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Abstract—The problem of secure broadcasting with indepen-
dent secret keys is studied. The particular scenario is analyzed
where a common message has to be broadcasted to two legitimate
receivers, while keeping an external eavesdropper ignorant of it.
The transmitter shares independent secret keys of arbitrary rates
with both legitimate receivers, which can be used in different
ways: They can be used as one-time pads to encrypt the common
message or they can be used as randomization resources for
wiretap coding. Both approaches are studied in this paper. If both
legitimate channels are degraded versions of the eavesdropper
channel, it is shown that the one-time pad approach is optimal
for several cases yielding corresponding capacity expressions.
Reversely, the wiretap coding approach is shown to be optimal
if the eavesdropper channel is degraded with respect to both
legitimate channels establishing capacity in this case as well.

I. INTRODUCTION

Rapid developments in communication systems make in-
formation easily accessible almost everywhere. Accordingly,
an appropriate design which ensures the security of sensitive
information is of high priority. Shannon was the first who
studied in [1] the problem of secure communication from an
information theoretic perspective. He considered a noiseless
communication scenario, where transmitter and receiver share
a secret key which is unknown to the non-legitimate eaves-
dropper. Used as a one-time pad, this secret key enables a
secure transmission of the confidential message.

Subsequently, Wyner looked at the noisy case in [2], where
he introduced the now-popular wiretap channel. He extended
the problem studied by Shannon insofar that legitimate re-
ceiver and eavesdropper now observe noisy versions of the
input. In addition, there is no secret key available as in [1] so
that the communication must be secured solely by exploiting
the properties of the noisy channel. Recently, this area of infor-
mation theoretic secrecy has drawn attention especially in the
area of wireless communication where it provides a promising
complement to cryptographic approaches, cf. for example [3],
[4], [5], [6] and references therein. These concepts have been
extended to several multi-user scenarios such as the broadcast
channel [7], [8], [9], [10], multiple access channel [11], [12],
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or interference channel [13]. All these works have in common
that no secret key is available to the legitimate users.

These two approaches were combined in [14], [15], [16],
which study the (noisy) wiretap channel with shared secret
key. This was done from rate-distortion point of view in [14],
[15], while [16] established the secrecy capacity for the case
of no distortion allowed at the legitimate receiver. Related to
this problem is the wiretap channel with secured feedback as
this feedback can be used to create a shared secret key [17],
[18], [19].

Surprisingly, to the best of our knowledge the use of secret
keys in noisy multi-user communication scenarios has not been
studied so far. Accordingly, the question of secure commu-
nication in broadcast channels (BC) with independent secret
keys determines an interesting extension in this direction. A
secret key shared between the transmitter and one receiver can
be used to securely transmit to that receiver, but might harm
other receivers which do not share this key. Thus, multiple
shared keys can result in conflicting payoffs at different
receivers making it a challenging and non-trivial problem. In
this paper, we study the problem of securely broadcasting a
common message to two legitimate receivers, while keeping an
eavesdropper ignorant of it. The transmitter shares independent
secret keys of arbitrary rates with both receivers, which is
introduced in Section II.

Secure communication can now be realized by different
approaches. As shared secret keys are available at transmitter
and both receivers, it suggests itself to use them as one-time
pads to encrypt the common message as in [1]. However, each
receiver is aware of only one secret key. Thus, the more one
secret key of one receiver is used to secure the message, the
more the other receiver is hurt as the unknown secret key acts
as interference to him. As the general case is challenging,
we study this approach for the case where the eavesdropper
channel is the “strongest” among all channels (in the sense
that both legitimate channels are degraded versions of it). In
Section III we determine the corresponding secrecy capacity.
It is shown to be optimal to use both secret keys to create two
encrypted messages and to encode and transmit them using
superposition coding.

On the other hand, the properties of the noisy channels
can be exploited by applying information theoretic secrecy
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Fig. 1. Broadcast channel where the transmitter shares an independent secret
key with each legitimate receiver.

concepts of wiretap coding [3], [4], [5], [6]. This approach is
based on the idea of allocating some of the available resources
for additional randomization to “confuse” the eavesdropper.
The drawback is that this reduces the remaining resources
available for the actual transmission of the message. We study
this approach for the case where the eavesdropper channel
is the “weakest” among all channels (in the sense that it is
degraded with respect to both legitimate channels). In Section
IV we establish the corresponding secrecy capacity and it is
shown that using the available secret keys not as one-time pads
but as the randomization part of the wiretap code is optimal.1

II. BC WITH INDEPENDENT SECRET KEYS

In this paper we study the broadcast channel (BC) with
independent secret keys as depicted in Fig. 1. Let X , Y1, Y2,
and Z be finite input and output sets. For input and output
sequences xn ∈ Xn, yn1 ∈ Yn1 , yn2 ∈ Yn2 , and zn ∈ Zn
of length n, the discrete memoryless broadcast channel is
given by the transition probability PnY1Y2Z|X(yn1 , y

n
2 , z

n|xn) :

=
∏n
i=1 PY1Y2Z|X(y1,i, y2,i, zi|xi).

The transmitter broadcasts a common message M to re-
ceivers 1 and 2, while keeping the eavesdropper ignorant of
it. The transmitter shares independent secret keys K1 and K2

of arbitrary rates with receivers 1 and 2. The message and
both keys are assumed to be independent of each other and
uniformly distributed over the sets M := {1, ...,Mn} and
Ki := {1, ...,Ki,n}, i = 1, 2. We also write K12 = (K1,K2)
and K12 = K1 ×K2 for short.

Definition 1. An (n,Mn,K1,n,K2,n)-code for the BC with
independent secret keys consists of a (stochastic) encoder

E :M×K1 ×K2 → P(Xn) (1)

and decoders at receivers 1 and 2

ϕ1 : Yn1 ×K1 →M (2a)
ϕ2 : Yn2 ×K2 →M. (2b)

1Notation: H(·) and I(·; ·) are the traditional entropy and mutual infor-
mation; P(·) is the set of all probability distributions; X − Y − Z denotes
a Markov chain of random variables X , Y , and Z in this order; ⊗ is the
bit-wise XOR operation.

Then the average probability of decoding error at receiver i,
i = 1, 2, is given by

ēi,n =
1

|M||K12|
∑
m∈M

∑
k12∈K12

∑
xn∈Xn

×
∑

yni :ϕi(yni ,ki) 6=m

PnYi|X(yni |xn)E(xn|m, k12).
(3)

To ensure the confidentiality of the common message, we
require

I(M ;Zn) ≤ δn (4)

for δn > 0 with M the random variable uniformly distributed
over the set of messages M and Zn = (Z1, ..., Zn) the
channel output at the eavesdropper. This condition is termed
strong secrecy [20], [21] and the motivation is to control the
total amount of information leaked to the eavesdropper.

Definition 2. A rate R > 0 is an achievable secrecy rate for
the BC with independent secret keys if for any τ > 0 there
exists an n(τ) ∈ N and a sequence of (n,Mn,K1,n,K2,n)-
codes such that for all n ≥ n(τ) we have 1

n logMn ≥ R− τ
and I(M ;Zn) ≤ δn while ē1,n, ē2,n, δn → 0 as n→∞. The
secrecy capacity C is given by the supremum of all achievable
secrecy rates R.

From the problem setup, in principle there are different
methods possible to keep the common message secret. The
shared secret keys suggest itself to use a one-time pad ap-
proach which protects the message with the help of the secret
keys [1]. On the other hand, the transmitter can exploit the
nature of the wireless channel by using a channel code based
on the idea of information theoretic secrecy or wiretap coding
[2], [7], [3], [4], [5], [6]. In the following we will explore these
different approaches and show that it depends on the channel
conditions which particular approach is optimal.

III. SECRET KEYS AS ONE-TIME PAD

The obvious approach to secure the message is to use the
available secret keys for encryption. Such a one-time pad
approach will keep the message perfectly secret from the
eavesdropper. To do so, we need secret keys of the same rate
as the common message, i.e., |K1| = |K2| = |M|, cf. [1].
Then we create encrypted messages based on a bit-wise XOR
operation as

M1 = M ⊗K1 and M2 = M ⊗K2 (5)

which are then encoded and transmitted to the corresponding
receivers. Having decoded the XOR-ed messages M1 and M2,
each receiver can then use its own secret key to obtain the
desired original message M , i.e., M1 ⊗ K1 = M1 ⊗ K1 ⊗
K1 = M and M2 ⊗K2 = M2 ⊗K2 ⊗K2 = M respectively.
Since the message M and both keys K1 and K2 are uniformly
distributed and independent of each other, M is kept perfectly
secret from the eavesdropper, i.e., I(M ;Zn) = 0, even if it is
able to decode the XOR-ed messages M1 or M2.

Using the secret keys in this way, basically, turns the
problem of securely broadcasting a common message into the



problem of broadcasting two independent individual messages.
Note that this approach solely relies on using the available
secret keys as one-time pads. As it does not exploit the prop-
erties of the noisy channel, this approach might be suboptimal
in general. However, we will discuss in the following that this
approach is capacity-achieving for a special class of broadcast
channels.

A. Equal Channel Outputs

To obtain the first insights, we start with the simplest
scenario, where both legitimate receivers and the eavesdropper
receive signals of the same quality, i.e., Y = Y1 = Y2 = Z.

Theorem 1. The secrecy capacity C of the BC with indepen-
dent secret keys and equal channel outputs is

C = max
PX

1

2
I(X;Y ) (6)

with Y = Y1 = Y2 = Z, i.e., time-sharing between both
legitimate receivers is optimal.

Proof: As both legitimate receivers and the eavesdropper
all receive channel outputs of the same quality, we use the
secret keys K1 and K2 as one-time pads to create encrypted
individual messages M1 and M2 as discussed in (5). Since M ,
K1, and K2 are independent of each other, we immediately
have ensured that I(M ;Zn) = 0. Thus, the communication
problem becomes the reliable transmission of two indepen-
dent individual messages. Obviously, the rate in (6) is easily
achievable via time-sharing which establishes the achievability.

Thus, it remains to show that time-sharing is already opti-
mal. At receiver i, i = 1, 2, we have the following version of
Fano’s inequality

H(M |Ki, Y
n) ≤ nεi,n (7)

with εi,n → 0 as n → ∞. Making extensive use of the
definition of mutual information and the chain rule, we get

nR = H(M |Ki) (8a)
≤ I(M ;Y n|Ki) + nεi,n (8b)
≤ I(M ;Ki, Y

n) + nεi,n (8c)
= I(M ;Ki|Y n) + I(M ;Y n) + nεi,n (8d)
≤ I(M ;Ki|Y n) + nεi,n + nδn (8e)
= H(Ki|Y n)−H(Ki|M,Y n) + nεi,n + nδn (8f)
≤ H(Ki)−H(Ki|M,Y n) + nεi,n + nδn (8g)

where (8a) follows from the independence of M and Ki,
(8b) from Fano’s inequality (7), and (8e) from the secrecy
condition.

As (8g) must hold for both receivers simultaneously, we
obtain

nR ≤ min
i∈{1,2}

{
H(Ki)−H(Ki|M,Y n) + nεi,n+ nδn

}
(9a)

≤ 1

2

[
H(K1) +H(K2)

−H(K1|M,Y n)−H(K2|M,Y n) + nεn

]
(9b)

≤ 1

2

[
H(K12)−H(K12|M,Y n) + nεn

]
(9c)

=
1

2

[
H(K12) +H(Y n|M)−H(K12, Y

n|M)+nεn

]
(9d)

=
1

2

[
H(K12) +H(Y n|M)

−H(K12|M)−H(Y n|M,K12) + nεn

]
(9e)

=
1

2

[
H(Y n|M)−H(Y n|M,K12) + nεn

]
(9f)

≤ 1

2

[
H(Y n)−H(Y n|M,K12) + nεn

]
(9g)

=
1

2
I(M,K12;Y n) + nεn (9h)

≤ 1

2
I(Xn;Y n) + nεn (9i)

≤ 1

2
nI(X;Y ) + nεn (9j)

with εn = ε1,n + ε2,n + 2δn and εn → 0 as n → ∞. This
completes the converse and proves the desired result.

From this we immediately obtain the result for the noiseless
case where the output at all receivers equals the input, i.e.,
X = Y1 = Y2 = Z.

Corollary 1. The secrecy capacity C of the noiseless BC with
independent secret keys is

C = max
PX

1

2
H(X), (10)

with X = Y1 = Y2 = Z, i.e., time-sharing between both
legitimate receivers is optimal.

Remark 1. The result shows that in the case of equal channel
outputs the simple strategy of time-sharing is already capacity-
achieving. Thereby, the secret keys are used as one-time
pads to transform the common message into two individual
messages.

B. Degraded Channels

Next we turn to the case where all channel outputs are
of different quality but satisfy a certain degradedness order
where the eavesdropper has the strongest channel among all
receivers. In particular, we assume that the following Markov
chain relationship holds: X − Z − Y1 − Y2.

Theorem 2. The secrecy capacity of the BC with independent
secret keys and reversely degraded channels is

C = max
PUX

min
{
I(X;Y1|U), I(U ;Y2)

}
(11)



for any PUX(u, x) such that U − X − Z − Y1 − Y2 form a
Markov chain, i.e., superposition coding is optimal. Further,
the cardinality of the range of U can be bounded by |U| ≤
|X |+ 1.

Proof: As for the equal channel case in Theorem 1
we generate individual messages M1 and M2 by using the
available secret keys K1 and K2 as one-time pads, cf. (5).
Then the original message M is perfectly secure from the
eavesdropper and the communication problem becomes again
the transmission of two individual messages. Then the achiev-
ability of (11) follows immediately by superposition coding.
Here, we choose the auxiliary random variable U to carry
the individual message M1 (as “cloud center”) for the weaker
receiver 2. The other message M2 for the stronger receiver 1
is superimposed as “satellite codeword” in X .

Again, the crucial part is to show that this superposition
coding strategy is already optimal. Using Fano’s inequality
(7) as in the proof of Theorem 1 we end up with (8b) from
which we proceed as follows:

nR ≤ I(M ;Y ni |Ki) + nεi,n (12a)
≤ I(M,Ki;Y

n
i ) + nεi,n (12b)

= I(Ki;Y
n
i |M) + I(M ;Y ni )− I(M ;Zn) + nεn (12c)

≤ I(Ki;Y
n
i |M) + nεn (12d)

with εn = δn + ε1,n where (12c) follows from the chain rule
and the secrecy condition, and (12d) from the degradedness
so that I(M ;Y ni )− I(M ;Zn) ≤ 0.

Now, we define the auxiliary random variable

Ui := (M,K2, Y
i−1
1 ) (13)

and obtain for the weaker receiver 2

nR ≤ I(K2;Y n2 |M) + nεn (14a)

≤
n∑
i=1

I(M,K2;Y2,i|Y i−12 ) + nεn (14b)

≤
n∑
i=1

I(M,K2, Y
i−1
2 ;Y2,i) + nεn (14c)

≤
n∑
i=1

I(M,K2, Y
i−1
1 , Y i−12 ;Y2,i) + nεn (14d)

=

n∑
i=1

I(M,K2, Y
i−1
1 ;Y2,i) + nεn (14e)

=

n∑
i=1

I(Ui;Y2,i) + nεn (14f)

where (14e) follows from the degradedness condition. Now,
let Q be a time-sharing random variable independent of all
others and uniformly distributed over {1, ..., n}. We set U =
(UQ, Q), X = XQ, Y1 = Y1,Q, and Y2 = Y2,Q and end up
with

nR ≤ nI(UQ;Y2,Q|Q) + nεn (15a)
≤ nI(U ;Y2) + nεn. (15b)

With the same definition of Ui, cf. (13), we obtain for the
stronger receiver 1

nR ≤ I(K1;Y n1 |M) + nεn (16a)
≤ I(K1;Y n1 |M,K2) + nεn (16b)

=

n∑
i=1

I(K1;Y1,i|M,K2, Y
i−1
1 ) + nεn (16c)

≤
n∑
i=1

I(K1, Xi;Y1,i|M,K2, Y
i−1
1 ) + nεn (16d)

=

n∑
i=1

I(Xi;Y1,i|Ui) + nεn (16e)

= nI(XQ;Y1,Q|UQ, Q) + nεn (16f)
= nI(X;Y1|U) + nεn (16g)

with εn = δn + ε2,n which proves the converse.
The bound |U| ≤ |X |+ 1 on the cardinality of the range of

the auxiliary random variable U follows from the strengthened
version of Carathéodory’s theorem, cf. for example [22], and
standard arguments. The details are omitted for brevity. This
completes the proof of the theorem.

Remark 2. The fact that the eavesdropper channel is the
strongest among all channels (in the sense that both legitimate
channels are degraded versions of it) suggests to use the secret
keys as one-time pads to secure the message. In addition, the
fact that both legitimate channels itself can be ordered due
to their degradedness suggests to use a superposition coding
scheme (as for the classical degraded BC). The previous result
shows that this strategy is capacity-achieving.

IV. SECRET KEYS AS PART OF WIRETAP CODES

Here we want to explore the approach, where the secret keys
are incorporated in the wiretap code. The basic idea of wiretap
coding is not to use all available resources for transmitting the
message, but to allocate some of the resources to “confuse”
the eavesdropper by applying randomized encoding strategies
[3], [4], [5], [6]. If a sufficient amount of resources is spent
for confusion, the eavesdropper will not be able to decode
the transmitted message. Obviously, the more resources are
allocated to this confusion, the less resources are available
for the actual transmission of the message. Here is where the
shared secret keys enter the picture in this approach. They will
be used as randomization resources for this confusion which
are (partly) already available at the legitimate receivers.

In the following we consider degraded channels X−Y1−Z
and X − Y2 −Z, which means that the eavesdropper channel
is degraded with respect to both legitimate channels. However,
we impose no ordering between the legitimate channels itself.

Theorem 3. The secrecy capacity C of the BC with indepen-
dent secret keys and degraded channels X − Y1 − Z and
X − Y2 − Z is

C = max
PX

min

 I(X;Y1)
I(X;Y2)
1
2

[
I(X;Y1)+I(X;Y2)−I(X;Z)

]
. (17)



A. Proof of Achievability

The following equivalent description of (17) turns out to be
beneficial for the proof of achievability.

Lemma 1. The rate expression in (17) can equivalently be
expressed as

C = max
PX

max
0≤α≤1

min

{
I(X;Y1)− αI(X;Z)
I(X;Y2)− (1− α)I(X;Z)

}
. (18)

Proof: With the function

f(t)=

{
(1−t)I(X;Y1) + t

[
I(X;Y2)− I(X;Z)

]
if t ≤ 1

2

(1−t)
[
I(X;Y1)− I(X;Z)

]
+ tI(X;Y2) if t ≥ 1

2

(19)

we can express rate expression in (17) as

C = max
PX

min
0≤t≤1

f(t). (20)

As the function f(t) is piecewise linear, it is sufficient to
evaluate it at the corner points, i.e., when t = 0, t = 1, and
t = 1

2 , to convince ourself that the rate expressions in (17)
and (20) are equivalent.

Now we have to show that (20) is equivalent to the desired
expression (18). Therefore, we rewrite (18) (where we omit
the outer maximization for short) as

max
0≤α≤1

min
0≤t≤1

[
(1− t)

[
I(X;Y1)− αI(X;Z)

]
+ t
[
I(X;Y2)− (1− α)I(X;Z)

]]
(21a)

= min
0≤t≤1

max
0≤α≤1

[
(1− t)

[
I(X;Y1)− αI(X;Z)

]
+ t
[
I(X;Y2)− (1− α)I(X;Z)

]]
(21b)

where the equality follows from the minimax theorem. Now
eliminating α in (21b) yields for t ≤ 1

2 and t ≥ 1
2 the

corresponding expressions in (20) which are then equivalent
to the original formulation (17).
Thus, instead of proving the achievability of (17), we prove
the achievability of (18) for any 0 ≤ α ≤ 1.

Next we sketch the proof of achievability. Basically, it
follows the ideas of [23], [24], [25] which all present coding
schemes that achieve strong secrecy as required in (4). Accord-
ingly, for any input distribution PX ∈ P(X ) and α ∈ [0, 1] we
generate |M||K1||K2| independent codewords xnmk1k2 ∈ X

n

where

|K1| > 2n((1−α)I(X;Z)+ε) (22a)

|K2| > 2n(αI(X;Z)+ε) (22b)

|M| < min

{
2n(I(X;Y1)−αI(X;Z)−2ε)

2n(I(X;Y2)−(1−α)I(X;Z)−2ε)

}
. (22c)

The crucial idea is to use the available secret keys as random-
ization resources instead of generating “dummy” randomiza-
tion indices as in the classical wiretap coding approach. As
the size of the secret keys satisfy

1

n
log(|K1||K2|) > I(X;Z) + 2ε (23)

we have enough randomization resources to show that
I(M ;Zn) ≤ δn holds, i.e., strong secrecy (4) is satisfied.
This can be done similarly as in [23], [24], [25].

Next, we check the reliability constraints at the legitimate
receivers. Receiver 1 has the secret key k1 ∈ K1 as side
information available and therefore the unknown indices of
the transmitted codeword are m ∈ M and k2 ∈ K2. As its
size satisfy

|M||K2| ≤ 2n(I(X;Y1)−ε), (24)

it is straight forward to show that receiver 1 can decode the
remaining indices m ∈M and k2 ∈ K2. Similarly, receiver 2
has k2 ∈ K2 as side information available and the unknown
indices are m ∈M and k1 ∈ K1 of size

|M||K1| ≤ 2n(I(X;Y2)−ε). (25)

Again, it is easy to show that receiver 2 can decode the
remaining indices m ∈ M and k1 ∈ K1. Thus, we conclude
that (18) is an achievable rate.

Remark 3. For the classical wiretap coding, the amount of
resources needed for additional randomization is roughly
I(X;Z). This suffices to keep the eavesdropper ignorant.
The use of secret keys as the randomization resource has the
advantage that parts of the needed randomization are already
as side information available at the receivers. This reduces
the loss in rate in the sense that it is only reduced by the
remaining unknown randomization part (and not by the whole
randomization part).

B. Proof of Converse

It remains to show the optimality of the above presented
coding scheme. The first two bounds in (17) are the obvious
single-user bounds and follow immediately. The crucial part
is to prove the third “sum-rate”-like bound. We proceed as
following:

n2R ≤ H(M) +H(M) = H(M |K1) +H(M |K2) (26a)
≤ I(M ;Y n1 |K1) + I(M ;Y n2 |K2) + nε1,n+ nε2,n (26b)
≤ I(M ;Y n1 |K1) + I(M ;Y n2 |K2)

− I(M ;Zn) + nεn (26c)
≤ I(M,K1;Y n1 ) + I(M,K2;Y n2 )

− I(M ;Zn) + nεn (26d)
= I(M,K12;Y n1 ) + I(M,K12;Y n2 )

− I(M,K12;Zn)− I(K2;Y n1 |M,K1)

− I(K1;Y n2 |M,K2) + I(K12;Zn|M) + nεn (26e)
≤ I(M,K12;Y n1 ) + I(M,K12;Y n2 )

− I(M,K12;Zn) + nεn (26f)

with εn = δn+ε1,n+ε2,n and εn → 0 as n→∞. Here, (26b)
follows from Fano’s inequality, cf. (7), (26c) from the secrecy
criterion, and (26f) from the fact that −I(K2;Y n1 |M,K1) −
I(K1;Y n2 |M,K2) + I(K1,K2;Zn|M) ≤ 0. To see this last



step, we write

− I(K2;Y n1 |M,K1)− I(K1;Y n2 |M,K2) + I(K12;Zn|M)

= −H(K2|M,K1) +H(K2|M,K1, Y
n
1 )

−H(K1|M,K2) +H(K1|M,K2, Y
n
2 )

+H(K12|M)−H(K12|M,Zn) (27a)
= H(K2|M,K1, Y

n
1 )−H(K1|M,K2, Y

n
2 )

−H(K12|M,Zn) (27b)
≤ H(K2|M,K1, Z

n
1 )−H(K1|M,K2, Z

n
2 )

−H(K12|M,Zn) (27c)
≤ 0 (27d)

where (27b) follows from the fact that M , K1, and K2

are independent so that −H(K2|M,K1) − H(K1|M,K2) +
H(K12|M) = 0, and (27c) from the Markov chains X−Y1−Z
and X − Y2 − Z due to the degradedness. Now, with this we
can proceed with the “sum-rate” in (26f) as

n2R ≤ I(M,K12;Y n1 ) + I(M,K12;Y n2 )

− I(M,K12;Zn) + nεn (28a)
= I(M,K12;Y n1 |Zn) + I(M,K12;Y n2 ) + nεn (28b)
≤ I(Xn;Y n1 |Zn) + I(Xn;Y n2 ) + nεn (28c)

≤ n
[
I(X;Y1|Z) + I(X;Y2)

]
+ nεn (28d)

= n
[
I(X;Y1) + I(X;Y2)− I(X;Z)

]
+ nεn (28e)

where (28b) and (28e) follow from the degradedness of the
channels. This completes the proof of converse.

Remark 4. An interesting observation is that in an capacity-
achieving coding scheme, the total equivocation-rate of the
opposite secret keys at the legitimate receivers must be equal
to the equivocation-rate of the secret keys at the eavesdropper,
when informed about the message.

V. CONCLUSION

In this paper we studied the BC with independent secret
keys. This describes a communication problem where multiple
secret keys are shared among the legitimate users. Shared
secret keys suggest itself to be used as one-time pads to
encrypt confidential messages for keeping external eaves-
dropper ignorant. However, a secret key shared between the
transmitter and one receiver might harm other receivers which
do not share this key. Thus, multiple secret keys can result
in conflicting payoffs at different receivers, which rises the
question how these keys should be used in an optimal way.

For reversely degraded channels, which means the eaves-
dropper channel is the “stronger” than the legitimate channels,
classical wiretap coding does not work and the confidential
message can be protected by using the secret keys as one-
time pads. For the full degraded case, it is shown that this
strategy is actually capacity-achieving.

On the other hand, for degraded channels, in which the
eavesdropper channel is the “weakest” channel, it is shown to
be optimal to use the secret keys not as one-time pads but as
randomization resources within the wiretap coding.
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