]−1

(177)

Therefore by solving (177) the expression for σ2
z can be

obtained. Finally the achievable rate is computed as:

R+
GM-ME(L,B,D) = I(st; ut|s̃t−L−B , [u]t−B−1

t−L−B+1)

= h(st|s̃t−L−B , [u]t−B−1
t−L−B+1)− h(st|s̃t−L−B , [u]t−B−1

t−L−B+1, ut)

= h
(
st|ŝt−B−1(s̃t−L−B , [u]t−B−1

t−L−B+1)
)
− 1

2
log(2πeD)

=
1

2
log
(

2πe
(

1− ρ2(B+1)(1− η(σ2
z))
))
− 1

2
log(2πeD)

=
1

2
log

(
1− ρ2(B+1)(1− η(σ2

z))

D

)
. (178)

D. High Resolution Regime

We investigate the behavior of the lossy rate-recovery
functions for Gauss-Markov sources for single and multi-
ple burst erasure channel models, i.e. RGM-SE(B,D) and
RGM-ME(L,B,D), in the high resolution regime and establish
Corollary 3. The following inequalities can be readily verified.

R−GM-SE(B,D) ≤ RGM-SE(B,D) ≤
RGM-ME(L,B,D) ≤ R+

GM-ME(L,B,D) (179)

The first and the last inequalities in (179) are by definition and
the second inequality follows from the fact that the rate achiev-
able for multiple erasure model is also achievable for single
burst erasure as the decoder can simply ignore the available
codewords in reconstructing the source sequences. According
to (179), it suffices to characterize the high resolution limit of
R−GM-SE(B,D) and R+

GM-ME(L,B,D) in Prop. 1 and Prop. 3
respectively.

For the lower bound note that as D → 0 the expression for
∆ in (12) satisfies

∆ , (Dρ2+1−ρ2(B+1))2−4Dρ2(1−ρ2B)→ (1−ρ2(B+1))2.

Upon direct substitution in (12) we have that

lim
D→0

{
R−GM-SE(B,D)− 1

2
log

(
1− ρ2(B+1)

D

)}
= 0, (180)

as required.
To establish the upper bound note that according to Prop. 3

we can write

R+
GM-ME(L,B,D)

= I(st; ut|s̃t−L−B , [u]t−B−1
t−L−B+1)

= h(st|s̃t−L−B , [u]t−B−1
t−L−B+1)− h(st|s̃t−L−B , [u]t−B−1

t−L−B+1, ut)

= h(st|s̃t−L−B , [u]t−B−1
t−L−B+1)− 1

2
log(2πeD) (181)

where the last term follows from the definition of s̃t−L−B in
Prop. 3. Also we have

h(st|st−B−1) ≤ h(st|s̃t−L−B , [u]t−B−1
t−L−B+1) ≤ h(st|ut−B−1)

(182)

where the left hand side inequality in (182) follows from the
following Markov property,

{s̃t−L−B , [u]t−B−1
t−L−B+1} → st−B−1 → st (183)
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and the fact that conditioning reduces the differential entropy.
Also, the right hand side inequality in (182) follows from the
latter fact. By computing the upper and lower bounds in (182)
we have

1

2
log
(

2πe(1− ρ2(B+1))
)
≤

h(st|s̃t−L−B , [u]t−B−1
t−L−B+1) ≤

1

2
log

(
2πe

(
1− ρ2(B+1)

1 + σ2
z

))
(184)

Now note that

D ≥ σ2
t (ŝt−L−B , [u]t−B−1

t−L−B+1, ut) ≥ σ
2
t (ut, st−1) (185)

=

(
1

σ2
z

+
1

1− ρ2

)−1

.

(186)

which equivalently shows that if D → 0 we have that σ2
z → 0.

By computing the limit of the upper and lower bounds in (184)
as D → 0, we can see that

lim
D→0

{
h(st|s̃t−L−B , [u]t−B−1

t−L−B+1)

−1

2
log
(

2πe(1− ρ2(B+1))
)}

= 0 (187)

Finally (187) and (181) results in

lim
D→0

{
R+

GM-ME(L,B,D)− 1

2
log

(
1− ρ2(B+1)

D

)}
= 0

(188)

as required. Equations (180), (188) and (179) establishes the
results of Corollary 3.

VIII. INDEPENDENT GAUSSIAN SOURCES WITH SLIDING
WINDOW RECOVERY: PROOF OF THEOREM 2

In this section we study the memoryless Gaussian source
model discussed in Section IV-C. The source sequences are
drawn i.i.d. both in spatial and temporal dimension according
to a unit-variance, zero-mean, Gaussian distribution N (0, 1).
The rate-R causal encoder sequentially compresses the source
sequences and sends the codewords through the burst erasure
channel. The channel erases a single burst of maximum length
B and perfectly reveals the rest of the packets to the decoder.
The decoder at each time i reconstructs K + 1 past source
sequences, i.e. (sni , s

n
i−1, . . . , s

n
i−K) within a vector distortion

measure d = (d0, . . . , dK). More recent source sequences
are required to be reconstructed within less distortion, i.e.
d0 ≤ d1 ≤ . . . ≤ dK . The decoder however is not interested
in reconstructing the source sequences during the error propa-
gation window, i.e. during the burst erasure and a window of
length W after the burst erasure ends.

For this setup, we establish the rate-recovery function stated
in Theorem 2. We do this by presenting the coding scheme in
Section VIII-B and the converse in Section VIII-C. We also
study some baseline schemes and compare their performance
with the rate-recovery function at the end of this section.

Remark 6. Our coding scheme in this section builds upon
the technique introduced in [34] for lossless recovery of

deterministic sources. The example involving deterministic
sources in [34] established that the lower bound in Theorem 1
can be attained for a certain class of deterministic sources.
The binning based scheme is suboptimal in general. The
present paper does not include this example, but the reader is
encouraged to see [34].

A. Sufficiency of K = B +W

In our analysis we only consider the case K = B + W .
The coding scheme can be easily extended to a general K as
follows. If K < B + W , we can assume that the decoder,
instead of recovering the source ti = (si, si−1, . . . , si−K)T at
time i within distortion d, aims to recover the source t′i =
(si, ..., si−K′)

T within distortion d′ where K ′ = B +W and

d′j =

{
dj for j ∈ {0, 1, ...,K}
1 for j ∈ {K + 1, ...,K ′},

(189)

and thus this case is a special case of K = B +W . Note that
layers K+1, . . . ,K ′ require zero rate as the source sequences
have unit variance.

If K > B +W , for each j ∈ {B + W + 1, . . . ,K} the
decoder is required to reconstruct sni−j within distortion dj .
However we note the rate associated with these layers is
again zero. In particular there are two possibilities during the
recovery at time i. Either, t̂ni−1 or, t̂ni−B−W−1 are guaranteed
to have been reconstructed. In the former case {ŝni−j}dj−1

is2

available from time i − 1 and dj−1 ≤ dj . In the latter case
{ŝni−j}dj−W−B−1

is available from time i − B −W − 1 and
again dj−W−B−1 ≤ dj . Thus the reconstruction of any layer
j ≥ B +W does not require any additional rate and it again
suffices to assume K = B +W .

B. Coding Scheme

Throughout our analysis, we assume the source sequences
are of length n · r where both n and r will be assumed to be
arbitrarily large. The block diagram of the scheme is shown in
Fig. 13. We partition sn·ri into r blocks each consisting of n
symbols (sni )l. We then apply a successive refinement quanti-
zation codebook to each such block to generate B + 1 indices(
{mi,j}Bj=0

)
l

as discussed in section VIII-B1. Thereafter these
indices are carefully rearranged in time to generate (ci)l as
discussed in Section VIII-B2. At each time we thus have a
length r sequence cri , {(ci)1, . . . , (ci)r}We transmit the bin
index of each sequence over the channel as in Section V-C.
At the receiver the sequence ĉri is first reconstructed by the
inner decoder. Thereafter upon rearranging the refinement
layers in each packet, the required reconstruction sequences
are produced. We provide the details of the encoding and
decoding below.

1) Successive Refinement (SR) Encoder: The encoder at
time i, first partitions the source sequence snri into r source
sequences (sni )l, l ∈ [1, r]. As shown in Fig. 14, we encode
each source signal (sni )l using a (B + 1)-layer successive
refinement codebook [10], [35] to generate (B+1) codewords

2The notation {ŝni }d indicates the reconstruction of ŝni within average
distortion d.
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(sni )r (ci)r({mi,j}Bj=0)r

Fig. 13: Schematic of encoder and decoder for i.i.d. Gaussian with sliding window recovery constraint. SR and LR indicate
successive refinement and layer rearrangement (Sections VIII-B1 and VIII-B2), respectively.

sni

Encoder Decoder

Encoder Decoder

Encoder Decoder

Encoder Decoder

B B
{ŝni }dB+W

mi,B Mi,B

B−1 B−1
{ŝni }dB+W−1

mi,B−1 Mi,B−1

1 1
{ŝni }dW+1

mi,1
Mi,1

0 0
{ŝni }d0

mi,0
Mi,0

Fig. 14: (B + 1)-layer coding scheme based on successive
refinement (SR). Note that for each k ∈ [0, B], mi,k is of rate
R̃k and Mi,k is of rate Rk. The dashed box represents the SR
code.

whose indices are given by {(mi,0)l, (mi,1)l, . . . , (mi,B)l}
where (mi,j)l ∈ {1, 2, . . . , 2nR̃j} for j ∈ {0, 1, . . . , B} and

R̃j =


1
2 log(dW+1

d0
) for j = 0

1
2 log(

dW+j+1

dW+j
) for j ∈ {1, 2, . . . , B − 1}

1
2 log( 1

dW+B
) for j = B,

(190)

The j-th layer uses indices

(Mi,j)l , {(mi,j)l, . . . , (mi,B)l} (191)

for reproduction and the associated rate with layer j is given
by:

Rj =

{∑B
k=0 R̃k = 1

2 log( 1
d0

) for j = 0∑B
k=j R̃k = 1

2 log( 1
dW+j

) for j ∈ {1, 2, . . . , B},
(192)

and the corresponding distortion associated with layer j equals
d0 for j = 0 and dW+j for j ∈ {1, 2, . . . , B}.

From Fig. 14 it is clear that for any i and j ∈ {0, . . . , B},
the j-th layer Mi,j is a subset of j − 1-th layer Mi,j−1, i.e.
Mi,j ⊆Mi,j−1.

2) Layer Rearrangement (LR) and Binning: In this stage
the encoder rearranges the outputs of the SR blocks associated
with different layers to produce an auxiliary set of sequences
as follows3.

ci ,


Mi,0

Mi−1,1

Mi−2,2

...
Mi−B,B

 (193)

In the definition of (193) we note that Mi,0 consists of all
the refinement layers associated with the source sequence at
time i. It can be viewed as the “innovation symbol” since it
is independent of all past symbols. It results in a distortion of
d0. The symbol Mi−1,1 consists of all refinement layers of the
source sequence at time i−1, except the last layer and results
in a distortion of d1. Recall that Mi−1,1 ⊆Mi−1,0. In a similar
fashion Mi−B,B is associated with the source sequence at time
i − B and results in a distortion of dB . Fig. 15 illustrates a
schematic of these auxiliary codewords.

Note that as shown in Fig. 14 the encoder at each time
generates r independent auxiliary codewords (ci)1, . . . , (ci)r.
Let cri be the set of all r codewords. In the final step,
the encoder generates fi, the bin index associated with the
codewords cri and transmit this through the channel. The bin
indices are randomly and independently assigned to all the
codewords beforehand and are revealed to both encoder and
decoder.

3We suppress the index l in (191) for compactness.
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ci

Mi,0

Mi−1,1

Mi−2,2

Mi−B,B

ci−1

Mi−1,0

Mi−2,1

Mi−3,2

Mi−B−1,B

ci−2

Mi−2,0

Mi−3,1

Mi−4,2

Mi−B−2,B

ci−W+1

Mi−W+1,0

Mi−W,1

Mi−W−1,2

Mi−B−W+1,B

ci−W

Mi−W,0

Mi−W−1,1

Mi−W−2,2

Mi−B−W,B

Fig. 15: Schematic of the auxiliary codewords defined in (193). The codewords are temporally correlated in a diagonal form
depicted using ellipses. In particular, as shown in Fig. 14, Mi−j,j ⊆ Mi−j,j−1. Based on this diagonal correlation structure,
the codewords depicted in the boxes are sufficient to know all the codewords .

3) Decoding and Rate Analysis: To analyze the decoding
process, first consider the simple case where the actual code-
words cri defined in (193), and not the assigned bin indices,
are transmitted through the channel. In this case, whenever
the channel packet is not erased by the channel, the decoder
has access to the codewords cri . According to the problem
setup, at anytime i outside the error propagation window,
when the decoder is interested in reconstructing the original
source sequences, it has access to the past W + 1 channel
packets, i.e. (fi−W , . . . , fi−1, fi). Therefore, the codewords
(cri , c

r
i−1, . . . , c

r
i−W ) are known to the decoder. Now consider

the following claim.

Claim 1. The decoder at each time i is able to reconstruct
the source sequences within required distortion vector if either
the sequences (cri , c

r
i−1, . . . , c

r
i−W ) or (t̂n·ri−1, c

r
i ) is available.

�

Proof. Fig. 15 shows a schematic of the codewords.
First consider the case where (cri , c

r
i−1, . . . , c

r
i−W ) is

known. According to (193) the decoder also knows
(Mr

i,0,M
r
i−1,0, . . . ,M

r
i−W,0). Therefore, according to SR

structure depicted in Fig. 14, the source sequences
(snri , snri−1, . . . , s

nr
i−W ) are each known within distortion d0.

This satisfies the original distortion constraint as d0 ≤ dk
for each k ∈ {1, . . . ,W}. In addition, since ci−W is known,
according to (193), (Mr

i−W−1,1,M
r
i−W−2,2, . . . ,M

r
i−B−W,B)

is known and according to SR structure depicted in Fig. 14 the
source sequences (snri−W−1, s

nr
i−W−2, . . . , s

nr
i−B−W ) are known

within distortion (dW+1, dW+2, . . . , dB+W ) which satisfies
the distortion constraint. Now consider the case where t̂ni−1

and cri are available, i.e. tnri−1 is already reconstructed within
the required distortion vector, the decoder is able to reconstruct
t̂nri from t̂nri−1 and cri . In particular, from Mr

i the source
sequence snri is reconstructed within distortion d0. Also re-
construction of snri−k within distortion dk−1 is already available
from t̂i for k ∈ [1, B + W ] which satisfies the distortion
constraint as dk−1 ≤ dk.

Thus we have shown that if actual codewords cri defined
in (193) are transmitted the required distortion constraints are
satisfied. It can be verified from (193) and (192) that the rate

associated with the cri is given by

RC =

B∑
k=0

Rk =
1

2
log

(
1

d0

)
+

B∑
j=1

1

2
log

(
1

dW+j

)
(194)

Thus compared to the achievable rate (25) in Theorem 2 we
are missing the factor of 1

W+1 in the second term. To reduce
the rate, note that, as shown in Fig. 15 and based on definition
of the auxiliary codewords in (193), there is a strong temporal
correlation among the consecutive codewords. We therefore
bin the set of all sequences cri into 2nrR bins as in Section V-C.
The encoder, upon observing cri , only transmits its bin index
fi through the channel. We next describe the decoder and
compute the minimum rate required to reconstruct cri .

Outside the error propagation window, one of the following
cases can happen as discussed below. We claim that in either
case the decoder is able to reconstruct cri as follows.

• In the first case, the decoder has already recovered cri−1

and attempts to recover cri given (fi, c
r
i−1). This succeeds

with high probability if

nR ≥ H(ci|ci−1) (195)
= H(Mi,0,Mi−1,1, . . . ,Mi−B,B |ci−1) (196)
= H(Mi,0,Mi−1,1, . . . ,Mi−B,B |Mi−1,0,Mi−2,1, . . . ,

. . .Mi−B,B−1,Mi−B−1,B) (197)
= H(Mi,0) (198)
= nR0 (199)

where we use (193) in (196) and (197), and the fact
that layer j is a subset of layer j − 1 i.e., Mi−j,j ⊆
Mi−j,j−1 in (198). Thus the reconstruction of cri follows
since the choice of (25) satisfies (199). Thus according
to the second part of Claim 1, the decoder is able to
reconstruct t̂n·ri .

• In the second case we assume that the decoder has not
yet successfully reconstructed cri−1 but is required to
reconstruct cri . In this case cri is the first sequence to
be recovered following the end of the error propagation
window. Our proposed decoder uses (fi, fi−1, . . . , fi−W )
to simultaneously reconstruct (cri , . . . , c

r
i−W ). This suc-
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ceeds with high probability provided:

n(W + 1)R

≥ H(ci−W , ci−W+1, . . . , ci)

= H(ci−W ,Mi−W+1,0,Mi−W+2,0, . . . ,Mi,0) (200)

= H(ci−W ) +

W∑
k=1

H(Mi−W+k,0) (201)

= H(Mi−W,0,Mi−W−1,1, . . . ,Mi−B−W,B)

+

W∑
k=1

H(Mi−W+k,0)

= n

B∑
k=1

Rk + n(W + 1)R0 (202)

where in (200) we use the fact that the sub-symbols sat-
isfy Mi,j+1 ⊆Mi,j as illustrated in Fig. 15. In particular,
in computing the rate in (200) all the sub-symbols in
ci−W and the sub-symbols Mj,0 for j ∈ [i −W + 1, i]
need to be considered. From (199), (202) and (192), the
rate R is achievable if

R ≥ R0 +
1

W + 1

B∑
k=1

Rk (203)

=
1

2
log

(
1

d0

)
+

1

2(W + 1)

B∑
k=1

log

(
1

dW+k

)
.

(204)

as required. Thus, the rate constraint in (204) is sufficient
for the decoder to recover the codewords (cri , . . . , c

r
i−W )

right after the error propagation window and to recon-
struct t̂n·ri according to Claim 1.

Thus, the rate constraint in (204) is sufficient for the decoder
to succeed in reconstructing the source sequences within
required distortion constraints at the anytime i outside error
propagation window. This completes the justification of the
upper bound in Theorem 2.

C. Converse for Theorem 2

We need to show that for any sequence of codes that achieve
a distortion tuple (d0, . . . , dW+B) the rate is lower bounded
by (204). As in the proof of Theorem 1, we consider a burst
erasure of length B spanning the time interval [t−B−W, t−
W − 1]. Consider,

(W + 1)nR ≥ H([f ]tt−W )

≥ H([f ]tt−W |[f ]t−B−W−1
0 , sn−1) (205)

where the last step follows from the fact that conditioning
reduces entropy. We need to lower bound the entropy term in

(205). Consider

H([f ]tt−W |[f ]t−B−W−1
0 , sn−1)

= I([f ]tt−W ; tnt |[f ]t−B−W−1
0 , sn−1)+

H([f ]tt−W |[f ]t−B−W−1
0 , tnt , s

n
−1) (206)

= h(tnt |[f ]t−B−W−1
0 , sn−1)− h(tnt |[f ]t−B−W−1

0 , [f ]tt−W , s
n
−1)+

H([f ]tt−W |[f ]t−B−W−1
0 , tnt , s

n
−1)

= h(tnt )− h(tnt |[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1)+

H([f ]tt−W |[f ]t−B−W−1
0 , tnt , s

n
−1) (207)

where (207) follows since tnt = (snt−B−W , . . . , s
n
t ) is indepen-

dent of ([f ]t−B−W−1
0 , sn−1) as the source sequences sni are

generated i.i.d. . By expanding tnt we have that

h(tnt ) = h(snt−B−W , . . . , s
n
t−W−1) + h(snt−W , . . . , s

n
t ),

(208)

and

h(tnt |[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1)

= h(snt−B−W , . . . , s
n
t−W−1|[f ]t−B−W−1

0 , [f ]tt−W , s
n
−1)+

h
(
snt−W , . . . , s

n
t |[f ]t−B−W−1

0 , [f ]tt−W , s
n
t−B−W ,

. . . , snt−W−1, s
n
−1

)
(209)

We next establish the following claim whose proof is in
Appendix G.

Lemma 11. The following two inequalities holds.

h(snt−B−W , . . . , s
n
t−W−1)−

h(snt−B−W , . . . , s
n
t−W−1|[f ]t−B−W−1

0 , [f ]tt−W , s
n
−1)

≥
B∑
i=1

n

2
log (

1

dW+i
) (210)

h(snt−W , . . . , s
n
t )−

h
(
snt−W , . . . , s

n
t |[f ]t−B−W−1

0 , [f ]tt−W , s
n
t−B−W ,

. . . , snt−W−1, s
n
−1

)
+H([f ]tt−W |[f ]t−B−W−1

0 , tnt , s
n
−1)

≥ n(W + 1)

2
log(

1

d0
) (211)

�

Proof. See Appendix G.

From (207), (208), (209), (210) and (211), we can write

H
(
[f ]tt−W |[f ]t−B−W−1

0 , sn−1

)
≥

n

2

B∑
i=1

log

(
1

dW+i

)
+
n(W + 1)

2
log

(
1

d0

)
. (212)

Substituting (212) into (205) and taking n→∞, we recover

R ≥ 1

2
log2

(
1

d0

)
+

1

2(W + 1)

B∑
j=1

log2

(
1

dW+j

)
. (213)

as required.
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D. Illustrative Suboptimal Schemes

We compare the optimal lossy rate-recovery function with
the following suboptimal schemes.

1) Still-Image Compression: In this scheme, the encoder
ignores the decoder’s memory and at time i ≥ 0 encodes the
source ti in a memoryless manner and sends the codewords
through the channel. The rate associated with this scheme is

RSI(d) = I(ti; t̂i) =

K∑
k=0

1

2
log

(
1

dk

)
(214)

In this scheme, the decoder is able to recover the source
whenever its codeword is available, i.e. at all the times except
when the erasure happens.

2) Wyner-Ziv Compression with Delayed Side Information:
At time i the encoders assumes that ti−B−1 is already
reconstructed at the receiver within distortion d. With this
assumption, it compresses the source ti according to Wyner-
Ziv scheme and transmits the codewords through the channel.
The rate of this scheme is

RWZ(B,d) = I(ti; t̂i |̂ti−B−1) =

B∑
k=0

1

2
log

(
1

dk

)
(215)

Note that, if at time i, t̂i−B−1 is not available, t̂i−1 is available
and the decoder can still use it as side-information to construct
t̂i since I(ti; t̂i |̂ti−B−1) ≥ I(ti; t̂i |̂ti−1).

As in the case of Still-Image Compression, the Wyner-Ziv
scheme also enables the recovery of each source sequence
except those with erased codewords.

3) Predictive Coding plus FEC: This scheme consists of
predictive coding followed by a Forward Error Correction
(FEC) code to compensate the effect of packet losses of the
channel. As the contribution of B erased codewords need to
be recovered using W+1 available codewords, the rate of this
scheme can be computed as follows.

RFEC(B,W,d) =
B +W + 1

W + 1
I(ti; t̂i |̂ti−1) (216)

=
B +W + 1

2(W + 1)
log

(
1

d0

)
(217)

4) GOP-Based Compression: This scheme consists of pre-
dictive coding where the synchronization sources (I-frames)
are inserted periodically to prevent error propagation. The
synchronization frames are transmitted with the rate R1 =
I(ti; t̂i) and the rest of the frames are transmitted at the
rate R2 = I(ti; t̂i |̂ti−1) using predictive coding. Whenever
the erasure happens the decoder fails to recover the source
sequences until the next synchronization source and then the
decoder becomes synced to the encoder. In order to guarantee
the recovery of the sources, the synchronization frames have
to be inserted with the period of at most W + 1. This results
in the following average rate expression.

R =
1

(W + 1)
I(ti; t̂i) +

W

(W + 1)
I(ti; t̂i |̂ti−1) (218)

=
1

2(W + 1)

K∑
k=0

log(
1

dk
) +

W

2(W + 1)
log(

1

d0
) (219)
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Fig. 16: Comparison of rate-recovery of suboptimal systems
to minimum possible rate-recovery function for different re-
covery window length W . We assume K = 5, B = 2 and a
distortion vector d = (0.1, 0.25, 0.4, 0.55, 0.7, .85).

In Fig. 16, we compare the result in Theorem 2 with the
described schemes. It can be observed from Fig. 16 that
except when W = 0 none of the other schemes are optimal.
The Predictive Coding plus FEC scheme, which is a natural
separation based scheme and the GOP-based compression
scheme are suboptimal even for relatively large values of W .
Also note that the GOP-based compression scheme reduces
to Still-Image compression for W = 0.

IX. CONCLUSIONS

We presented a real-time streaming scenario where a se-
quence of source vectors must be sequentially encoded, and
transmitted over a burst erasure channel. The source vectors
must be reconstructed with zero delay at the destination.
However those sequences that occur during the erasure burst
or a period of length W following the burst need not be
reconstructed. We assume that the source vectors are sampled
i.i.d. across the spatial dimension and from a first-order,
stationary, Markov process across the temporal dimension. We
study the minimum achievable compression rate, which we
define to be the rate-recovery function in our setup.

For the case of discrete sources and lossless recovery, we
establish upper and lower bounds on the rate-recovery function
and observe that they coincide for the special cases when
W = 0 and W → ∞. More generally both our upper
and lower bound expressions can be expressed as the rate
of predictive coding plus another term that decreases at-least
inversely with W . For the restricted class of memoryless
encoders and symmetric sources, we establish that a binning
based scheme is optimal. For the case of Gauss-Markov
sources and a quadratic distortion measure, we establish upper
and lower bounds on the minimum rate when W = 0 and
observe that these bounds coincide in the high-resolution
regime. The achievability is based on a quantize and binning
scheme, but the analysis is a non-trivial extension of the
lossless case as the reconstruction sequences at the destination
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do not form a Markov chain. We also study another setup
involving independent Gaussian sources and a sliding-window
reconstruction constraint where the rate-recovery function is
attained using a successive refinement coding scheme.

We believe that the present work can be extended in a
number of directions. The focus in this paper has been on
causal encoders and zero-delay decoders. It is interesting to
consider more general encoders with finite-lookahead and
decoders with delay constraint. Some such extensions have
been recently considered in [36]. Secondly, the paper considers
only the case of burst-erasure channels. It may be interesting
to consider channels that introduce both burst erasures and
isolated erasures as considered recently in the channel coding
context [21]. Thirdly, our present setup assumes that within
the recovery period, a complete outage is declared, and no
reconstruction is necessary. Finally our paper only addressed
the case of lossless recovery for discrete sources. Extensions
to lossy reconstruction, analogous to the case of Gaussian
sources, will require characterization of the worst-case erasure
sequence for a general source model, which appears challeng-
ing. This may be further generalized by considering partial
recovery with a higher distortion during the recovery period.
Such extensions will undoubtedly lead to a finer understanding
of tradeoffs between compression rate and error propagation
in video transmission systems.

APPENDIX A
PROOF OF COROLLARY 1

We want to show the following equality.

R+(B,W ) = H(s1|s0) +
1

W + 1
I(sB ; sB+1|s0)

=
1

W + 1
H(sB+1, sB+2, . . . , sB+W+1|s0)

(220)

According to the chain rule of entropies, the term in (220)
can be written as

H(sB+1, sB+2, . . . , sB+W+1|s0) (221)

= H(sB+1|s0) +

W∑
k=1

H(sB+k+1|s0, sB+1, . . . , sB+k)

= H(sB+1|s0) +WH(s1|s0) (222)
= H(sB+1|s0)−H(sB+1|sB , s0) +H(sB+1|sB , s0)

+WH(s1|s0) (223)
= H(sB+1|s0)−H(sB+1|sB , s0) +H(sB+1|sB)

+WH(s1|s0) (224)
= I(sB+1; sB |s0) + (W + 1)H(s1|s0) (225)

= (W + 1)R+(B,W ) (226)

where (222) follows from the Markov property

(s0, sB+1, . . . , sB+k−1)→ sB+k → sB+k+1 (227)

for any k and from the stationarity of the sources which for
each k implies that

H(sB+k+1|sB+k) = H(s1|s0). (228)

Note that in (223) we add and subtract the same term and (224)
also follows from the Markov property of (227) for k = 0.

APPENDIX B
PROOF OF LEMMA 4

Define qk , 2
2
nh(snk |f

k,sn−1). We need to show that

qk ≥
2πe(1− ρ2)

22R − ρ2

(
1−

(
ρ2

22R

)k)
(229)

Consider the following entropy term.

h(snk |[f ]k0 , s
n
−1) = h(snk |[f ]k−1

0 , sn−1)− I(fk; snk |[f ]k−1
0 , sn−1)

= h(snk |[f ]k−1
0 , sn−1)−

H(fk|[f ]k−1
0 , sn−1) +H(fk|snk , [f ]k−1

0 , sn−1)

≥ h(snk |[f ]k−1
0 , sn−1)−H(fk) (230)

≥ n

2
log
(
ρ22

2
nh(snk−1|[f ]k−1

0 ,sn−1) + 2πe(1− ρ2)
)
− nR

(231)

where (230) follows from the fact that conditioning reduces
entropy and (231) follows from the Entropy Power Inequality
similar to (101). Thus

qk ≥
ρ2

22R
qk−1 +

2πe(1− ρ2)

22R
. (232)

By repeating the iteration in (232), we have

qk ≥ (
ρ2

22R
)kq0 +

2πe(1− ρ2)

22R

k−1∑
l=0

(
ρ2

22R
)l (233)

≥ 2πe(1− ρ2)

22R − ρ2

(
1−

(
ρ2

22R

)k)
, (234)

where (234) follows from the fact 0 < ρ2

22R < 1 for any ρ ∈
(0, 1) and R > 0. This completes the proof.

APPENDIX C
PROOF OF (235) AND (236)

We need to show (112) and (113), i.e. we need to establish
the following two inequities for each k ∈ [1 : t−B′]

h(ut|[u]t−B
′−k−1

0 , [u]t−1
t−k, s−1) ≤
h(ut|[u]t−B

′−k
0 , [u]t−1

t−k+1, s−1) (235)

h(st|[u]t−B
′−k−1

0 , [u]tt−k, s−1) ≤
h(st|[u]t−B

′−k
0 , [u]tt−k+1, s−1). (236)

We first establish the following Lemmas.

Lemma 12. Consider random variables {X0,X1,X2,Y1,Y2}
that are jointly Gaussian, Xk ∼ N (0, 1), k ∈ {0, 1, 2}, X0 →
X1 → X2 and that for j ∈ {1, 2} we have:

Xj= ρjXj−1 + Nj , (237)
Yj= Xj + Zj . (238)

Assume that Zj ∼ N (0, σ2
z) are independent of all random

variables and likewise Nj ∼ N (0, 1 − ρ2
j ) for j ∈ {1, 2} are

also independent of all random variables. The structure of
correlation is sketched in Fig. 17. Then we have that:

σ2
X2

(X0,Y2) ≤ σ2
X2

(X0,Y1) (239)
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X0 X1 X2

Y1 Y2

Z1 Z2

N1 N2ρ1 ρ2

Fig. 17: Relationship of the Variables for Lemma 12.

where σ2
X2

(X0,Yj) denotes the minimum mean square error
of estimating X2 from {X0,Yj}.

Proof. By applying the standard relation for the MMSE esti-
mation error we have (see e.g. [32])

σ2
X2

(X0,Y1)

= E[X2
2 ]−(

E[X2Y1] E[X2X0]
)( E[Y 2

1 ] E[X0Y1]
E[X0Y1] E[X2

0 ]

)−1(
E[X2Y1]
E[X2X0]

)
(240)

= 1− ρ2
2

(
1 ρ1

)(1 + σ2
z ρ1

ρ1 1

)−1(
1
ρ1

)
(241)

= 1− ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + ρ2

2

1 + σ2
z − ρ2

1

(242)

where we use the fact that E[X2
0 ] = 1, E[Y 2

1 ] = 1 + σ2
z ,

E[X0Y1] = ρ1, E[X2X0] = ρ0ρ1 and E[X2Y1] = ρ2. In a
similar fashion it can be shown that:

σ2
X2

(X0,Y2) = 1−
(
1 ρ1ρ2

)(1 + σ2
z ρ1ρ2

ρ1ρ2 1

)−1(
1

ρ1ρ2

)
(243)

= 1− ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + 1

1 + σ2
z − ρ2

1ρ
2
2

(244)

To establish (239) we only need to show that,

ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + 1

1 + σ2
z − ρ2

1ρ
2
2

≥ ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + ρ2

2

1 + σ2
z − ρ2

1

(245)

It is equivalent to showing

1 + σ2
z − ρ2

1

1 + σ2
z − ρ2

1ρ
2
2

≥ ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + ρ2

2

ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + 1

(246)

or equivalently

1− ρ2
1(1− ρ2

2)

1 + σ2
z − ρ2

1ρ
2
2

≥ 1− 1− ρ2
2

ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + 1

(247)

which is equivalent to showing

ρ2
1

1 + σ2
z − ρ2

1ρ
2
2

≤ 1

ρ2
1ρ

2
2σ

2
z − ρ2

1ρ
2
2 + 1

. (248)

However note that (248) can be immediately verified since
the left hand side has the numerator smaller than the right
hand side and the denominator greater than the right hand
side whenever ρ2

i ∈ (0, 1). This completes the proof.

Lemma 13. Consider the Gauss-Markov source model (11)
and the test channel in Prop. 3. For a fixed t, k ∈ [1, t] and

a set Ω ⊆ [t − k, t], consider two sets of random variables
W1 and W2 each jointly Gaussian with st−k such that the
following Markov property holds:

W1 → st−k → {st,uΩ} (249)
W2 → st−k → {st,uΩ} (250)

If the MMSE error in st−k satisfies , σ2
t−k(W1) ≤ σ2

t−k(W2)
then we have

h(st|W1,uΩ) ≤ h(st|W2,uΩ), ∀Ω ⊆ [t− k, t] (251)
h(ut|W1,uΩ) ≤ h(ut|W2,uΩ), ∀Ω ⊆ [t− k, t− 1].

(252)

Proof. Since the underlying random variables are jointly
Gaussian, we can express the MMSE estimates of st−k from
Wj , j ∈ {1, 2} as follows (see e.g. [32])

ŝt−k(W1) = α1st−k + e1 (253)
ŝt−k(W2) = α2st−k + e2 (254)

where e1 ∼ N (0, E1) and e2 ∼ N (0, E2) are Gaussian
random variables both independent of st−k. Furthermore the
constants in (253) and (254) are given by

αj = 1− σ2
t−k(Wj) (255)

Ej = σ2
t−k(Wj)(1− σ2

t−k(Wj)) (256)

for j = 1, 2. To establish (251), we have

h(st|W1,uΩ) = h(st|ŝt−k(W1),uΩ) (257)
= h(st|α1st−k + e1,uΩ) (258)
≤ h(st|α2st−k + e2,uΩ) (259)
= h(st|ŝt−k(W2),uΩ) (260)
= h(st|W2,uΩ) (261)

where (257) and (261) follows from the following Markov
property.

W1 → ŝt−k(W1)→ {st, uΩ} (262)
W2 → ŝt−k(W2)→ {st, uΩ} (263)

(258) and (260) follows from (253) and (254) and (259)
follows from the fact that σ2

t−k(W1) ≤ σ2
t−k(W2) implies

that
E1

α2
1

≤ E2

α2
2

(264)

Thus the only difference between (258) and (259) is that the
variance of the independent noise component in the first term
is smaller in the former. Clearly we obtain a better estimate
of st in (258), which justifies the inequality in (259).

Eq. (252) can be established as an immediate consequence
of (251). Since the noise zt in the test channel is Gaussian
and independent of all other random variables, we have

Var(ut|Wj ,uΩ) = Var(st|Wj ,uΩ) + σ2
z (265)

where the notation Var(a|W) indicates the noise variance of
estimating a from W . As a result,

h(ut|Wj ,uΩ) =
1

2
log
(

22h(st|Wj ,uΩ) + 2πeσ2
z

)
. (266)
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Thus (251) immediately imples (252).

We now establish (235) and subsequently establish (236) in
a similar fashion. Consider the following two steps.

1) First by applying Lemma 12 we show.

σ2
t−k([u]t−B

′−k−1
0 , ut−k, s−1) ≤

σ2
t−k([u]t−B

′−k−1
0 , ut−B′−k, s−1), (267)

i.e., knowing {[u]t−B
′−k−1

0 , ut−k, s−1} rather than
{[u]t−B

′−k−1
0 , ut−B′−k, s−1}, improves the estimate of

the source st−k. Let ŝt−B′−k([u]t−B
′−k−1

0 , s−1) be the
MMSE estimator of st−B′−k given ([u]t−B

′−k−1
0 , s−1).

Note that ŝt−B′−k([u]t−B
′−k−1

0 , s−1) is a sufficient statistic
of st−B′−k given {[u]t−B

′−k−1
0 , s−1} and thus we have that:

{[u]t−B
′−k−1

0 , s−1} →
ŝt−B′−k([u]t−B

′−k−1
0 , s−1)→ st−B′−k → st−k. (268)

Therefore, by application of Lemma 12 for X0 =
ŝt−B′−k([u]t−B

′−k−1
0 , s−1), X1 = st−B′−k, Y1 = ut−B′−k,

X2 = st−k and Y2 = ut−k, we have

σ2
t−k([u]t−B

′−k−1
0 , ut−k, s−1)

= σ2
t−k(ŝt−B′−k([u]t−B

′−k−1
0 , s−1), ut−k) (269)

≤ σ2
t−k(ŝt−B′−k([u]t−B

′−k−1
0 , s−1), ut−B′−k) (270)

= σ2
t−k([u]t−B

′−k−1
0 , ut−B′−k, s−1). (271)

where (269) and (271) both follow from (268). This completes
the claim in (267).

2) In the second step, we apply Lemma 13 for

W1 = {[u]t−B
′−k−1

0 , ut−k, s−1} (272)

W2 = {[u]t−B
′−k−1

0 , ut−B′−k, s−1} (273)
Ω = [t− k + 1, t− 1] (274)

we have

h
(
ut | [u]t−B

′−k−1
0 , [u]t−1

t−k, s−1

)
≤

h
(
ut | [u]t−B

′−k
0 , [u]t−1

t−k+1, s−1

)
(275)

and again by applying Lemma 13 for W1 and W2 in (272)
and (273) and Ω = [t− k + 1, t], we have

h
(
st | [u]t−B

′−k−1
0 , [u]tt−k, s−1

)
≤

h
(
st | [u]t−B

′−k
0 , [u]tt−k+1, s−1

)
(276)

This establishes (235) and (236) and equivalently (112) and
(113).

APPENDIX D
PROOF OF LEMMA 8

For reader’s convenience, we first repeat the statement of
the Lemma. Consider the two sets A,B ⊆ N each of size
r as A = {a1, a2, · · · , ar}, B = {b1, b2, · · · , br} such that
1 ≤ a1 < a2 < · · · < ar and 1 ≤ b1 < b2 < · · · < br and

for any i ∈ {1, . . . , r}, ai ≤ bi. Then the test channel (106)
satisfies the following:

h(st|uA, s−1) ≥ h(st|uB , s−1), ∀t ≥ br (277)
h(ut|uA, s−1) ≥ h(ut|uB , s−1), ∀t > br. (278)

We first prove (277) by induction as follows. The proof
of (278) follows directly from (277) as discussed at the end
of this section.
• First we show that (277) is true for r = 1, i.e. given

0 ≤ a1 ≤ b1 and for all t ≥ b1 we need to show

h(st | ua1 , s−1) ≥ h(st | ub1 , s−1). (279)

We apply Lemma 12 in Appendix C for
{X0,X1,X2,Y1,Y2} = {s−1, sa1 , sb1 , ua1 , ub1} which
results in

h(sb1 |ua1 , s−1) ≥ h(sb1 |ub1 , s−1) (280)

Thus (279) holds for t = b1. For any t > b1 we can always
express st = ρt−b1sb1 + ñ where ñ ∼ N (0, 1− ρ2(t−b1)) and
also we can express sb1 = ŝb1(uj , s−1) + wj for j ∈ {a1, b1}
where wj ∼ N (0, σ2

b1
(uj , s−1)) is the MMSE estimation error.

For j ∈ {a1, b1}, we have

st = ρt−b1 ŝb1(uj , s−1) + ρt−b1wj + ñ. (281)

Then we have

σ2
t (ua1

, s−1) = ρ2(t−b1)σ2
b1(ua1

, s−1) + 1− ρ2(t−b1) (282)

≥ ρ2(t−b1)σ2
b1(ub1 , s−1) + 1− ρ2(t−b1) (283)

= σ2
t (ub1 , s−1) (284)

where (283) immediately follows from (280). Thus (284)
establishes (279) and the proof of the base case is now
complete.
• Now assume that (277) is true for r, i.e. for the sets Ar, Br

of size r satisfying ai ≤ bi for i ∈ {1, · · · , r} and any t ≥ br,

h(st|uAr
, s−1) ≥ h(st|uBr

, s−1) (285)

We show that the lemma is also true for the sets Ar+1 =
{Ar, ar+1} and Br+1 = {Br, br+1} where ar ≤ ar+1, br ≤
br+1 and ar+1 ≤ br+1. We establish this in two steps.

1) We show that

h(st|uAr+1 , s−1) ≥ h(st|uAr , ubr+1 , s−1). (286)

By application of Lemma 12 for

{X0,X1,X2,Y1,Y2} =

{ŝar (uAr
, s−1), sar+1

, sbr+1
, uar+1

, ubr+1
} (287)

we have

h(sbr+1
|ŝar (uAr

, s−1), uar+1
)

≥ h(sbr+1
|ŝar (uAr

, s−1), ubr+1
) (288)

Thus (286) holds for t = br+1. For t ≥ br+1 we can use
the argument analogous to that leading to (284). We omit
the details as they are completely analogous. This establishes
(286).
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2) Next we show that

h(st|uAr
, ubr+1

, s−1) ≥ (289)
h(st|uBr+1

, s−1). (290)

First note that based on the induction hypothesis in (285)
for t = br+1 we have

h(sbr+1
|uAr

, s−1) ≥ h(sbr+1
|uBr

, s−1) (291)

and equivalently

σ2
br+1

(uAr
, s−1) ≥ σ2

br+1
(uBr

, s−1) (292)

Now by application of Lemma 13 for k = t− br and

W1 = {uBr , s−1} (293)
W2 = {uAr , s−1} (294)
Ω = {br+1} (295)

and noting that Wj → sbr → (sbr+1 , uΩ) for j = 1, 2 we have

h(st|uAr , ubr+1 , s−1) ≥ h(st|uBr , ubr+1 , s−1) (296)

which is equivalent to (290).
Combining (286) and (290) we have h(st|uAr+1

, s−1) ≥
h(st|uBr+1 , s−1) which shows that (277) is also true for r+1.

This completes the induction and the proof of (277) for
general r.

Finally note that (277) implies (278) as follows.

h(ut|uAr , s−1) =
1

2
log
(

22h(st|uAr ,s−1) + 2πeσ2
z

)
(297)

≥ 1

2
log
(

22h(st|uBr ,s−1) + 2πeσ2
z

)
(298)

= h(ut|uBr , s−1) (299)

where (297) follows from the fact that the noise in the test
channel is independent. Also (298) follows from (277). This
completes the proof.

APPENDIX E
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We prove each part separately as follows.
1) For any feasible set Ωt with size θ we have

λt(Ωt) = I(st; ut|uΩt
, s−1)

= h(ut|uΩt
, s−1)− h(ut|st)

≤ h(ut|uΩ?
t (θ), s−1)− h(ut|st) (300)

= I(st; ut|uΩ?
t (θ), s−1)

= λt(Ω
?
t (θ)) (301)

where (300) follows from the application of Lemma 8 with
A = Ω?t (θ) and B = Ωt, which by construction of Ω?t (θ)
clearly satisfy the required condition. Also note that

1

2
log (2πeγt(Ωt)) = h(st|ut,uΩt

, s−1)

≤ h(st|ut,uΩ?
t (θ), s−1) (302)

=
1

2
log (2πeγt(Ω

?
t (θ))) (303)

where (302) follows from Lemma 8 for the sets A =
{Ω?t (θ), t} and B = {Ωt, t}. Thus we have γt(Ωt) ≤
γt(Ω

?
t (θ)).

2) We next argue that both λt(Ω?t (θ)) and γt(Ω?t (θ)) attain
their maximum values with the minimum possible θ. Recall
from Part 1 that when the number of erasures ne = t − θ is
fixed, the worst case sequence must have all erasure positions
as close to t as possible. Thus if ne ≤ B the worst case
sequence consists of a single burst spanning [t− ne, t− 1]. If
B < ne ≤ 2B, the worst case sequence must have two burst
erasures spanning [t−ne−L, t−B−L−1]∪[t−B, t−1]. More
generally the worst case sequence will consist of a sequence of
burst erasures each (except possibly the first one) of length B
separated by a guard interval of length L. Thus the non-erased
indices associated with decreasing values of θ are nested, i.e.
θ1 ≤ θ2 implies that Ω?t (θ1) ⊆ Ω?t (θ2). Further note that
adding more elements in the non-erased indices Ω?t (·) can only
decrease both λt(·) and γt(·), i.e. Ω?t (θ1) ⊆ Ω?t (θ2) implies
that λt(Ω?t (θ1)) ≥ λt(Ω

?
t (θ2)) and γt(Ω?t (θ1)) ≥ γt(Ω

?
t (θ2)).

Thus the worst case Ω?t (θ) must constitute the minimum
possible value of θ. The formal proof, which is analogous
to the second part of Lemma 6 will be skipped.

3) This property follows from the fact that in steady state the
effect of knowing s−1 vanishes. In particular we show below
that λt+1(Ω?t+1) ≥ λt(Ω?t ) and γt+1(Ω?t+1) ≥ γt(Ω?t ).

λt+1(Ω?t+1)

= I(st+1; ut+1|uΩ?
t+1
, s−1)

= h(ut+1|uΩ?
t+1
, s−1)− h(ut+1|st+1)

≥ h(ut+1|uΩ?
t+1
, s−1, s0)− h(ut+1|st+1) (304)

= h(ut+1|uΩ?
t+1\{0}, s0)− h(ut+1|st+1) (305)

= h(ut|uΩ?
t
, s−1)− h(ut|st) (306)

= I(st; ut|uΩ?
t
, s−1)

= λt(Ω
?
t ) (307)

where (304) follows from the fact that conditioning reduces
the differential entropy. Also in (305) the notation Ω?t+1\{0}
indicates the set Ω?t+1 when the index 0 is excluded if 0 ∈
Ω?t+1. It can be easily verified that the set Ω?t is equivalent
to the set obtained by left shifting the elements of the set
Ω?t+1\{0} by one. Then (305) follows from this fact and the
following Markov property.

{u0, s−1} → {uΩ?
t+1\{0}, s0} → ut+1 (308)

Eq. (306) follows from the time-invariant property of source
model and the test channel. Also note that

1

2
log
(
2πeγt+1(Ω?t+1)

)
= h(st+1|ut+1,uΩ?

t+1
, s−1)

≥ h(st+1|ut+1,uΩ?
t+1
, s−1, s0)

(309)
= h(st+1|ut+1,uΩ?

t+1\{0}, s0) (310)

= h(st|ut,uΩ?
t
, s−1) (311)

=
1

2
log (2πeγt(Ω

?
t )) (312)
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where (309) follows from the fact that conditioning reduces the
differential entropy, (310) follows from the following Markov
property

{u0, s−1} → {uΩ?
t+1\{0}, ut+1, s0} → st+1 (313)

and (311) again follows from the time-invariant property of
source model and the test channel.

APPENDIX F
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We need to show

I(st; ut|s̃t−L−B , [u]t−B−1
t−L−B+1) ≥ lim

t→∞
λt(Ω

?
t )

= lim
t→∞

I(st; ut|uΩ?
t
, s−1) (314)

σ2
t (s̃t−L−B , [u]t−B−1

t−L−B+1, ut) ≥ lim
t→∞

γt(Ω
?
t )

= lim
t→∞

σ2
t (uΩ?

t
, ut, s−1) (315)

For any t > L+B, we can write

λt(Ω
?
t ) = I(st; ut|uΩ?

t
, s−1) (316)

= I(st; ut|uΩ?
t−L−B

, [u]t−B−1
t−L−B+1, s−1) (317)

= I(st; ut|ŝt−L−B(uΩ?
t−L−B

, s−1), [u]t−B−1
t−L−B+1)

(318)

≤ I(st; ut|α̃st−L−B + ẽ, [u]t−B−1
t−L−B+1) (319)

= I(st; ut|st−L−B + e, [u]t−B−1
t−L−B+1)

= I(st; ut|s̃t−L−B , [u]t−B−1
t−L−B+1) (320)

= R+
GM-ME(L,B,D) (321)

where (317) follows from the structure of Ω?t in Lemma 9,
(318) follows from the Markov relation

{uΩ?
t−L−B

, s−1} → {ŝt−L−B(uΩ?
t−L−B

, s−1), [u]t−B−1
t−L−B+1}
→ st (322)

and in (319) we introduce α̃ = 1−D and
ẽ ∼ N (0, D(1−D)). This follows from the fact that
the estimate ŝt−L−B(uΩ?

t−L−B
, s−1) satisfies the average

distortion constraint of D. In (320) we re-normalize the test
channel so that e ∼ N (0, D/(1 − D)). Taking the limit of
(321) when t→∞, results in (314). Also note that

γt(Ω
?
t ) = σ2

t (uΩ?
t
, ut, s−1)

= σ2
t (uΩ?

t−L−B
, [u]t−B−1

t−L−B+1, ut, s−1)

= σ2
t (ŝt−L−B(uΩ?

t−L−B
, s−1), [u]t−B−1

t−L−B+1, ut)

(323)

≤ σ2
t (α̃st−L−B + ẽ, [u]t−B−1

t−L−B+1, ut) (324)

= σ2
t (st−L−B + e, [u]t−B−1

t−L−B+1, ut) (325)

= σ2
t (s̃t−L−B , [u]t−B−1

t−L−B+1, ut) (326)

where (323) follows from the following Markov property (322)
and (324) again follows from the fact that the estimate
ŝt−L−B(uΩ?

t−L−B
, s−1) satisfies the distortion constraint. All

the constants and variables in (324) and (325) are as defined
before. Again, taking the limit of (326) when t → ∞ results
in (315).

According to (321) and (326) if we choose the noise in the
test channel σ2

z to satisfy

σ2
t (s̃t−L−B , [u]t−B−1

t−L−B+1, ut) = D (327)

then the test channel and the rate R+
GM-ME(L,B,D) defined in

(321) both satisfy rate and distortion constraints in (168) and
(169) and therefore R+

GM-ME(L,B,D) is achievable.

APPENDIX G
PROOF OF LEMMA 11

We first show that (210) which is repeated in (328) at the
top of next page. From the fact that conditioning reduces the
differential entropy, we can lower bound the left hand side
in (328) by

B−1∑
i=0

(
h(snt−B−W+i)

−h(snt−B−W+i|[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1)
)

(329)

We show that for each i = 0, 1, . . . , B − 1

h(snt−B−W+i)−h(snt−B−W+i|[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1) ≥

n

2
log

(
1

dB+W−i

)
, (330)

which then establishes (328). Recall that since there is a burst
erasure between time t ∈ [t−B−W, t−W − 1] the receiver
is required to reconstruct

t̂nt =
[
ŝnt , . . . , ŝ

n
t−B−W

]
(331)

with a distortion vector (d0, . . . , dB+W ) i.e., a reconstruc-
tion of ŝnt−B−W+i is desired with a distortion of dB+W−i
for i = 0, 1, . . . , B + W when the decoder is revealed
([f ]t−B−W−1

0 , [f ]tt−W ). Hence

h(snt−B−W+i)− h(snt−B−W+i|[f ]t−B−W−1
0 , [f ]tt−W , s

n
−1)

= h(snt−B−W+i)− h
(
snt−B−W+i|[f ]t−B−W−1

0 ,

[f ]tt−W , s
n
−1, {ŝnt−B−W+i}dB+W−i

)
(332)

≥ h(snt−B−W+i)− h(snt−B−W+i|{ŝnt−B−W+i}dB+W−i
)

(333)
≥ h(snt−B−W+i)− h(snt−B−W+i − {ŝnt−B−W+i}dB+W−i

)
(334)

Since we have that

E

 1

n

n∑
j=1

(st−B−W+i,j − ŝt−B−W+i,j)
2

 ≤ dB+W−i

(335)

It follows from standard arguments that [29, Chapter 13] that

h(snt−B−W+i−{ŝnt−B−W+i}dB+W−i
) ≤ n

2
log 2πe(dB+W−i).

(336)
Substituting (336) into (334) and the fact that h(snt−B−W+i) =
n
2 log 2πe establishes (330).
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h(snt−B−W , . . . , s
n
t−W−1)− h(snt−B−W , . . . , s

n
t−W−1|[f ]t−B−W−1

0 , [f ]tt−W , s
n
−1) ≥

B∑
i=1

n

2
log (

1

dW+i
) (328)

h(snt−W , . . . , s
n
t )− h(snt−W , . . . , s

n
t |[f ]t−B−W−1

0 , [f ]tt−W , s
n
t−B−W , . . . , s

n
t−W−1, s

n
−1)

+H([f ]tt−W |[f ]t−B−W−1
0 , tnt , s

n
−1) ≥ n(W + 1)

2
log(

1

d0
) (337)

Now we establish (211) which is repeated in (337) at the
top of next page. Since (snt−W , . . . , s

n
t ) are independent we

can express the left-hand side in (337) as:

I
(
snt−W , . . . , s

n
t ; [f ]tt−W |[f ]t−B−W−1

0 , snt−B−W ,

. . . , snt−W−1, s
n
−1

)
+H([f ]tt−W |[f ]t−B−W−1

0 , tnt , s
n
−1) (338)

= H([f ]tt−W |[f ]t−B−W−1
0 , snt−B−W , . . . , s

n
t−W−1, s

n
−1)

(339)

≥ H([f ]tt−W |[f ]t−W−1
0 , snt−B−W , . . . , s

n
t−W−1, s

n
−1)

≥ I
(
[f ]tt−W ; snt−W , . . . , s

n
t |[f ]t−W−1

0 , snt−B−W ,

. . . , snt−W−1, s
n
−1

)
(340)

The above mutual information term can be bounded as
follows:

h(snt−W , . . . , s
n
t |[f ]t−W−1

0 , snt−B−W , . . . , s
n
t−W−1, s

n
−1)

− h(snt−W , . . . , s
n
t |[f ]t0, s

n
t−B−W , . . . , s

n
t−W−1, s

n
−1)

= h(snt−W , . . . , s
n
t )

− h(snt−W , . . . , s
n
t |[f ]t0, s

n
t−B−W , . . . , s

n
t−W−1, s

n
−1)

(341)
≥ h(snt−W , . . . , s

n
t )− h(snt−W , . . . , s

n
t |{ŝnt−W }d0

, . . . , {ŝnt }d0
)

(342)

≥
W∑
i=0

(
h(snt−W+i)− h(snt−W+i − {ŝnt−W+i}d0)

)
≥

W∑
i=0

n

2
log(

1

d0
) =

n(W + 1)

2
log(

1

d0
) (343)

where (341) follows from the independence of (snt−W , . . . , s
n
t )

from the past sequences, and (342) follows from the fact that
given the entire past [f ]t0 each source sub-sequence needs to be
reconstructed with a distortion of d0 and the last step follows
from the standard approach in the proof of the rate-distortion
theorem. This establishes (337).

This completes the proof.
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