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Abstract—In smart grids, a smart meter communicates fine-
grained information about a user’s energy demand to the utility
provider. A user’s energy demand can be used to infer its
private activities. Therefore, smart meters post a risk of violating
privacy. This risk may be mitigated by using a rechargeable
battery to obfuscate the user’s demand. We investigate battery
charging (and discharging) strategies that minimize the amount
of information leaked to the grid, where information leakage is
measured using mutual information.

We model the energy demand as a Markov process and,
after a series of simplifications, show that the problem of
determining privacy-optimal charging strategies can be recast
as a Markov decision process; the optimal strategy and the
minimum leakage rate are given by the solution of a dynamic
program. For the special case of i.i.d. demand, we explicitly
characterize the optimal strategy and show that the associated
minimum information leakage rate is given by a single-letter
mutual information expression.

I. INTRODUCTION

Smart electricity meters deliver fine-grained information
about a user’s energy consumption to the utility provider.
The utility provider may use this information to improve the
efficiency of the grid [1]. However, this efficiency comes at
the risk of privacy violation: the utility provider, or an eaves-
dropper, may employ data mining algorithms to infer user’s
private activities [2]. This risk may be mitigated by using
a rechargeable battery to obfuscate the user’s demand [3].
In particular, in the presence of a rechargeable battery, the
energy consumed from the grid need not equal the user’s
demand. The consumed energy could be larger (where the
excess energy is stored in the battery) or smaller (where
the remaining energy is provided by the battery). Therefore,
only part of the information about the user’s demand can
be inferred from the energy consumed from the grid. In
this paper, we consider the problem of designing privacy-
optimal charging strategies for such rechargeable batteries.

Several variations of privacy-aware charging strategies for
smart metering systems have been considered in the literature.
The information leakage rate of a best effort strategy—one
that holds the energy consumed from the grid to its most
recent value, if possible—was investigated in [3]. The privacy-
optimal strategies for the binary model (i.e., binary (on/off)
i.i.d. loads and a battery capacity equal to the load) was con-
sidered in [4]. This approach was generalized to include local

energy generation in [5], [6]. It should be noted that in [4]–
[6], the optimal charging strategy was identified by a brute
force search over a subclass of all strategies; the performance
of a particular charging strategy was evaluated by explicitly
computing the joint distribution on the user’s demand and
consumption over a long time period. A generalization to the
case when there is a constraint on the average and peak energy
consumed from the grid is considered in [7]; explicit solutions
are provided for the case of zero and infinite battery capacity.
An information theoretic characterization of the privacy-utility
trade-off was investigated in [8], [9].

In this paper we generalize our recent results [10], where
the optimal strategy for the binary model was identified. We
first characterize a structural property of optimal strategies that
allows us to write information-leakage rate in an additive form.
We then identify an equivalent sequential problem and show
that the optimal strategy is given the solution of a dynamic
program. This dynamic program is similar to that for partially
observable Markov decision processes but, in our case, the
per-step cost is not linear in the information state. For the
special case of i.i.d. demand, we guess the identify the optimal
strategy and show that it satisfies the dynamic program. The
corresponding minimum information leakage rate is given by
a single-letter mutual information expression. In a subsequent
paper [11], we show that the solution for the i.i.d. demand can
also be obtained by information theoretic arguments. After the
present work was completed, we became aware of [12], where
a similar dynamic programming framework is used. However,
no explicit solutions are established in [12].

Notation: Uppercase letters X , Y , etc. denote random
variables, the corresponding lowercase letters x, y, etc. denote
their realization, and the corresponding script letters X , Y , etc.
denote their alphabets. PX denotes the space of probability
distributions on the set X and PX|Y denotes the space of
coditional probability distributions on X given Y . Xb

a is a
short hand notation for (Xa, . . . , Xb); Xb is a short hand for
Xb

1 . P(·) denotes the probability of an event, E[·] denotes
expectation of a ranom variable, and 1A{·} denotes the
indicator of the set A.

Given random variables X and Y , H(X) denotes entropy
of X , H(X|Y ) denotes the conditional entropy of X given Y ,
and I(X;Y ) denotes the mutual information between X and



Home
Appliances

Battery Policy
St+1 = St + Yt −Xt

qt(Yt|Xt, St, Y t−1)

Power
Grid

Xt Yt

Fig. 1: An energy management system.

Y . Sometimes we need to explicitly indicate the dependence
of these quantities on the underlying probability distribu-
tions. In particular, given a joint distribution PX,Y (x, y) =
q(x|y)PY (y), we expression the conditional entropy H(X|Y )
as H(q|PY ) = −∑x,y P (x, y) log q(y|z).

II. MODEL AND PROBLEM FORMULATION

We consider an energy management system shown in Fig. 1.
Let {Xt}t≥1, Xt ∈ X , denote the (exogenous) demand
process, {Yt}t≥1, Yt ∈ Y , denote the energy consumed from
the grid, and {St}t≥1, St ∈ S denote the energy stored in
the battery. It is assumed that X , Y , and S are finite sets
where X ⊆ Y (so that the energy demand can always be
met by the grid). We We assume that {Xt}t≥1 is a first-order
time-homogeneous Markov chain with transition probability Q
and initial state X1 distributed according to probability mass
function PX1

; the initial charge S1 of the battery is distributed
according to probability mass function PS1

.
We assume an ideal battery that has no conversion losses

or other inefficiencies. Therefore, the following conservation
equation must be satisfied at all time instances:

St+1 = St + Yt −Xt. (1)

Note that the battery is assumed to be ideal for the ease of
presentation. Our results extend to a battery with conversion
losses as well, as long as the battery update is deterministic.

The energy management system observes the demand and
battery charge and consumes energy from the grid according to
a randomized charging strategy q = (q1, q2, . . . ). In particular,
at time t, given (xt, st, yt−1), the history of demand, battery
charge, and past consumption, then the current consumption
Yt is y with probability qt(y | xt, st, yt−1). For a randomized
charging strategy to be feasible, it must satisfy the conserva-
tion equation (1). Let Y◦(w) = {y ∈ Y : w + y ∈ S}; then

qt(Y◦(st − xt) | xt, st, yt−1)

=
∑

y∈Y◦(st−xt)

qt(y | xt, st, yt−1) = 1.

The set of all such feasible strategies is denoted by QA.
The information leaked under a strategy q is given by

the mutual information Iq(S1, X
T ;Y T ) that is evaluated ac-

cording to the joint probability distribution on (XT , ST , Y T )
induced by q:

Pq(ST = sT , XT = xT , Y T = yT ) = PS1
(s1)PX1

(x1)

× q1(y1 | x1, s1)

T−1∏
t=1

[
1st+1{st − xt + yt}Q(xt+1|xt)

×qt+1(yt+1 | xt+1, st+1, yt)

]
.

Note that since the charging strategies are causal (i.e., Yt does
not depend on the future observations XT

t+1), the mutual infor-
mation Iq(S1, X

T ;Y T ) is equal to the directed information
I(S1, X

T → Y T ).
We use information leakage rate as a measure of the quality

of a charging strategy. For a finite horizon, the information
leakage rate of a strategy q = (q1, . . . , qT ) ∈ QA is given by

LT (q) =
1

T
Iq(XT , S1;Y T ) (2)

while for an infinite horizon, the worst-case information leak-
age rate of a strategy q = (q1, q2, . . . ) ∈ QA is given by

L∞(q) = lim sup
T→∞

LT (q). (3)

We are interested in the following optimization problems:

Problem A. Given the alphabet X of the demand, the initial
distribution PX1

and the transition matrix Q of the demand
process, the alphabet S of the battery, the initial distribution
PS1

of the battery state, and the alphabet Y of the demand:
1) For a finite planning horizon T , find a battery charging

strategy q = (q1, . . . , qT ) ∈ QA that minimizes the
leakage rate LT (q) given by (2).

2) For an infinite planning horizon, find a battery charging
strategy q = (q1, q2, . . . ) ∈ QA that minimizes the
leakage rate L∞(q) given by (3).

III. THE MAIN-RESULTS

A. Simplification of optimal charging strategies

Let QB ⊂ QA denote the set of charging strategies that
choose consumption based only on the consumption history
and the current demand and battery state. Thus, for q ∈ QB ,
at any time t, given history (xt, st, yt−1), the consumption
Yt is y with probability qt(y | xt, st, yt−1). Then the joint
distribution on (XT , ST , Y T ) induced by q ∈ QB is given by

Pq(ST = sT , XT = xT , Y T = yT ) = PS1
(s1)PX1

(x1)

× q1(y1 | x1, s1)

T−1∏
t=1

[
1st+1{st − xt + yt}Q(xt+1|xt)

×qt+1(yt+1 | xt+1, st+1, y
t)

]
.

Proposition 1. In Problem A, there is no loss of optimality in
restricting attention to charging strategies q ∈ QB . Moreover,
the objective function takes an additive form i.e., for q ∈ QB ,

LT (q) =
1

T

T∑
t=1

Iq(Xt, St;Yt | Y t−1)

where

Iq(Xt, St;Yt | Y t−1)

=
∑

xt∈X ,st∈S
yt∈Yt

Pq(Xt = xt, St = st, Y
t = yt)

× log
qt(yt | xt, st, yt−1)

Pq(Yt = yt | Y t−1 = yt−1)
.



Proof. The proof relies on showing that for any strategy qA ∈
QA, there exists a strategy qB ∈ QB such that

IqA(S1, X
T ;Y T ) ≥

T∑
t=1

IqA(St, Xt;Yt | Y t−1)

=

T∑
t=1

IqB (St, Xt;Yt | Y t−1) = IqB (S1, X
T ;Y T ).

The details are omitted due to space limitations.

B. An equivalent sequential problem

In this section, we develop a sequential optimization prob-
lem equivalent to Problem A. A similar approach was pro-
posed in [13] for computing the capacity of Markov channels
with feedback.

Consider a system with state process {Xt, St}t≥1 where
{Xt}t≥1 is an exogenous Markov process as before and
{St}t≥1 is a controlled Markov process as specified below.
At time t, a decision maker observes Y t−1 and chooses a
distribution valued action At ∈ A, where

A =
{
a ∈ PY |X,S : a(Y◦(s− x) | x, s) = 1, ∀x ∈ X , s ∈ S

}
.

Based on this action, an auxiliary variable Yt ∈ Y is chosen
according to the conditional probability at(· | xt, st) and the
state St+1 evolves according to (1). Then for any history (xt,
st, yt−1), at ∈ A, and st+1 ∈ S,

P(St+1 = st+1 | Xt = xt, St = st, Y t−1 = yt−1, At = at)

=
∑
yt∈Y

at(yt | xt, st)1st+1
{st + yt − xt}

= P(St+1 = st+1 | Xt = xt, St = st, At = at)

Thus, {Xt, St}t≥1 is a controlled Markov process with control
action {At}t≥1 chosen as follows:

At = ft(Y
t−1, At−1)

where f = (f1, f2, . . . ) is called the decision strategy. A
decision strategy f = (f1, . . . , fT ) induces a joint probability
distribution on (XT , ST , Y T ) that is given by

Pf (ST = sT , XT = xT , Y T = yT ) = PS1(s1)PX1(x1)

× a1(y1 | x1, s1)

T−1∏
t=1

[
1st+1

{st − xt + yt}Q(xt+1|xt)

×at+1(yt+1 | xt+1, st+1)

]
where at = ft(y

t−1, at−1).
At each stage, the system incurs a per-step cost given by

ct(xt, st, at, y
t; f) = log

at(yt | xt, st)
Pf (Yt = yt | Y t−1 = yt−1)

(4)

The objective is to choose a strategy f = (f1, . . . , fT ) to
minimize the total finite horizon cost given by

L̃T (f) =
1

T
Ef

[
T∑
t=1

ct(xt, st, at, y
t; f)

]

where the expectation is evaluated with respect to Pf .

Proposition 2. The sequential decision problem described
above is equivalent to Problem A. In particular,

1) Given q = (q1, . . . , qT ) ∈ QB , let f = (f1, . . . , fT ) be

ft(y
t−1, at−1) = qt(· | ·, ·, yt−1).

Then L̃T (f) = LT (q).
2) Given f = (f1, . . . , fT ), let q = (q1, . . . , qT ) ∈ QB be

qt(yt | xt, st, yt−1) = at(yt | xt, st)
where at = ft(y

t−1, at−1), for t ∈ {1, 2, . . . , T}.
Then LT (q) = L̃T (f).

Proof. The proof relies on the following observations.
(i) under the transformations described above, Pf and
Pq are identical probability distributions; and consequently,
(ii) Ef [ct(Xt, St, At, Y

t; f)] = Iq(St, Xt, Yt | Y t−1).

C. A dynamic program for the sequential problem

The model described in Section III-B above is similar to
a partially observable Markov decision process: the system
state (Xt, St) is partially observed by a decision maker who
chooses At. However, in contrast to the standard cost model
used in Markov decision processes, the per-step cost depends
on the observation history and past strategy. Nonetheless, if we
consider the belief state as the information state, the problem
can be formulated as a standard Markov decision process.

For that matter, for any realization yt−1 of past observations
and any choice at−1 of past actions, define the belief state
πt ∈ PX,S as follows: For any s ∈ S and x ∈ X ,

πt+1(x, s) = Pf (Xt = x, St = s|Y t−1 = yt−1, At−1 = at−1).

Although, we use Pf as the probability distribution in the
above expression, when (yt−1, at−1) are given, the probability
does not depend on the strategy f . If Y t−1 and At−1 are
random variables, then the belief state is a PX,S-valued
random variable denoted by Πt.

The belief state Πt evolves in time in a state-like manner.
In particular,

Πt+1 = ϕ(Πt, Yt, At) (5)

where ϕ is a non-linear filter given by

ϕ(π, a, y)(x+, s+)

=

∑
x̂∈X ,ŝ∈S

1s+{ŝ− x̂+ y}Q(x+|x̂)a(y|x̂, ŝ)π(x̂, ŝ)∑
x̃∈X ,s̃∈S

a(y|x̃, s̃)π(x̃, s̃)
.

The per-step cost defined in (4) can be expressed in terms of
the belief state. In particular, for any strategy f = (f1, f2, . . . ),

Ef [ct(Xt, St, At, Y
t; f) | Y t−1 = yt−1, At = at]

=
∑

x∈X ,s∈S,
y∈Y

πt(x, s)at(y | x, s)

× log
at(y|x, s)∑

(x̃,s̃)∈X×S
πt(x̃, s̃)at(y | x̃, s̃)

= I(at;πt)

(6)



Note that I(at;πt) does not depend on the strategy f .
For ease of notation, for any a ∈ A define the Bellman

operator Ba : [PX,S → R]→ [PX,S → R] as follows:

[BaV ](π) = I(a;π) +∑
x∈X ,s∈S,
y∈Y

π(x, s)a(y | x, s)V (ϕ(π, y, a)) , π ∈ PX,S .

Eq. (5) implies that {Πt}t≥1 is a controller Markov process
with control action At. In addition, equation (6) implies that
the expected per-step cost can be expressed in terms of the
state Πt and the action At. Therefore, from standard results
in Markov decision theory, we have the following:

Theorem 1. The optimal solution of Problem A is as follows:
1) For the finite horizon T , iteratively define the following

value functions Vt : PX,S → R: For any π ∈ PX,S ,
VT+1(π) = 0, and for t = T, T − 1, . . . , 1,

Vt(π) = inf
a∈A

[BaVt+1](π). (7)

Let f∗t (π) denote the arg min of the rhs of (7). Then,
the strategy f∗ = (f∗1 , . . . , f

∗
T ) is optimal for the finite

horizon version of the sequential decision problem of
Sec. III-B. By using the transformation presented in
Proposition 2, an optimal strategy for the finite hori-
zon version of Problem A is obtained. Moreover, let
π1(x, s) = PX1

(x)PS1
(s). Then, the optimal (finite

horizon) leakage rate is given by V1(π1)/T .
2) Suppose there exists a J ∈ R and v : PX,S → R that

satisfy the following fixed point equation:

J + v(π) = inf
a∈A

[Bav](π), ∀π ∈ PX,S . (8)

Let f∗(π) denote the arg min of the rhs of (8). Then, the
time-homogeneous strategy f∗,∞ = (f∗, f∗, . . . ) is opti-
mal for the infinite horizon version of the sequential de-
cision problem of Sec. III-B. By using the transformation
presented in Proposition 2, a time-homogeneous optimal
strategy for the infinite horizon version of Problem A is
obtained. Moreover, the optimal (infinite horizon) leakage
rate is given by J .

Remark 1. The results of Theorem 1 can be generalized to
k-th order Markov processes {Xt}t≥1 by considering belief
states, actions and per-stage costs of the form

πt(x
t
t−k+1, st) = P

q
Xt

t−k+1,St|Y t(x
t
t−k+1, st|yt−1)

at(yt|xtt−k+1, st) = qt(yt|xtt−k+1, st, y
t−1)

I(at;πt) = I(Xt
t−k+1, St;Yt|Y t−1 = yt−1).

The steps leading to the dynamic program follow in a similar
manner as before.

IV. THE SPECIAL CASE OF I.I.D. DEMAND

In this section, we make the following assumption:
(A) The demand {Xt}t≥1 is i.i.d. with distribution PX .

Under this assumption, the belief state πt can be decom-
posed into a product form

πt(x, s) = PX(x)P (St = s | Y t−1 = yt−1, At−1 = at−1).

A. Simplification of the dynamic program

Define an auxiliary state variable Wt = St −Xt that takes
values in W = {s − x : s ∈ S, x ∈ X}. Let PW denote the
space of probability distributions on W . For any realization
(yt−1, at−1) of past observations and actions, define ξt ∈ PW
as follows: for any w ∈ W ,

ξt(w) = Pf (Wt = w | Y t−1 = yt−1, At−1 = at−1).

As was the case for πt, ξt does not depend on the choice of
the strategy f . If Y t−1 and At−1 are random variables, then
ξt is a PW -valued random variable that we denote by Ξt.

Let us define for any w ∈ W ,

D(w) = {(x, s) ∈ X × S : s− x = w}.
Lemma 1. Under (A), Ξt is equivalent to Πt. In particular,

1) Ξt(w) =
∑

(x,s)∈D(w) Πt(x, s).
2) Πt(x, s) = PX(x)θ(s) where θ(s) = (PX ∗ Ξ)(s).

Lemma 1 implies that {Ξt}t≥1 is also a Markov process
and that under (A), the dynamic programs of Theorem 1 may
be written in terms of Ξt rather than Πt. We now show that
an additional simplification of the action space is possible.

Define B as follows:

B =
{
b ∈ PY |W : b(Y◦(w) | w) = 1, ∀w ∈ W

}
.

Lemma 2. Given a ∈ A and π ∈ PX,S and its associated
ξ ∈ PW , let us define b ∈ B as follows: for all y ∈ Y, w ∈ W

b(y | w) =

∑
(x̂,ŝ)∈D(w)

a(y | x̂, ŝ)π(x̂, ŝ)∑
(x̂,ŝ)∈D(w)

π(x̂, ŝ)
,

and ã ∈ A as follows: for all y ∈ Y, x ∈ X , s ∈ S
ã(y|x, s) = b(y|s− x).

Then under (A), we have
1) Invariant Transitions: ϕ(π, y, a) = ϕ(π, y, ã), ∀y ∈ Y
2) Lower Cost: I(a;π) ≥ I(ã;π) = I(b; ξ).

Therefore, in the sequential problem of Sec. III-B, there is no
loss of optimality in restricting attention to actions b ∈ B.

The update of Ξt in terms of b ∈ B can be written as

Ξt+1 = ϕ̃(Ξt, Yt, Bt)

where ϕ̃ is a non-linear filter given by

ϕ̃(ξ, y, b)(w+) =

∑
ŵ∈W PX(y + w − w+)b(y | ŵ)ξ(ŵ)∑

w̃∈W b(y | w̃)ξ(w̃)
.

For any b ∈ B and ξ ∈ PW , let us define the Bellman
operator B̃b : [PW → R]→ [PW → R] as follows:

[B̃bV ](ξ) = I(b; ξ) +
∑

y∈Y,w∈W
ξ(w)b(y | w)V

(
ϕ̃(ξ, y, b)

)
.



Theorem 2. Under (A), the optimal solution of Problem A is
given as follows:

1) For the finite horizon case, iteratively define the following
value functions Ṽt : PW → R: For any ξ ∈ PW ,
ṼT+1(ξ) = 0, and for t = T, T − 1, . . . , 1,

Ṽt(ξ) = inf
b∈B

[B̃bṼt+1](ξ). (9)

Let f◦t (ξ) denote the arg min of the rhs of (9). Then,
the strategy f◦ = (f◦1 , . . . , f

◦
T ) is optimal for the finite

horizon version of the sequential decision problem of
Sec. III-B. By using the transformation presented in
Proposition 2 and Lemma 1, an optimal strategy for the
finite horizon version of Problem A is obtained. Then,
the optimal (finite horizon) leakage rate is given by
Ṽ1(ξ1)/T , where ξ1(w) =

∑
(x,s)∈D(w) PX(x)PS1

(s).
2) Suppose there exists a J̃ ∈ R and ṽ : PS → R that

satisfy the following fixed point equation:

J̃ + ṽ(ξ) = inf
b∈B

[B̃bṽ](ξ), ∀ξ ∈ PS . (10)

Let f◦(ξ) denote the arg min of the rhs of (10). Then,
the time-homogeneous strategy f◦,∞ = (f◦, f◦, . . . ) is
optimal for the infinite horizon version of the sequential
decision problem of Sec. III-B. By using the transforma-
tion presented in Proposition 2 and Lemma 1, a time-
homogeneous optimal strategy for the infinite horizon
version of Problem A is obtained. Moreover, the optimal
(infinite horizon) leakage rate is given by J̃ .

B. The solution of the dynamic program
In this section, we identify an optimal strategy and leakage

rate under (A). We begin by stating our main theorem then we
provide a series of intermediate results that lead to its proof.

Theorem 3. Define

J∗ = min
θ∈PS

I(S −X;X) (11)

where X ∼ PX and S ∼ θ. Let θ∗ denote the arg min in (11),
π∗(x, s) = PX(x)θ∗(s) and ξ∗(w) =

∑
(x,s)∈D(w) π

∗(x, s).
Then

1) J∗ is the optimal (infinite horizon) leakage rate.
2) The charging strategy, q∗ = (q∗1 , q

∗
2 , . . . ) defined by

q∗t (y | xt, st, yt−1) = b∗(y | st − xt), ∀t. (12)

where

b∗(y|w) =

{
π∗(y,y+w)
ξ∗(w) if y ∈ X ∩ Y◦(w)

0 otherwise
(13)

achieves the optimal leakage rate in Problem A.

Remark 2. The optimal θ∗ (and therefore the optimal b∗)
in Theorem 3 may be computed using the Blahut-Arimoto
algorithm [14].

We separate the proof into 2 steps: We first obtain a lower
bound to the infinite horizon average cost problem by solving
the associated average cost optimality inequality. Then we
verify that b∗ given in the statement of the Theorem achieves
this lower bound.

Step 1: Converse - A lower bound on optimal leakage rate

The main idea is to identify a J ∈ R and a bounded
function v : PW → R that satisfy the average cost optimality
inequality, i.e.,

J + v(ξ) ≤ min
b∈B

[B̃bv](ξ), ∀ξ ∈ PW . (14)

Then, such a J is a lower bound on the optimal leakage rate.

Lemma 3. Let (W+,W, Y ) be random variables with joint
distribution induced by b ∈ B and ξ ∈ PW as such

P(W+ = w+, Y = y,W = w) = PX(y+w−w+)b(y|w)ξ(w),

and let v◦ : PW → R be given by v◦(ξ) = H(ξ). Then

[B̃bv
◦](ξ) = I(W ;Y ) +H(W+ | Y ).

Lemma 4. J∗ defined in Theorem 3 and v◦ defined in
Lemma 3 satisfy the average cost optimality inequality (14).
Therefore, J∗ is a lower bound on the optimal leakage rate.

Proof. For any action b ∈ B and ξ ∈ PW , let (W+, X+, S+,
Y,W ) be random variables with joint distribution given by

P(W+ = w+, X+ = x+, S+ = s+,W = w, Y = y)

= 1w+ {s+ − x+}PX(x+)1s+ {y + w} b(y|w)ξ(w).

Consider the following of inequalities. For any ξ ∈ PW , b ∈ B,

[B̃bv
◦](ξ)− v◦(ξ) (a)

= −H(W |Y ) +H(W+|Y )
(b)
= −H(S+|Y ) +H(S+ −X+|Y )
(c)
≥ min
θ̂+∈PS

−H(Ŝ+) +H(Ŝ+ −X+) = J∗

where (a) follows from Lemma 3 and the fact that I(W ;Y ) =
H(W )−H(W | Y ); (b) follows because S+ = Y +W and,
therefore, H(S+|Y ) = H(W |Y ); (c) follows from H(A|B) ≥
minPÂ∈PA

H(Â) for any joint distribution on (A,B).

Step 2: Achievability - A strategy that achieves the lower bound

In this section we show that b∗ achieves the lower bound J∗.
We first identify some properties of b∗.

Lemma 5. For b∗ and ξ∗ defined in Theorem 3:
1) b∗ ∈ B and b∗(y|w) > 0, ∀y ∈ X ∩ Y◦(w), w ∈ W .
2) For any y ∈ X , ϕ̃(ξ∗, y, b∗) = ξ∗.
3) I(b∗; ξ∗) = J∗.

Note that an immediate implication of Lemma 5 is that if
we start at Ξ1 = ξ∗ and use the constant action b∗, then, for
all t, Ξt = ξ∗ and I(b∗,Ξt) = J∗.

Lemma 6. Consider the time-homogeneous charging strategy
f◦,∞ = (f◦, f◦, . . . ) where f◦(ξ) = b∗ for all ξ ∈ PW .
Then, under f◦,∞, for any initial state ξ1, the process {Ξt}t≥1
converges weakly to ξ∗. Therefore, for any continuous function
c : PW → R and initial belief state ξ1, we have that

lim
T→∞

1

T

T∑
t=1

E[c(Ξt)|Ξ1 = ξ1] = c(ξ∗).
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Fig. 2: Information leakage rate under the optimal strategy q∗

and a benchmark strategy qeq (given by (15)). The correspond-
ing leakage rates are denoted by J∗ and Jeq . It is assumed that
X = Y = {0, . . . ,mx} and S = {0, . . . ,ms} and that Xt is
distributed according to binom(mx, 0.5). We plot J∗ and Jeq
versus ms for values of mx ∈ {5, 10, 20}.

Proof. This result relies on a result on convergence of partially
observed Markov processes due to Kaijser [15].

Now we return to the proof of Theorem 3.

Proof of Theorem 3. By Lemma 6, b∗ is an admissible action
and by Lemma 7, f∗,∞ achieves J∗, which was shown in
Lemma 4 to be a lower bound on optimal leakage rate.
Therefore, J∗ is equal to the optimal leakage rate and q∗ =
(q∗, q∗, . . .) where q∗(y|x, s) = b∗(y|s− x).

C. An example: binomially distributed energy demand

Suppose there are mx devices that have a probability p of
being on or off. Then, X = {0, . . . ,mx} and the demand Xt

at any time is binomial(p,mx). We assume that Y = X . For a
specific value of S, the optimal charging strategy q∗ is given
by Theorem 3. In Fig. 2, we plot the information leakage rate
under the optimal optimal strategy as a function of battery size
for different values of mx.

We also compare the performance of q∗ with a benchmark
strategy qeq ∈ QB , which is defined as follows: at each t, for
any y ∈ Y , w ∈ W ,

qeq,t(y|w) =
1Y◦(w){y}
|Y◦(w)| (15)

The information leakage rate under strategy qeq as a function
of battery size is also shown in Fig. 2. Note that for small
battery sizes, qeq is close to optimal but it performs poorly
compared to the optimal strategy for large battery sizes.

V. CONCLUSION

In this paper, we study a privacy-aware smart metering
system that uses a rechargeable battery to minimize the

information about the user’s demand that is leaked to an
eavesdropper that observes the energy consumed from the
grid. We first identify a structural property of the optimal
strategy that allows us to write the mutual information cost
in an additive manner. We then identify a Markov decision
process that is equivalent to the original system. The optimal
charging strategy and the minimum leakage rate are given by
the solution of an appropriate dynamic program. For the case
of i.i.d. demand, we identify a charging strategy that satisfies
the dynamic program.

In this paper, we did not consider the impact of obfuscat-
ing information on the utility provider. An important future
direction is to consider a model with a cost function at the
utility provider and consider the problem of jointly minimizing
the cost and information leakage. Note that the results of
Theorems 1 and 2 naturally extend to this setup. Extending
the result of Theorem 3 will depend on the specific form of
the cost function.
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