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Abstract—Erasure correcting codes are widely used in upper
layers of packet-switched networks, where the packet erasures
often exhibt bursty patterns. The conventional wisdom to deal
with bursty erasures is to apply block interleaving to break down
the bursty patterns prior to error correcting coding, or use long-
block Reed-Solomon codes. We show that they unnecessarily lead
to sub-optimal decoding delay. In this work, with the problem
model of multiple erasure bursts present in a coding block, we
study the fundamental tradeoff among the rate, decoding delay
and burst correction performance of erasure correcting codes.
Focusing on a class of codes achieving the Singleton bound, we
show that the lowest delay to recover any individual symbol not
only depends on how many bursts are present in a coding block,
but also on whether the source symbols are encoded causally
or non-causally. We also describe a few practical linear code
constructions that achieve the performance limit discussed.

I. INTRODUCTION

Erasure correcting codes are widely used in upper layers
of packet-switched networks for many delay-sensitive appli-
cations, such as Internet Protocol Television (IPTV), Voice
over IP (VoIP), video conferencing and distance learning.

In many scenarios, packet erasures often exhibt bursty
patterns. In IPTV systems, one main source of error is the
impulse noise over digital subscriber lines (DSL) [1], which
typically lasts up to dozens of milliseconds. In wireless
communications, a prominent feature of wireless media is
time-varying multipath fading, often causing channel transition
between good and bad channel state [2]. In packet-switched
networks, when a router is overwhelmed by traffic, it tends to
drop packets in bursts.

Erasure correcting coding inevitably introduces decoding
delay. By intuition, the characteristics of erasure patterns
should affect the amount of decoding delay needed to recover
all the erasures. For example, Figure 1 shows three channel
realizations with the same number of erasures but different
erasure patterns. In (a), as the erasures are spread apart in
time, we can apply a (3, 2) Reed-Solomon code to encode
every 2 source packets into 3 channel packets, resulting in a
decoding delay of 2 packets. In (b), the erasures are lumped
in bursts. One way is to apply interleaving to spread out the
erasures, then treat the resulting pattern the same way as for
(a). However, intuitively, there is some structure in the lumped

(a)

(b)

(c)

Fig. 1. Channels with the same number of erasures but different erasure
patterns. A similar discussion of these erasure patterns appeared in Chapter
1 of [3], but the focus was on a single erasure burst and i.i.d. erasures. In
this work, we consider the problem model of multiple erasure bursts within
a block.

bursts that one can exploit, and interleaving would simply
destroy them. Another way is to apply a long (12, 8) Reed-
Solomon code and recover all the erasures at the end of the
block, resulting in a delay of 11 packets. But there is another
way: as we will show in this work, for (b) it is possible to
construct a (12, 8) burst erasure code that exploit the erasure
burstiness, such that each packet is guaranteed to be decoded
with a delay of 8 packets. In (c), erasures that are both speaded
apart and lumped together are present. When the code needs to
deal with erasures of random patterns, one should not expect
to do better than applying a (12, 8) Reed-Solomon code with
a decoding delay of 11 packets.

In this work, we consider a problem model where Z number
of erasure bursts, each of length B, present in a coding block.
This model encompasses the single burst case (Z = 1) and
the random pattern case (B = 1) as special cases. Based on
this model, we study the fundamental tradeoff among the rate,
decoding delay and burst correction performance of erasure
correcting codes. Focusing on a class of codes achieving the
Singleton bound, our main finding is that the lowest delay to
recover any individual symbol not only depends on how many
bursts are present in a coding block, but also on whether the
source symbols are encoded causally or non-causally.

To develop this result, we first discusses related work in
Section II and formulate the problem in Section III. In Section
IV, we state a theorem that characterizes the rate-delay-burst
tradeoff of Singleton-achieving non-causal codes. In Section
V, we show the surprising result that for a subclass of the
causal codes, the performance bound can be tightened further.



We also show a converse result for the systematic codes,
which can be regarded as the block code counterpart of the
periodic erasure channel argument for the streaming codes [4].
In Section VI, we briefly discuss the case when the codes are
non-Singleton-achieving.

II. RELATED WORK

Our study is inspired by [4], [5], [3], where Martinian et al.
studied systematic delay-optimal streaming codes for a single
erasure burst. They first design a family of block codes, then
use diagonal interleaving [5] to convert the block codes into
streaming codes.

For a systematic block code that correct one B-burst with
delay T , it is sufficient to use a (T, T −B) cyclic code over
finite field Q, of generator matrix

G =
(
IT−B P(T−B)×B

)
(1)

where IM ∈ QM×M denotes identity matrix of dimension
M × M and P(T−B)×B is the parity sub-matrix. Martinian
et al. propose a construction of systematic (T + B, T ) block
code with the same delay and burst correction performance,
but of better rate, having generator matrix:

G =

(
IT

IB
P(T−B)×B

)
(2)

where P(T−B)×B is the same as in (1). An intuition behind
this construction is that since it does not correct wrap-around
bursts, the rate can be improved. A converse result based on a
periodic erasure channel argument shows that the constructed
streaming code achieves the rate-delay-burst bound [4]:

T ≥ max

(
R

1−R
, 1

)
· B. (3)

Delay-optimal erasure codes for broadcast channel is studied
by Khisti et al. in [6].

This work differs from [4], [5], [3], [6] as follows. i) Block
codes are considered instead of streaming codes. The con-
version from block codes to streaming codes can be achieved
trivially [5]. ii) A broader class of causal/non-causal codes are
considered instead of systematic codes. iii) A more general
class of bursty erasure patterns consisting of multiple bursts
within each coding block are considered instead of a single
burst.

III. PROBLEM SETUP

Throughout the paper, random variables are denoted by
sans-serif letters (e.g., s, x, y). The entropy of random variable
x is denoted by H(x), and the conditional entropy of x given y
is denoted by H(x | y). A random variable vector (x[a] ... x[b])
is sometimes denoted by x[a, ..., b].

Consider a sequence of packets transmitted over a commu-
nication channel, where each packet is modeled as a channel
symbol x[i] ∈ Q over a finite field Q injected at some time i.
The channel symbol can either be erased (denoted by symbol
�) or passed to the receiver intact. For a block of N channel
symbols, denote by B ⊆ {1, ..., N} an erasure pattern, i.e.,

the set of time indices when erasures occur. At the receiver,
the received channel symbols are

y[i] =

{
�, i ∈ B
x[i], otherwise,

i = 1, ..., N.

An erasure pattern collection is a set of erasure patterns
{B} ⊆ 2{1,...,N}. For example, let a B-burst be B consecutive
symbol erasures. The set of all patterns consisting of Z number
of B-bursts is an erasure pattern collection.

A block code C = (E,D) for an erasure channel consists
of an encoding function E and a decoding function D. The
operation of the code is described as follows.

Encoding. The encoding function E : QK �→ QN takes in
K source symbols S := (s[1] ... s[K]) ∈ QK and maps them
into N channel symbols X := (x[1] ... x[N ]) ∈ QN . The rate
of the code is

R =
K

N
. (4)

E can be written as E = {Ei}Ni=1, where Ei is the encoding
function for channel symbol x[i]. Two special cases are:

• The code is causal, if in the encoding function the current
channel symbol is a function of the current and previous
source symbols, i.e., x[i] = Ei (s[1, ..., i]), i = 1, ..., N .
Causal codes are a special case of the more general class
of non-causal codes.

• The code is systematic (which is a special case of causal
codes), if in the encoding function the first K channel
symbols is a replica of the K source symbols, i.e., x[i] =
s[i], i = 1, ..., N .

If the code is linear, the encoding function can be represented
in matrix multiplication as

X = E(S) = S ·G

where S ∈ Q1×K , X ∈ Q1×N and G ∈ QK×N is the generator
matrix. For systematic code, G = [I P ] , where I ∈ QK×K

is an identity matrix and P ∈ QK×(N−K) is a parity check
matrix. For causal code, G = [U P ], where U ∈ QK×K is an
upper-trianglar matrix.

Decoding. The decoding function D : {Q, �}N �→ QK

takes in the received channel symbols Y := (y[1] ... y[N ]) ∈
{Q, �}N and maps them to the reconstructed source symbol
Ŝ := (̂s[1] ... ŝ[K]) ∈ QK . D can be written as D = {Di}Ki=1,
where Di is the decoding function for ŝ[i]. If Ŝ = S for
every B ∈ {B}, we say code C is feasible for the erasure
pattern collection {B}. Furthermore, if the decoding of each
source symbol is subject to a decoding delay T , i.e., ŝ[i] =
Di (y[1, ..., i+ T ]), i = 1, ...,K , we say the code is delay-T .

In this work, we focus on a class of code that achieves
the Singleton bound. The canonical Singleton bound is a
simple converse result that governs the performance of any
error correction codes. It states that for a code C with
encoding function E : QK �→ QN and minimum distance
d, N ≥ K+d−1. For an erasure code correcting Z B-bursts,



we must have the minimum distance larger than the number
of erasures, therefore,

N ≥ K + ZB. (5)

If N = K+ZB, we refer to the code as Singleton-achieving.

IV. NON-CAUSAL CODES

In this section, we state a theorem that characterizes the rate-
delay-burst tradeoff of Singleton-achieving non-causal codes.
The main theorem is stated as follows.

Theorem 1. It is possible to construct a delay-T rate-R
Singleton-achieving non-causal block erasure code feasible for
any erasure patterns of Z B-bursts, if

T ≥ T ∗ := max

(
Z

1−R
− 1 , Z

)
· B. (6)

Conversely, if T < T ∗, no feasible code can be constructed.

Proof: The achievability of the code is proven by con-
struction in Section IV-A . The converse part is proven in
Section IV-B.

A. Theorem 1: Achievability

The main idea of this code construction is to group the
source and channel symbols into independently decodable sub-
blocks, and interleave the inter-sub-block symbols to keep
the intra-sub-block symbols well separated, such that a B-
burst can only corrupt at most one symbol in each sub-block.
Furthermore, the positions of the symbols in each sub-block
need to be carefully selected in order to meet a per-sub-block
decoding deadline.

Proposition 2. The encoding matrix G of a rate-R delay-T ∗

(as in (6) of Theorem 1) non-causal block erasure code feasible
for any erasure patterns of Z B-bursts can be constructed as
follows.

• Compute T ∗according to (6). Determine the matrix di-
mension K×N as K = T ∗−ZB+B and N = T ∗+B.

• Assign the K source symbols into B sub-blocks evenly.
Denoted by λ the remainder of K divided by B. The first
B − λ sub-blocks each have

⌊
K
B

⌋
source symbols; the

remaining λ each have
⌊
K
B

⌋
+1 source symbols. Let the

number of source and channel symbols in sub-block i be
Ki and Ni, respectively, with Ni = Ki+Z , i = 1, ..., B.

• For sub-block i, i = 1, ..., B, create an (Ni,Ki) max-
imum distance separable (MDS) code generator matrix
Gi = (gi(1) ... gi(Ni)), where gi(j) ∈ QKi×1 is the j-th
column of matrix Gi.

• Fill in the matrix G as follows. Initialize G as a K ×N
all-zero matrix. Each sub-block i corresponds to K i rows
of G, i = 1, ..., B, from top to bottom. For sub-block
i = 1, ..., B − λ, put gi(1), gi(2),...,gi(Ni) at column
i+ λ, i+ λ+B,...,i+ λ+ (Ni − 1)B, respectively. For
sub-block i = B−λ+1, ..., B, put gi(1), gi(2),...,gi(Ni)
at column i+λ−B, i+λ,...,i+λ+(Ni−2)B, respectively.

Example. For R = 4/13, B = 3, Z = 3, we compute T ∗ =
10, K = 4, N = 13. The constructed generator matrix over
GF(3) is

⎛⎜⎜⎝
0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 2 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 2

⎞⎟⎟⎠ (7)

The decoding is straightforward. One simply need to decode
each sub-block MDS code independently. Since for each sub-
block, Z B-burst can only corrupt at most Z symbols, each
sub-block can always be decoded successfully.

We can verify that this code meets T = T ∗. If R ≥ 1
Z+1 , the

required decoding delay simplifies to T = N − B. Thus, the
first B−1 source symbols are urgent symbols with a deadline
N − B + i, i = 1, ..., B − 1; the rest soruce symbols are
non-urgent and can be decoded at the end of the block. In the
proposed construction, each sub-block i is arranged in a way
that its last column gi(Ni) is always put at the (N−B+ i)-th
column of G. This ensures that each sub-block i has at least
one source symbol decoded with delay N − B. If R < 1

Z+1 ,
to meet the required decoding delay, it is sufficient to use a
(ZB +B,B) code.

In the special case that T
B is an integer, the constructed

generator matrix degenerates to a form of G = G1 ⊗ IB ,
where G1 is the MDS code generator matrix for a single sub-
block, IB is an B×B identity matrix and ⊗ denotes Kronecker
product. This corresponds to interleaving by length B followed
by encoding with generator matrix G1.

B. Theorem 1: The Converse

In this section, we show the converse result that if T < T ∗,
no feasible code can be constructed. The key to prove this is
to identify a set of conditions (i.e., erasure patterns) and use
an entropy argument to show that the code cannot possibly
meet them all at the same time. We first introduce a useful
entropy lemma:

Lemma 3. Let X = (x1, ..., xn), and XΩ\i =
(x1, ...xi−1, xi+1, ..., xn). If H(s) > 0 and

H(s |XΩ\i) = 0, i = 1, ..., n, (8)

then

H(X) <
n∑

i=1

H(xi).

Proof: See Appendix A.
Consider that the source symbol block s[1], ..., s[K] is

encoded into the channel symbol block x[1], ..., x[N ], where
N = K+ZB. Let x[1, ...,K] be divided into non-overlapping
segments of length B except for the last segment, i.e., let
the index sets be I1 := {1, ..., B}, I2 := {B + 1, ..., 2B},
..., I�K/B� := {(⌈K

B

⌉ − 1)B + 1, ...,K}, then x[1, ...,K] =
(x[I1], ..., x[I�K/B�]).



TABLE I
ERASURE PATTERNS CONSIDERED IN THE PROOF OF THE CONVERSE PART
OF THEOREM 1. IN THIS EXAMPLE, N = 11, K = 5, B = 2 AND Z = 3.

Time 1 2 3 4 5 6 7 8 9 10 11

B1 � � � � � �
B2 � � � � � �
B3 � � � � �
B0 � � � � � �

Since the coding scheme must work on source of any
distribution, we can arbitrarily assume that the source sym-
bols s[i], i = 1, ...,K are i.i.d. ~ uniform over Q. Thus
H(s[i]) = H(s) := logQ, i = 1, ...,K , and

H(s[1], ..., s[K]) = K ·H(s). (9)

Furthermore, since each x[i] is over Q, we have

H(x[i]) ≤ H(s), i = 1, ..., N. (10)

We would like to show

T ≥ K + (Z − 1)B. (11)

Assume the opposite is true, for example, T = K+(Z−1)B−
1. Then s[1] is recoverd at time K + (Z − 1)B. Consider a
set of erasure patterns (refer to Table I for an example):

Bi = Ii
⋃

{K + 1, ...,K + (Z − 1)B}, i = 1, ...,

⌈
K

B

⌉
.

That s[1] is recoverd at time K + (Z − 1)B implies

H(s[1] | x[1, ...,K] \ x[Ii]) = 0, i = 1, ...,

⌈
K

B

⌉
.

Applying Lemma 3 with s = s[1] and xi = x[Ii], i =
1, ...,

⌈
K
B

⌉
, we have

H(x[1, ...,K]) <

�K/B�∑
i=1

H(x[Ii])

≤
K∑
i=1

H(x[i]) ≤ K ·H(s). (12)

Now, consider the erasure pattern B0 = {K +1, ..., N} (refer
to Table I for an example). The feasibility of the code implies
that s[1], ..., s[K] must be recovered from the remaining sym-
bols x[1], ..., x[K]. This implies H(s[1, ...,K] | x[1, ...,K]) =
0. But

0 = H(s[1, ...,K] | x[1, ...,K])

= H(s[1, ...,K])−H(x[1, ...,K]) (13)

> K ·H(s)−K ·H(s) = 0 (14)

where in (13) we use the fact that x[1, ...,K] is a function of
s[1, ...,K], implying H(x[1, ...,K] | s[1, ...,K]) = 0. (14) fol-
lows (9) and (12). The above equations lead to contradiction;
thus, the assumption is false and (11) is true.

Next, consider next the erasure pattern B1 = {1, ..., ZB}.
Clearly, The earliest time to decode s[1] is at ZB + 1. We
have

T ≥ ZB. (15)

Combining (4), (5), (11) and (15), we conclude (6).

V. CAUSAL CODES

In this section, we discuss the rate-delay-burst performance
limit of Singleton-achieving causal codes.

First of all, since the causal codes are a special class of non-
causal codes, Theorem 1 applies for causal codes as well. For
the single burst case Z = 1, (6) degenerates to (3). In this case,
the code construction (2) achieves the performance limit. It is
tempting to think that one can generalize the construction (2)
to the Z ≥ 2 case and find codes that meet (6). The surprising
result we find is that no such code can be constructed in
general. As we show in the following proposition, when Z ≥ 2
and K = B+1, the best code constructable has decoding delay
of one more symbol than (6).

Proposition 4. It is possible to construct a delay-T Singleton-
achieving causal block erasure code with the number of source
symbols K = B + 1 and rate R = B+1

ZB+B+1 , feasible for any
erasure patterns of Z ≥ 2 B-bursts, if

T ≥ T ∗∗ :=

(
Z

1−R
− 1

)
B + 1. (16)

Conversely, if T < T ∗∗, no feasible code can be constructed.

Proof: The achievability of the code is proven by con-
struction in Section V-A . The converse part is proven in
Section V-B.

In Section V-C, we also show a converse result that bounds
the rate-burst-delay performance of any systematic codes (ei-
ther Singleton-achieving or not).

A. Proposition 4: Achievability

The key idea of the construction to achieve T = T ∗∗ is the
following. A naive way of extending (2) to a multiple-burst
code is to simply repeat the parity part of (2) Z times after
the systematic part. One can easily verify that this approach
fails under the erasure pattern of the first ZB channel symbols
being corrupted. However, a remedy is to delay the recovery by
one symbol to “save enough space” to remove the non-urgent
source symbols before recovering the urgent source symbols.

Proposition 5. The encoding matrix G of a delay-T ∗∗ (as
in (16) of Proposition 4) Singleton-achieving causal block
erasure code with the number of source symbols K = B + 1
and rate R = B+1

ZB+B+1 , feasible for any erasure patterns of
Z ≥ 2 B-bursts, can be constructed as⎛⎝ IB+1

IB
P1×B

...
IB

P1×B︸ ︷︷ ︸
Z−1 times

0B×1 IB−1

W2×B

⎞⎠ ,

where P1×B is the parity matrix of a (B + 1, 1) systematic
MDS code (e.g., a repitition code) and W2×B is the parity
matrix of a (B + 2, 2) systematic MDS code. Furthermore,(

1
P1×B[B]

W2×B [1]

)
(17)



must be full-rank, where A[i] denotes the i-th column of matrix
A.

Example. For R = 5/13, B = 4, Z = 2, the constructed
generator matrix over GF(22) is⎛⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 2 1 2
0 0 0 0 1 1 1 1 1 2 1 3 3

⎞⎟⎟⎟⎟⎠ . (18)

We can verify that this code meets T = T ∗∗. The required
decoding delay can be written as T = N −B + 1, and there
are B − 2 urgent symbols that need to be recovered by the
end of the block. If one of the bursts completely corrupts the
last B symbols, then the remaining symbols can be recovered
in a similar way as the decoding of (2) (see [5]). If the last
B symbols are intact but the first ZB symbols are erased,
the urgent symbols can be recovered in the following steps.
First, for column ZB+1 and ZB+2, decode the non-urgent
symbols by inverting (18). Second, remove the non-urgent
symbols from column ZB + 3, ..., N to recover the urgent
symbols. One can also verify that if the last B symbols are
corrupted partially, the urgent symbols can be recovered on
time as well.

B. Proposition 4: The Converse

In this section, we show the converse result that if T < T ∗∗,
no feasible code can be constructed.

Consider that the source symbol block s[1], ..., s[K] is
encoded into the channel symbol block x[1], ..., x[N ], where
N = K + ZB and K = B + 1.

Similar to Section IV-B, since the coding scheme must work
on source of any distribution, we can arbitrarily assume that
the source symbols s[i], i = 1, ...,K are i.i.d. ~ uniform over
Q, thus H(s[i]) = H(s) := logQ, i = 1, ...,K . Based on this
assumption, we establish a set of necessary conditions that the
code must meet: The feasibility of the code implies that for
any erasure pattern B ∈ {B : B consists of ZB-bursts},

H(s[1], ..., s[K] | x[{1, ..., N} \ B]) = 0. (19)

From (19) and the Singleton-achieving constraint, it is clear
that for any i 	= j, i, j ∈ {1, ..., N} \ B, B ∈ {B :
B consists of ZB-bursts}:

x[i] and x[j] are statistically independent. (20)

Furthermore, by (19) and the Singleton-achieving constraint,

H(x[i]) = H(s), i = 1, ..., N. (21)

From (21), if H(x[i] | s[j]) = 0 for some i, j, then

H(s[j] | x[i]) = H(x[i] | s[j]) +H(s[j])−H(x[i])

= 0 +H(s)−H(s) = 0. (22)

The Singleton-achieving and causality constraints together
imply:

H(x[1] | s[1]) = 0. (23)

TABLE II
ERASURE PATTERNS CONSIDERED IN THE PROOF OF THEOREM ??. IN

THIS EXAMPLE, N = 13, K = 4, B = 3 AND Z = 3.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13

B1 � � � � � � � � �
B2 � � � � � � � � �
B3 � � � � � � � � �
B0 � � � � � � � � �

H(s[1] | x[ZB + 1], x[ZB + 2]) = 0, (26)

H(s[1] | x[ZB + 2], x[ZB −B + 1]) = 0, (27)

H(s[1] | x[ZB −B + 1], x[ZB −B + 2]) = 0. (28)

H(x[ZB + 2] | s[1], x[ZB + 1]) = 0, (29)

H(x[ZB −B + 1] | s[1], x[ZB + 2]) = 0, (30)

H(x[ZB −B + 2] | s[1], x[ZB −B + 1]) = 0. (31)

By (22), we must have H(s[1] | x[1]) = 0. This implies that
s[1] and x[1] must be one-one.

We would like to show that

T ≥ K + ZB −B + 1. (24)

Assume the opposite is true, for example, let

T = K + ZB −B. (25)

Then s[1] must be recoverd at time T + 1. We will show
that this leads to contradiction. The intuition behind the
proof-by-contradiction is as follows. There are three types
of requirements that the code must meet: i) feasibility, i.e.,
(19), ii) decoding delay constraint T (for this proof, only
the delay constraint of s[1] is necessary) and iii) causality,
i.e., (23). The causality suggests that s[1] and x[1] are one-
one, thus s[2], ..., s[K] can only be conveyed by x[2], ..., x[N ].
Some symbols from x[2], ..., x[T + 1] are also used for early
recovery of s[1]. It turns out that too many channel symbols
are consumed by s[1], and not enough are left for s[2], ..., s[K].
The formal argument is as follows.

Step 1: decoding delay constraint. Let J i := {ZB − B +
i, ..., ZB − 1 + i}, i = 1, 2, 3. Consider a set of 3 erasure
patterns (refer to Table II for an example):

Bi = {1, ..., ZB −B}
⋃

Ji, i = 1, 2, 3.

The fact that s[1] must be recovered by T + 1 suggests that
H(s[1] | x[{ZB − B + 1, ..., T + 1} \ Ji]) = 0, i = 1, 2, 3.
Write this out, we have (26) ~ (28).

Now we show (26) implies (29). First, by (20), if we let
B0 = {2, ..., ZB−B+1}⋃{N −B+1, N}, we can deduce
that {x[1], x[ZB + 1]} are mutually independent. Since s[1]
and x[1] are one-one,

H(s[1] | x[ZB + 1]) = H(s[1]) = H(s). (32)



We have:

H(x[ZB + 2] | s[1], x[ZB + 1])

= H(x[ZB + 2] | x[ZB + 1])

−H(s[1] | x[ZB + 1]) (33)

≤ H(s)−H(s) = 0, (34)

where (33) follows (26); (34) follows (21) and (32). Thus,
we have proven that (26) implies (29). Following the same
procedure, we can prove (27) implies (30) and (28) implies
(31). (29)~(31) together imply:

H(x[ZB −B + 2] | s[1], x[ZB + 1]) = 0. (35)

Step 2: feasibility. Consider the erasure pattern B0 =
{2, ..., ZB − B + 1}⋃{N − B + 1, ..., N} (refer to Table
II for an example). Using the fact that the code is feasible, we
have:

0 = H(s[1, ..., B + 1] | x[1],
x[ZB −B + 2, ..., ZB + 1])

= H(s[2, ..., B + 1] | s[1],
x[ZB −B + 2, ..., ZB + 1]) (36)

where (36) follows that s[1] and x[1] are one-one.
Step 3: combining. From (35) and (36),

0 = H(s[2, ..., B + 1] | s[1], x[ZB −B + 2, ..., ZB + 1])

= H(s[2, ..., B + 1] | s[1], x[ZB −B + 2],

x[ZB −B + 3, ..., ZB], x[ZB + 1])

= H(s[2, ..., B + 1] | s[1],
x[ZB −B + 3, ..., ZB + 1]) (37)

where (37) follows the fact that by (35), x[ZB − B + 2] is
completely determined by s[1] and x[ZB+1]. In (37), as s[1]
is independent of s[2, ..., B+1], we must recover s[2, ..., B+1]
from x[ZB−B+3, ..., ZB+1]. But this is impossible, since
the number of channel symbols in x[ZB−B+3, ..., ZB+1]
is B − 1, which is not enough to recover B source symbols
in s[2, ..., B + 1]. Thus, the assumption (25) is untrue and we
have (24).

Finally, combining (4), (5) and (24), we conclude (16).

C. The Converse for Systematic Codes

In this section, we show a converse result that bounds the
rate-delay-burst tradeoff of any systematic codes. This result
can be regarded as a block-code counterpart of the periodic
erasure channel argument for the streaming codes [4].

Theorem 6. For a delay-T rate-R systematic block erasure
code feasible for any erasure patterns of Z B-bursts, (6)
applies.

Proof: Consider the channel symbol block x[1], ..., x[N ],
where x[i] = s[i], i = 1, ...,K . We would like to show (11).
Assume the opposite is true, for example, let T = K + (Z −

1)B−1. Then s[1] is recoverd at time K+(Z−1)B. Consider
the erasure pattern

B0 = {1, ..., B}
⋃

{K + 1, ...,K + (Z − 1)B}.
That s[1] is recovered at time K +(Z − 1)B suggests it must
be decoded from the remaining symbols s[B+1], ...s[K]. This
implies

H(s[1] | s[B + 1], ..., s[K]) = 0. (38)

But since the coding scheme must work on source of any
distribution, if we assume s[i], i = 1, ...,K are mutually
independent source symbols, (38) is false. Therefore, (11) must
be true.

Finally, similar to Theorem 1, we have (15). Combining (4),
(5), (11) and (15), we conclude (6).

Remark. Theorem 6 applies to both Singleton-achieving and
non-Singleton-achieving codes.

VI. BEYOND THE SINGLETON-ACHIEVING CODES

In Theorem 1 and Proposition 4, we have imposed the
constraint that the codes must be Singleton-achieving, i.e.,
N = K + ZB. In the proof of the converse for Theorem 1,
the Singleton-achieving constraint is necessary to lead a con-
tradiction among the erasure patterns B0 and B1,...,B�K/B�. In
the proof of the converse for Proposition 4, this constraint is
necessary to enforce independence among channel symbols in
(20), as well as to lead to a contradiction among the erasure
patterns.

The natural question to raise is, do the derived bounds still
hold if we remove this constraint by letting N > K + ZB?
In other words, let N = K + ZB + ΔN , ΔN > 0, can we
improve the rate-delay-burst tradeoff beyond (6) or (16)? In
fact, for Theorem 1 and non-causal codes, one can show that
when this constraint is removed, the delay can be reduced to
T < K + (Z − 1)B. Consider the example where K = 5,
Z = 1, B = 2 and N = 8, we can design a non-causal code
of delay T = 4 with the following generator matrix:⎛⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎠ .

However, one can verify that its rate-delay-burst tradeoff is not
improved beyond (6), since although the delay is reduced, its
rate is reduced as well, as we augment the block length. After
some attempts of constructing better codes, our general feel
is that it may not be justifiable to reduce the rate in order to
improve the rate-delay-burst tradeoff. This conjecture remains
an open question for future research.

VII. CONCLUSION

In this work, we have studied the decoding delay effect
of erasure correction codes when multiple erasure bursts are
present in a coding block. Through a set of converse results
and code constructions, our main finding is that the lowest



delay to recover any individual symbol not only depends on
how many bursts are present in a coding block, but also on
whether the source symbols are encoded causally or non-
causally.

As this work is on-going, many questions remain open.
First, a rate-delay-burst bound for the general Singleton-
achieving causal codes as well as code constructions that
achieves this bound are unknown. Second, it is still unknown
whether the rate-delay-burst bound can be improved if the
Singleton-achieving constraint is removed. Lastly, it will be
interesting to consider the decoding delay problem on other
types of channels.
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APPENDIX A: PROOF OF LEMMA 3

Proof: Consider

H (x1 | xn2 ) ≤ H (s, x1 | xn2 )
= H (s | xn2 ) +H (x1 | s, xn2 )
= H (x1 | s, xn2 ) (39)

≤ H (x1 | s, xn3 )
= H (s | x1, xn3 ) +H (x1 | xn3 )−H (s | xn3 )
= H (x1 | xn3 )−H (s | xn3 ) (40)

≤ H (x1)−H (s | xn3 ) (41)

where xji denotes (xi, ..., xj). In (39) and (40) we apply (8)
for i = 1 and i = 2, respectively. Apply (41), we have:

H(X) = H (x1 | xn2 ) +H (xn2 )

≤ H (x1)−H (s | xn3 ) +H (xn2 )

≤
n∑

i=1

H(xi)−H (s | xn3 ) .

If H (s | xn3 ) > 0, the conclusion follows; otherwise we have

H (s | xn3 ) = 0. (42)

Similarly, apply (42), together with (8) for i = 3 to upper
bound H

(
x21 | xn3

)
, we end up with

H
(
x21 | xn3

) ≤ H
(
x21
)−H (s | xn4 ) .

If H (s | xn4 ) > 0, the conclusion follows; otherwise we have
H (s | xn4 ) = 0. Repeat the same argument until we exhaust all
the cases.
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