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Abstract—Motivated by error correction coding in multimedia
applications, we study the problem of broadcasting a single
common source to multiple receivers over heterogenous erasure
channels. Each receiver is required to partially reconstruct the
source sequence by decoding a certain fraction of the source
symbols. We propose a coding scheme that requires only off-
the-shelf erasure codes and can be easily adapted as users
join and leave the network. Our scheme involves splitting the
source sequence into multiple segments and applying a systematic
erasure code to each such segment. We formulate the problem of
minimizing the transmission latency at the server as a linear
programming problem and explicitly characterize an optimal
choice for the code-rates and segment sizes. Through numer-
ical comparisons, we demonstrate that our proposed scheme
outperforms both separation-based coding schemes, and degree-
optimized rateless codes and performs close to a natural outer
(lower) bound in certain cases. We further study individual user
decoding delays for various orderings of segments in our scheme.
We provide closed-form expressions for each individual user’s
excess latency when parity checks are successively transmitted
in both increasing and decreasing order of their segment’s coded
rate and also qualitatively discuss the merits of each order.

Index Terms—Application-Layer Error Correction Coding,
Broadcast Channels, Joint Source-Channel Coding, Linear Pro-
gramming, Multimedia broadcast/multicast services (MBMS),
Rateless Codes, Unequal Error Protection.

I. INTRODUCTION

Consumers of video and other content in today’s networks
use very diverse video and computing equipment ranging from
mobile phones and handheld devices to desktops and HDTVs.
When serving multiple diverse users, the most straightfor-
ward approach is to establish independent unicast sessions.
However, when a large number of users require the same
small content, (e.g., video clips at stadiums), or when a
small number of users require the same large content, (e.g.,
a large movie), the multiple-unicast approach clearly results
in highly inefficient use of overall network resources. In such
applications, broadcast techniques can lead to significant gains.

One important difference between point-to-point and broad-
cast/multicast applications lies in the way packet losses are
handled. In packet-based data networks, large files are usually
segmented into smaller blocks that are put into transport
packets. Packet losses occur because of the physical channel
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and other limitations such as processing power and buffer
space. In point-to-point scenarios, the sender can adjust its
transmission/coding rate to avoid packet losses and retransmit
lost packets according to the feedback from the receiver
through very efficient physical-layer schemes such as HARQ.
In contrast, in broadcast/multicast applications, it is costly for
the sender to collect and respond to individual receiver feed-
backs, and thus HARQ schemes are disabled, and packet losses
are inevitable. Forward error correction coding provides a nat-
ural solution in such applications. A number of these schemes
have already been standardized and are being implemented.
Rateless codes are a popular class of codes that enable efficient
communications over multiple unknown erasure channels at
the packet level by simultaneously approaching the channel
capacity at all erasure rates. Raptor codes, a special class
of rateless codes, also have very low encoding and decoding
complexity [3]. Because of these properties, Raptor codes have
been standardized for Multimedia Broadcast/Multicast Service
(MBMS) and are being deployed in applications such as LTE
eMBMS. Raptor codes are essentially optimal for multicast
over erasure channels where all receivers require identical
content.

In certain applications however, the receivers may not
require all the source packets and may not have identical
demands. For example, in emerging eMBMS systems, there
are two distinct phases of transmission. The first phase is a
fixed-rate broadcast transmission, after which, each user is left
with only a subset of source packets. Each user then recovers
the remaining source packets through individual unicast from
a dedicated repair server. Thus, during the broadcast phase, the
server is required to only deliver a fraction of source packets to
each user. As another example, consider a system that applies
a multiple description code (MDC) [4]–[6] to an analog source
sequence to generate a large number of MDC-coded packets.
Here, the reconstruction quality depends on the number of
MDC packets available for the destination. Thus, each user can
have a different demand based on its screen resolution, channel
condition, etc. In such scenarios where the user demands are
not identical, finding both fundamental limits and practical
coding schemes remains a fertile area of research to the best
of our knowledge.

In this paper, we propose a coding scheme for transmitting
to multiple receivers with heterogenous channels and demands.
Our scheme relies only on off-the-shelf erasure codes. The key
idea in our scheme is to partition the source sequence into
multiple non-overlapping segments and to apply a systematic
erasure code to each segment. We formulate the problem of
selecting the segment lengths and code rates that minimize
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Fig. 1: Broadcasting an equiprobable binary source over an
erasure broadcast channel.

the transmission latency as a linear programming problem and
characterize an explicit solution. We discuss how the solution
naturally evolves as users join or leave the network. We
further compare our scheme numerically with separation-based
schemes, and degree-optimized rateless codes and demonstrate
that significant performance gains are possible. We also dis-
cuss how a tradeoff between the latencies of individual users
can be attained by selecting various transmission orders for
the parity checks.

Throughout this paper, we adhere to the notation defined
herein. The sample space of a random variable is written in
calligraphic font, e.g., S , and we let SN be the set of all
N -vectors with components in S . We use t when referring
to the symbol-index of a vector, which is enclosed in round
brackets when actually referring to a vector component. Thus,
the tth component of a vector SN ∈ SN is denoted by S(t) so
that SN in fact denotes (S(1), S(2), . . . , S(N)). In general, a
variable’s subscript is reserved for user indices and indicates
a correspondence between a user and the variable in question.
For example, when the symbol d is used for distortion, di
denotes the distortion of user i. Finally, for convenience, we
also denote the set {1, 2, . . . , N} as [N ].

II. SYSTEM MODEL AND PRIOR WORK

A. System Model

The problem is illustrated in Fig. 1. We consider a binary
memoryless source {S(t)}t=1,2,... that produces equiprobable
symbols in the alphabet S = {0, 1} and that we wish to
communicate to n users over an erasure broadcast channel.
The source is communicated by a block-encoding function
that maps a length-N source sequence, SN , to a length-W
channel input sequence, XW = (X(1), X(2), . . . , X(W )),
where X(t) denotes the tth channel input taken from the
alphabet X = {0, 1}.

Let Yi(t) be the channel output observed by user i on the tth

channel use for i ∈ [n] and t ∈ [W ]. Our channel model is a
binary erasure broadcast channel as shown in Fig. 1. In partic-
ular, let εi denote the erasure rate of the channel corresponding
to user i, where we assume that 0 < ε1 < ε2 < . . . < εn < 1.
This is without loss of generality since we can address all
users that experience identical erasure rates by serving the

one with the most stringent distortion requirement. Our model
specifies that Yi(t) exactly reproduces the channel input X(t)
with probability (1 − εi) and otherwise indicates an erasure
event, which happens with probability εi. We let Yi(t) take on
values in the alphabet Y = {0, 1, ?} so that an erasure event
is represented by ‘?,’ the erasure symbol. Note that in our
setup, the erasure rates for each user are assumed to be known.
However, our setup also models the compound channel [7],
where the erasure rate is not known and instead belong to a
collection of possible states, with each state corresponding to
one virtual user in our system.

Having observed his channel output, user i then uses it to
reconstruct the source as a length-N sequence, denoted as ŜNi .
We will be interested in a fractional recovery requirement so
that each symbol in ŜNi either faithfully recovers the corre-
sponding symbol in SN , or otherwise a failure is indicated
with an erasure symbol, i.e., we do not allow for any bit flips.

More precisely, we choose the reconstruction alphabet Ŝ to
be an augmented version of the source alphabet so that Ŝ =
{0, 1, ?}, where the additional ‘?’ symbol indicates an erasure
symbol. We then express the constraint that an achievable code
ensures that each user i ∈ [n] achieves a fractional recovery
of 1− di, where di ∈ [0, 1], with the following definition.

Definition 1. An (N,W, d1, d2, . . . , dn) code for source S on
the erasure broadcast channel consists of

1) an encoding function fN : SN → XW such that XW =
fN (SN ), and

2) n decoding functions gi,N : YW → ŜN such that ŜNi =
gi,N (YWi ) and for each i ∈ [n],

a) ŜNi is such that for t ∈ [N ], if Ŝi(t) 6= S(t), then
Ŝi(t) = ?,

b) E
∣∣∣{t ∈ [N ] | Ŝi(t) = ?}

∣∣∣ ≤ Ndi,
where E(·) is the expectation operation and |A| denotes the

cardinality of set A.

For a given code, we next define the latency that the code
requires before all users can recover their desired fraction of
the source. Finally, we then state our problem as characterizing
the achievable latencies under a prescribed distortion vector as
per the following definitions.

Definition 2. The latency, w, of an (N,W, d1, d2, . . . , dn)
code is the number of channel uses per source symbol that the
code requires to meet all distortion demands, i.e., w = W/N .

Definition 3. Latency w is said to be (d1, d2, . . . , dn)-
achievable over the erasure broadcast channel if for ev-
ery δ > 0, there exists for sufficiently large N , an
(N,wN, d̂1, d̂2, . . . , d̂n) code such that for all i ∈ [n],
di + δ ≥ d̂i.

Remark 1. Throughout this paper we will assume that for
each user i ∈ [n], we have that di < εi. Any user j with
dj ≥ εj will be trivially satisfied by the systematic portion of
our segmentation-based coding scheme. Furthermore, we will
show in Lemma 4 that within our class of coding schemes,
such a systematic portion can be transmitted without loss of
optimality when at least one user satisfies di < εi. Finally,
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if every user satisfies di ≥ εi, a simple uncoded transmission
scheme is easily shown to be optimal.

Remark 2. While our system model has assumed binary
alphabets for both source and channel input sequences, our
results can easily be extended to larger alphabet sizes. Pro-
vided we keep source and channel input alphabets identical in
size, our results could then extend to packet erasure networks.

A code that satisfies the content demands of a set of users
may in fact afford different users the ability to finish receiving
their content at intervals so that some users require only a
short latency while others require longer ones (e.g., see [8]).
In particular, we can also define what we will call a discretized
code, which accounts for users’ separate decoding latencies.

Definition 4. An (N,W1,W2, . . . ,Wn, d1, d2, . . . , dn) dis-
cretized code for source S on the erasure broadcast channel
consists of

1) an encoding function fN : SN → XW such that XW =
fN (SN ), and W = maxi∈[N ]Wi,

2) n decoding functions gi,N : YWi → ŜN such that ŜNi =
gi,N (YWi

i ) and for each i ∈ [n],
a) ŜNi is such that for t ∈ [N ], if Ŝi(t) 6= S(t), then

Ŝi(t) = ?,
b) E

∣∣∣{t ∈ [N ] | Ŝi(t) = ?}
∣∣∣ ≤ Ndi,

Using Definition 4, we can similarly define what it means
when latency tuple (w1, w2, . . . , wn) is (d1, d2, . . . , dn)-
achievable as in Definition 3.

Clearly, if we let W = maxi∈[N ]Wi, we see that an
(N,W1,W2, . . . ,Wn, d1, d2, . . . , dn) discretized code is also
an (N,W, d1, d2, . . . , dn) code. Definition 4 is of interest
from the perspective of content consumers as it concerns both
the latencies that they will each have to endure for their
content requirements and also the possible tradeoffs amongst
themselves. Alternatively, Definition 3 is unconcerned with
individual latencies and instead provides us with the minmax
latency metric by taking the maximum over all user latencies.
In this way, the minmax latency metric is of interest from
a content provider’s perspective as it will allow the provider
to compare codes based on which ones minimize the overall
transmission time that is required from the provider.

The focus in this paper will primarily be the minmax latency
metric, and the solution that we propose is a code that is
(minmax) latency-optimal within the class of segmentation-
based codes. Our discussion of individual latencies will be
limited to Section V where given a segmentation-based code,
we consider different transmission orderings of the segments
for individual latency considerations.

B. Prior Work

In a related work, the minmax latency problem that we
study was also treated in [9] where a set of predetermined
messages were required by each user such that the stronger
users had to decode all the messages intended for the weaker
users. Such a formulation is essentially a degraded message
sets problem for which superposition coding is optimal for
degraded broadcast channels. For the special case of packet

erasure broadcast channels, the capacity can be achieved using
optimal erasure codes. In contrast, we allow for flexibility in
which symbols are recovered so long as this number exceeds
a certain threshold.

Our formulation can be viewed as a joint source-channel
coding problem involving an equiprobable binary source and
the erasure distortion measure. For s ∈ S , and ŝ ∈ Ŝ, this
distortion measure is given by

dE(s, ŝ) =


0 if ŝ = s,

1 if ŝ = ?

∞ otherwise.
(1)

The erasure distortion measure captures the fractional recovery
requirement of our problem. Among other works, it has been
studied in the related context of multiple description coding
in [10]. In our intended context of joint source-channel coding,
it has also been studied for the case of two users in [1], [11].
The coding schemes in these two works involved adaptations
of techniques used in the Gaussian models (see e.g., [12]–
[17] and references therein). To the best of our knowledge,
such schemes do not attain smaller latencies than the scheme
proposed in the present paper. Furthermore, such schemes
involve joint source-channel code designs and do not have
the practical advantages of the proposed scheme that were
discussed previously.

The joint source-channel coding problem we study has also
been studied from a rateless coding perspective [18], [19].
Some related works that apply rateless codes to channels
without state information and fading channels under delay
constraints appear in [20], [21]. Based on the capacity region
found in [9], the authors of [22] proposed and optimized a
layered joint-source-channel-coding scheme over the binary
erasure broadcast channel. While similar in spirit to this work,
they do not consider partial recovery as is the focus of the
present work.

As another alternative, multiple description coding has also
been proposed within the literature as a method of addressing
the problem we consider [10], [23], [24]. In this setup, n
encoders map a source sequence into n descriptions that are
to be sent over n bandwidth-constrained, errorless, parallel
subchannels, each of which is equally likely to fail. In the
event of a subchannel’s failure, the entire description sent over
that channel is erased, whereas in the absence of a failure, the
entire description is transmitted errorlessly. Given the rate of
each encoder, the goal is then to find the set of (2n − 1)
achievable distortions corresponding to the (2n − 1) possible
subsets of descriptions that could be received errorlessly.

In [23], a symmetric version of this problem was studied,
which considered a common encoder rate and distortions that
depended only on the number of descriptions received. Hence,
a reconstruction of the source at distortion level di would be
expected with the reception of any i ∈ {1, 2, . . . , n} descrip-
tions. A coding scheme was proposed under the assumption
that k out of n subchannels would not fail. The work in [24]
then removed this assumption by building upon the coding
scheme of [23] and successively concatenating different codes
that used different values of k.
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An “erasure” version of the symmetric problem was also
studied in [10], which considered an erasure distortion as
well as a no-excess rate constraint for every m out of n
descriptions. Interestingly, the coding scheme used in [10] built
upon the ideas of [23], [24] and resulted in a segmentation-
based scheme similar to ours where the source was segmented
into equal segments that were then each encoded with a
systematic erasure code. In contrast, their work, however, did
not involve any optimization over segment sizes. While these
works do have high-level similarities and draw upon common
practical motivations, there is another important distinction
between our work and multiple description coding. This is
that, fundamentally, the problem we consider is a joint-source
channel coding problem. That is, in our formulation, the size
of each channel symbol is fixed, while the number of channel
uses approaches infinity. In contrast, in multiple description
coding, the number of channels remains fixed, whereas the
number of bits sent over each channel approaches infinity.

The segmentation-based code we present is also related
to the coding scheme recently proposed in [25], which was
studied independently of our work and presented alongside
it at a recent conference. In this work, the authors consider
combining a successive refinement code with a timesharing
strategy that individually channel codes messages intended for
different users listening over the broadcast channel. As we will
see, the code we present is similar in its use of a successive
refinement code and a timesharing strategy. However, we will
also see that our particular distortion measure is matched with
the erasure channel in such a way that we are also able to
benefit from the use of uncoded transmissions.

Finally, it is also worth mentioning that in terms of an
outer bound, techniques that involve auxiliary channels have
been developed for both the Gaussian model [13] and a
more general model of a discrete memoryless source sent
over a discrete memoryless broadcast channel [26]. While
the techniques and inequalities used in [13] can be adapted
for the erasure channel [27], [28], we have found that doing
so does not result in an outer bound that improves upon the
point-to-point outer bound in the present setup. The difficulty
encountered is in defining a suitable auxiliary channel that
would lead to a non-trivial bound. Nevertheless, for a closely
related problem involving the erasure broadcast channel and
a Hamming distortion, non-trivial outer bounds can be ob-
tained [26], [29].

III. SEGMENTATION-BASED CODING

A. The Main Idea

Let v denote the user with the highest erasure rate, and
consider the case when this user is the only one in our
system. It is well known [7] that the optimal latency of
(1− dv)/(1− εv) can be achieved by, e.g., first compressing
the source with distortion dv and then losslessly transmitting
the compressed version of the source with a channel code of
rate (1− εv). The compression process is particularly simple
in our case; we simply retain the first N(1 − dv) source
sequence symbols and discard the remaining symbols. Note
that this (separation) scheme can also be decoded by any

user s with erasure rate εs ≤ εv and results in the same
distortion dv . Thus, if ds ≥ dv , the introduction of user s
into the system does not modify the code since user s does
not require any dedicated coding. Consider, however, when
ds < dv . We accommodate user s by incrementally modifying
our coding; in addition to transmitting the first N(1 − dv)
source symbols as before, we also transmit the following
N(dv−ds) source symbols with a channel code of rate (1−εs).
Thus, if ds < dv , the addition of user s does modify the
code since user s does require dedicated coding. It is not
hard to generalize this type of coding for n users. We simply
identify the users that require dedicated coding and code for
only these users by following the procedure mentioned above.
In general, we see that for 1 ≤ i < j ≤ n, user i is able
to decode whatever was channel coded for user j since we
have assumed that user indices increase with erasure rates.
Therefore, user i requires dedicated coding only if whatever
was already sent to users with worse channel qualities is not
sufficient for his own distortion requirement, i.e., if di < dj
for j ∈ {i+1, i+2, . . . , n}. For future reference, we will call
this a layered coding scheme.

We observe that whenever a user does not require dedicated
coding, he achieves the same distortion as some user j who
has a worse channel quality and who does require dedicated
coding. Thus, this coding does not allow for graceful im-
provements in distortion for increasingly favourable channel
qualities. We circumvent this by modifying our coding. Con-
sider again the case when user v is the only user in the
system. Instead of the separation-based scheme, we now split
the source sequence into two segments. The first segment
consists of a fraction of a0 source symbols and is transmitted
uncoded, while the second segment consists of a fraction of av
source symbols and is transmitted using a systematic channel
code of rate (1− εv). Note that the latency in this scheme is
a0 + av/(1 − εv), while the fraction of symbols received is
a0(1 − εv) + av . By setting a0 = dv/εv and av = 1 − a0,
we achieve the same latency as the (optimal) separation-based
scheme while satisfying the distortion constraint.

Fundamentally, this approach functions by first ensuring that
user v losslessly recovers all but a fraction of dv/εv source
symbols via a channel code. By construction, the positions of
the missing Ndv/εv symbols are known. Therefore, if they
are transmitted uncoded in a second step, we expect that a
reduced number of only N(dv/εv) · εv = Ndv symbols will
be missing afterwards.

In what follows, we will extend this approach to the case
of n receivers. For i ∈ [n], instead of guaranteeing user i’s
recovery of all but the last Ndi source symbols as in the
layered approach, we will instead guarantee his recovery of all
but the last Ndi/εi symbols. Each user can then recover what
he additionally requires by listening to uncoded transmissions
or the systematic portions of the channel codes used. For the
layered scheme, we saw that if user i recovered all but the last
Ndi symbols, he would require dedicated coding if di < dj
for all j > i. Since we guarantee the recovery of all but the last
Ndi/εi symbols in our new coding, we will analogously see in
Section III-B, when defining active users, that a user i requires
dedicated coding in our proposed code if di/εi < dj/εj for
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all j > i.

B. Scheme Description

In this section, we formally discuss the class of
segmentation-based schemes and formulate the problem of
selecting optimal segment sizes and channel code rates. We
then present an analytical solution and discuss connections
with the scheme presented in the previous subsection.

The source sequence SN is divided into K + 1 non-
overlapping subsequences, S0,S1, . . . ,SK , where for k =
0, 1, . . . ,K, Sk carries ak fraction of source bits and∑K
k=0 ak ≤ 1. For each k, the segmentation encoder maps

subsequence Sk into channel input Xk by using a rate-rk
systematic erasure code. We take r0 = 1 so that X0 = S0, i.e.,
S0 is sent uncoded. The broadcast channel input sequence XW

is obtained by concatenating the segments X0,X1, . . . ,XK .
User i observes the channel input through a channel with

erasure probability εi and can therefore completely recover all
source segments that are coded at rates rk ≤ 1−εi. He further
recovers an additional (1 − εi) fraction of source segments
coded at rates rk > 1 − εi due to the systematic (uncoded)
part of the channel code used. This is formally stated in the
following claim, which directly follows from Definition 3 and
by construction of the scheme.

Claim 1. The above segmentation-based coding scheme has
latency

a0 +
a1
r1

+ · · ·+ aK
rK

, (2)

and the fraction of source symbols recovered at user i is{
(1− εi)

∑
0≤j≤K
rj>1−εi

aj +
∑

0≤k≤K
rk≤1−εi

ak

}
. (3)

Remark 3. It is interesting to note that by (3), the source
symbols that are ultimately not recovered by a weaker user
are concentrated in segments coded for stronger users. Fur-
thermore, Sn is recovered by all users. Although exploring
these properties is beyond the scope of our work, we mention
that it may be useful in certain applications.

Remark 4. As mentioned earlier, the segmentation-based
scheme requires only off-the-shelf erasure codes to be sep-
arately applied to non-overlapping source segments. Its com-
putational complexity is therefore no worse than that of its
highest-complexity constituent erasure code.

Note that in our formulation so far, the segment sizes,
ai, the associated code-rates, ri, as well as the number of
segments, K, need to be specified. Our optimization problem
involves selecting these parameters such that the latency in (2)
is minimized and for each user i, the received fraction of
symbols in (3) is at least equal to 1 − di. We first show that
the choice of optimal rates, ri, admits a natural solution that
significantly simplifies our optimization problem.

Claim 2. The latency of a segmentation-based scheme can
be reduced with no penalty in achievable distortion by mod-
ifying its segment lengths, a0, a1, . . . , aK , and code rates,

j

d/ǫ
1

1 2 3 4 5 6

Fig. 2: Distortion ratios plotted by user for n = 6 users, where
user indices increase with user erasure rates. A user j is active
if dj/εj < di/εi for all i > j. Active users are shown in bold.

r1, . . . , rK , s.t. the rates belong to the set R = {1} ∪ {1 −
εi, i ∈ [n]}.

Proof: The proof is given in Appendix A.
With Claims 1 and 2 in hand, we can formulate an optimiza-

tion problem to minimize the system latency over the segment
lengths a = (a0, a1, . . . , an) given the distortion constraints
as follows.

min
a

a0 +
a1

1− ε1
+ · · ·+ an

1− εn
subject to a0 + a1 + · · ·+ an ≤ 1,

(1− εi)
i−1∑
j=0

aj +

n∑
j=i

aj ≥ 1− di, for i ∈ [n]

aj ≥ 0, for j = 0, 1, . . . , n.
(4)

One may wonder whether it suffices to replace the inequality
constraint a0 + a1 + . . .+ an ≤ 1 in (4) with a strict equality
constraint. It is not obvious a priori if this can be done. Indeed,
there can exist optimal solutions to (4) where the inequality is
strict. However, in our proof of Theorem 3, (more specifically
in Lemma 4 of Appendix B), we establish that there exists an
optimal solution that satisfies the aforementioned constraint
with equality.

We provide an explicit solution to (4) below. We first define
the set of active users, J , as the set containing users whose
distortion-erasure ratio is smaller than that of every user with
a higher erasure rate (see Fig. 2 for an illustration), i.e.,

J = {j1, j2, . . . , jl} =

{
j ∈ [n] :

dj
εj
<
di
εi
,∀i > j

}
. (5)

Note that from the above definition, it immediately follows
that if J = {j1, j2 . . . , jl} and j1 < j2 < · · · < jl, then
dj1/εj1 < dj2/εj2 < · · · < djl/εjl < 1. Moreover, we can
easily see that J is non-empty since n ∈ J and jl = n.

Theorem 3. Let 0 < ε1 < ε2 < · · · < εn < 1, (d1, d2, . . . , dn)
be a distortion vector, and J be defined as above. Then the
optimal solution to (4) gives a latency of

dj1
εj1

+

l−1∑
m=1

1

1− εjm

(
djm+1

εjm+1

− djm
εjm

)
+

1

1− εjl

(
1− djl

εjl

)
,

which is (d1, d2, . . . , dn)-achievable by a segmentation-based
coding scheme with |J | + 1 = l + 1 segments of normalized
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segment lengths

a0 =
dj1
εj1

, ajl = 1− djl
εjl
,

ajm =
djm+1

εjm+1

− djm
εjm

for 1 ≤ m < l,

(6)

and corresponding code rates

r0 = 1 and rjm = 1− εjm for 1 ≤ m ≤ l.

Proof: The proof is given in Appendix B.
It is interesting to ask if and how the scheme has to be

redesigned if another user, s, joins the system. If the new user
arrives prior to the start of the transmission block, only an
incremental adjustment to the original code is needed. Clearly,
the scheme will be affected only if the user’s parameters
place him in J . Suppose this is so. In this case, the arrival
of user s will have two effects. Firstly, user s may displace
stronger users from J . Specifically, for each user i ∈ J with
a better channel than user s, we must re-evaluate whether or
not user i still belongs in J , i.e., if di/εi < ds/εs. Secondly,
for those users who no longer meet this condition, we merge
the segments that were originally channel coded for each of
them and subsequently split the resulting combined segment
into two new segments. Suppose that after re-evaluating the
set J , user s is adjacent to users r and t in J where εr < εt.
Then the two new segments that replace the merged segments
consist of one that is of size dt/εt − ds/εs and protected by
a channel code of rate 1 − εs, and another that is of size
ds/εs− dr/εr and protected by a channel code of rate 1− εr.
The departure of user s reverses this process. Note that this
scheme scales easily with the number of users.

Alternatively, if the new user joins midway during the
transmission block, his distortion for that particular block will
depend on when he joins. The system, however, would be able
to adjust at the start of the next block to accommodate the new
user.

C. Special Cases

We now consider several interesting erasure rates and distor-
tion vector setups and interpret the segmentation-based coding
scheme in these special cases.

1) Uniform Channel Condition: When all users are subject
to the same channel erasure rate, ε1, we effectively have n = 1.
As in Section III-A, we simply set a0 = d0

ε1
and a1 = 1− d0

ε1
,

where d0 is the minimum distortion of all users. The latency
achieved equals 1−d0

1−ε1 , which is easily seen as optimal as it
coincides with the separation-based outer (lower) bound.

2) Uniform Distortion: When all users have the same
distortion constraint, d but experience different channel erasure
rates, we have that J = {n} so that we encode for the weakest
user by setting a0 = d

εn
and an = 1 − d

εn
. All stronger

users achieve progressively better distortions, and the latency
achieved is 1−d

1−εn , which is optimal.
3) Constant di

εi
: If di

εi
= c < 1 for each user i ∈ [n], we

again have that J = {n}. Thus, a0 = c, an = 1 − c, and
we achieve a latency of w = 1−cεn

1−εn = 1−dn
1−εn , which is again

optimal.

d2

d1

ǫ2 1

ǫ1

1

Region IRegion III

Region II
IV(a)

IV(b)

Fig. 3: For n = 2 users, we show the demarcation of regions
requiring distinct coding in the (d1, d2)-plane. A region is
shaded if its corresponding code is optimal.

4) di = ε2i : When user distortions are quadratic in their
erasure rates, we have di

εi
= εi, and hence J = [n]. Thus,

a0 = ε1, ai = εi+1 − εi for i ∈ [n − 1], and an = 1 − εn.
We refer to this as the “proportional allocation scheme.” The
amount of bits allocated to the segment protected with an
erasure code of rate (1−εi) is the difference in the channel ca-
pacity between user i and the next weakest user, user i+1. The
latency achieved in this case is w = 1 + ε1 +

∑n−1
i=1

εi+1−εi
1−εi .

5) Two Users: When there are only two users in the system,
we can partition the (d1, d2)-plane into distinct regions that
each have a separate encoding scheme (see Fig. 3). Region I
is where di ≥ εi for both i = 1, 2. Clearly, an uncoded
transmission strategy is optimal in this case, and so we shade
this region in Fig. 3 to indicate that we have matching inner
and outer bounds. Similarly, in Region II, where d2 ≥ ε2
but d1 < ε1, we can also be optimal, albeit this time with
a segmentation-based code. The segmentation is done as if
user 1 is the only user in the network, and the systematic
portion of the code is sufficient for user 2 as each source
symbol is eventually sent uncoded over the channel (see
Remark 1 and Lemma 4). An analogous argument can be
made for Region III where we would code as if user 2 is
the only user in the network. Next, Region IV(a) illustrates
the final region where we obtain optimality, which happens
when d2/ε2 ≤ d1/ε1 ≤ 1. In this case, only user 2 is active
(see (5)), and the coded/uncoded transmissions for user 2 is
also sufficient for user 1 (see Section III-A). Region IV(b) is
the final region and represents the only region in which there
is a tension between user needs. In this region, both users are
active, i.e., d1/ε1 < d2/ε2, and the coding must account for
the presence of both users.

D. Numerical Comparisons

We compare the latency achievable by our segmentation
scheme of Theorem 3 against some baseline coding schemes.
The comparison is done in a way that parallels the discus-
sion in Section III-A. We first consider a single user and
successively add additional users to see how the overall latency
changes as a function of the number of users in the network.
The users are added in decreasing order of erasure rates. The
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Fig. 4: The latency plotted as more users are added to the system. The users are added in order of decreasing erasure rates
for two different distortion constraints. We set ε = (0.1, 0.2, 0.3, 0.4, 0.5) and take d1 = (0.01, 0.04, 0.09, 0.16, 0.25) in (a)
while d2 = (0.01, 0.04, 0.13, 0.16, 0.25) in (b).

first coding scheme we compare Theorem 3 to is a separation-
based approach which, for example, may be implemented with
a random linear network code (RLNC) [30]. In our context, an
RLNC coding scheme refers to a point-to-multipoint coding
scheme that creates random linear combinations of source
symbols at the transmitter. It does not incorporate any com-
bining of channel packets at intermediate network nodes. With
an RLNC scheme, we satisfy all user demands by sending
a common message that is intended for everyone to decode.
The common message is a compressed version of the source
at a distortion equal to the minimum of all user distortion
constraints. It is channel coded at a rate that the weakest
user can decode. This scheme achieves an overall latency of
wRLNC =

1−mini∈[n] di
1−εn . The reader may verify that the RLNC

scheme is also optimal in cases (1) and (2) in Section III-C
but will lead to higher latencies in the remaining cases.

In order to understand the importance of choosing segment
sizes, another coding scheme we consider is a simplified
version of the optimization problem in (4) where all the non-
zero segment sizes are forced to be identical. In particular,
each segment, ai, for i ∈ {0, 1, . . . , n}, can be either zero
or take a fixed value. We note that the RLNC scheme is a
special case of this scheme when only an is non-zero. Finally,
the layered coding scheme of Section III-A is the last baseline
coding scheme we consider.

The numerical comparisons are shown in Fig. 4 where
we have taken n = 5. Let ε = (ε1, ε2, . . . , ε5) and d1 =
(d1, d2, . . . , d5). In the first plot of Fig. 4, we set ε and
d1 so that for i ∈ {1, 2, . . . , 5}, εi = 0.1 × i and di =
ε2i . For the sake of clarity, ε = (0.1, 0.2, 0.3, 0.4, 0.5) and
d1 = (0.01, 0.04, 0.09, 0.16, 0.25). In this case, it can be seen
that the addition of each user expands the set J and thus
leads to an increase in latency. In the second plot of Fig. 4,
we have slightly modified only the third component of the

distortion vector so that now the third user requires a higher
distortion of 0.13 instead of 0.09. For clarity, we now have that
d2 = (0.01, 0.04, 0.13, 0.16, 0.25). In this case, we see that
for our proposed scheme, when the third user is added to the
network, his distortion is sufficiently high so that he can simply
meet his distortion constraint by virtue of his better channel
quality and from what is already sent over the channel (cf.
Section III-A). The latency does not increase in this step. In
all cases, we see that our proposed coding scheme performs
much better than the other baseline schemes.

Finally, we further highlight the potential benefits of The-
orem 3 by plotting a larger example with 80 users. In Fig. 5,
we take εi = c(i + 1) and di = ci for c = 0.01 and
i = 1, 2, . . . , 80. Note that Fig. 5 again adds users in order of
decreasing erasure rates so that, in fact, user 80 is added first.
For this example, we see that all users require dedicated coding
for both Theorem 3 and the layered scheme. As described in
Section III-A, the layered scheme channel codes a fraction of
di+1 − di = c source symbols for user i, which is constant
among all users. In contrast, Theorem 3 channel codes a
fraction di+1/εi+1 − di/εi = 1/(i + 1)(i + 2) for user i.
Thus, we see that the longest segments are sent to better users
for Theorem 3. In addition, for Theorem 3, the size of the
segment coded for user i decreases quickly as i increases. On
the other hand, it stays constant for the layered scheme and
Fig. 5 reflects this advantage.

IV. A COMPARISON TO RATELESS CODES

In this section, we compare our segmentation-based scheme
with rateless codes optimized for unequal user demands. For
simplicity, we make our comparison for the case of n = 2
users (see Section III-C5 for a discussion of this special case).
As discussed earlier, rateless codes provide near-optimal, low-
complexity performance when the users are interested in
identical content.
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Fig. 5: The latency plotted as more users are added to the
system. The users are added in order of decreasing erasure
rates. We take εi = c(i + 1) and di = ci for c = 0.01 and
i = 1, 2, . . . , 80.

A rateless code maps N binary source symbols,
{u1, . . . , uN}, into a potentially infinite sequence of binary
code symbols {vl}∞1 , where vl are linear combinations of
{u1, . . . , uN}, i.e., vl = θl1u1 + · · · + θlNuN , θlj ∈ {0, 1}.
The coefficients θlj are generated in the following way: (1)
we select a degree distribution {p1, . . . , pN} for the code,
and for each vl, we sample the associated degree M from
this distribution; (2) we randomly and uniformly select M
elements from the set {θl1, . . . , θlN} to be non-zero and let
the remaining entries be zero. In the classical rateless code
design [31], [32], the degree distribution is selected such that
the overhead when recovering all N source symbols is kept as
small as possible. However, in our present setup, where each
receiver requires different demands, such a degree distribution
will not be suitable. Building upon the approach taken in [18],
[19], we briefly discuss how a suitable degree distribution can
be obtained for our setup and then compare the performance
with our segmentation-based scheme.

We note in advance that codes designed this way do not
include the segmentation-based scheme of Theorem 3 as a
special case. This is because in our rateless code construction,
the choice of non-zero source symbol coefficients is done
uniformly over the entire source sequence. In contrast, each
parity bit in the segmentation-based scheme is generated from
source bits restricted to a certain segment.

There are, however, existing rateless codes that send batches
of linear combinations generated from select subsets of source
packets, such as the chunked codes of [33]. However, this
work’s consideration in restricting the scope of linear com-
binations is largely due to concerns in computational com-
plexity rather than optimizing non-uniform partial recovery
constraints. To the best of our knowledge, the LT-based rateless
code designs investigated in [18], [19] are the only ones in
the existing literature for the scenario we consider. Hence,
we only include an enhanced version of the designs given
in [18], [19] as a representative design for comparison with
the segmentation-based scheme.

A. Rateless Coding Approach

In this subsection, we describe the main difference in
our present approach compared to [18], [19], which is the
way we handle degree-1 symbols. In previous works, the
degree-1 symbols were sampled uniformly at random. This
resulted in many repetitions where the same source symbol
would be transmitted multiple times while others would not
be transmitted at all. Thus, our current work proposes an
alternative that chooses these symbols deterministically in a
round-robin fashion. Suppose that Nz transmissions of source
symbols have finished, where Nz is a natural number and z
is a positive, rational number. If a single source symbol is
sent uncoded T times over a channel with erasure rate ε, the
probability that it is recoverable after these transmissions is
(1− εT ). We have that after Nz round-robin transmissions of
source symbols, a fraction of (z − bzc) source symbols were
transmitted (bzc+1) times, while the remaining (1−(z−bzc))
fraction was transmitted only bzc times. The average fraction
of recovered symbols is therefore given by φ(z, ε), where

φ(z, ε) = (1−(z−bzc))(1−εbzc)+(z−bzc)(1−εbzc+1). (7)

Following [19], we can express the optimal degree distribu-
tion that minimizes the maximum latency as follows.

min
w,p1,...,pN

w

subject to log(1− x)− log(1− φ(wp1, εi))

+ (1− εi)w
∑
j>1

jpjx
j−1 > 0,

∀x ∈ (0, 1− di), i = 1, 2,

(8)

where the probabilities satisfy
∑
j pj = 1 and pj ≥ 0, and

we recall that di, and εi denote the distortion and erasure
probabilities for the two users. To interpret the above expres-
sion, note that the left-hand-side, when multiplied by 1−x, is
proportional to the size of the ripple [34] induced in the belief
propagation decoding process when a fraction of x source
symbols have been recovered. Hence, the constraint ensures
that the ripple remains non-empty until a fraction of 1 − di
source symbols have been recovered, which in turn ensures a
distortion smaller than di. Using the approach in [19], we can
numerically compute the optimal degree distribution by using
a linear programming approach. We omit the details due to
space constraints.

B. Numerical Results

Fig. 6 plots the latency vs. d2 with the rest of the parameters,
i.e., d1, ε1, and ε2 fixed. We plot the outer (lower) bound wM =
max{ 1−d11−ε1 ,

1−d2
1−ε2 } together with the latency achieved by the

segmentation-based scheme of Theorem 3, and the optimal
latency achievable by a code designed through (8). We refer
to this plot as the LT-based scheme due to the similarities with
LT codes [31]. Alongside these curves, we plot the convex hull
of the latencies achieved with the LT-based scheme and denote
this as the “timesharing” curve in Fig. 6.

We observe that there are two regions where Theorem 3
meets the outer bound. The first is where d2 ≥ ε2 = 0.4,
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and the other is where d2 ≤ d1ε2/ε1 ≈ 0.13 (see Sec-
tion III-C5 for a more detailed discussion of these regions).
Note that there is a considerable gap between the degree-
optimized rateless codes and the segmentation-based scheme.
The LT-based scheme forces the code to have a single de-
gree distribution from which each coded bit is sampled. The
segmentation-based scheme, however, applies a different code
to each of the segments and hence provides greater flexibility
to simultaneously satisfy each user’s demand. Note that in
Fig. 6, the LT-based scheme is optimal as d2 → 0, but the
gap increases as the distortion increases. We also observe in
numerical experiments that for small d2 (up to around 0.2 in
Fig. 6), the optimal latency of (8) is achieved when the degree
distribution is designed for user 2 only, oblivious of user 1.
This, to some extent, echoes the segmentation-based scheme
when d2 ≤ d1ε2/ε1 ≈ 0.13 as discussed above.

V. INDIVIDUAL DECODING DELAYS

In this section, we consider possible orderings for the
transmission of the (minmax) latency-optimal segments given
in Theorem 3. In doing so, we will observe the subsequent
effect this has on individual decoding delays, which is of
practical interest. For clarity of exposition, we do this by
revisiting the numerical example given in Sections III-C4
and III-D and comparing two possible segment orderings.
We mention, however, that the procedure we follow for our
derivation is not dependent on this example and is easily
generalizable. The intention of comparing these orderings is
to illustrate just how challenging it can be to schedule the
transmission of segments for a particular metric. While it is
not an exhaustive treatment of all possible orderings, our hope
is that the insight gained through this example will trigger
further interest and research.

Now, recall that for this example, we have that J = [n]. In
turn, this implies that each user’s distortion constraint in (4) is
tight since in general, any user in J will have their distortion
constraint met with equality. This fact can be verified by
combining (4) and (6). The consequence of this is that each

Nai Wi1 Wi2

pi1

pi2

Wii

b b b

Fig. 7: The systematic (cross-hatched) and parity components
of the length-Wii sequence Xi, which is the channel encoder
output when given the length-Nai source segment Si.

user will need to receive a portion of every segment, a fact
which will be taken into account when considering possible
segment orderings.

Before we begin discussing some possible orderings, how-
ever, let us first consider the process involved in transmitting
a length-Nai source segment Si for i ∈ [n]. Given that this
segment is channel coded with a rate-(1−εi) code to obtain the
channel input Xi, we see that Wii channel uses are required
to transmit the segment where

Nai = Wii(1− εi). (9)

Since the channel code is systematic, the Wii channel uses
consists of a length-Nai portion of the original source symbols
in Si followed by a length-pii portion of parity symbols where

pii = Wii −Nai =
Nεi

1− εi
ai. (10)

We denote the length-pii portion of parity symbols in Xi as
Pi. This partitioning into systematic and parity components is
depicted in Fig. 7.

Notice, however, that user i is the only user who must listen
for the entire Wii channel uses. For j ∈ {i+ 1, i+ 2, . . . , n},
user j in fact cannot decode the entire segment Si and instead
relies only on what he can obtain from the systematic portion.
He can therefore stop listening after Nai channel uses. On the
other hand, for k ∈ {1, 2, . . . , i−1}, since εk < εi, user k can
decode segment Si by listening to only Wik < Wii channel
uses where

Wik(1− εk) = Wii(1− εi). (11)

The earlier decoding times Wi1 and Wi2 for users 1 and 2 are
also shown in Fig. 7.

In light of these facts, we will treat the systematic portion of
each channel coded segment as a common requirement for all
users. In the next two subsections, we will therefore consider
orderings that begin with uncoded transmissions. That is, we
will first send the length-Na0 segment S0 uncoded and subse-
quently isolate and transmit the systematic component of Xi

for i ∈ [n]. This requires a total of N(a0+a1+ . . .+an) = N
transmissions, where we have used the fact that the source
segments partition the entire source sequence (see (6) and
Lemma 4).

The entire source sequence is therefore sent over the first
N channel uses, and the only remaining task is to determine
the subsequent ordering of the n parity components Pi for i ∈
[n]. This option of ordering parity components provides much



10

flexibility to a content provider. For example, he can make any
user k ∈ [n] able to decode at a latency that is point-to-point
optimal. We again note that for i ∈ {k+1, k+2, . . . , n}, user
k does not have to receive the entire pii parity symbols of Xi.
He can instead listen to only pik symbols, where

pik = Wik −Nai =
Nεk

1− εk
ai, (12)

and Wik is given by (11) (see Fig. 7). Since the systematic
portions of segments Sj , j ∈ {1, 2, . . . , k − 1}, have already
been sent within the first N transmissions, user k has therefore
decoded as much as he can for these segments and therefore
does not have to listen for their parities. Hence, if the content
provider follows the uncoded transmissions by successively
transmitting the first pik parity symbols of Pi for i ∈ {k, k+
1, . . . , n}, it is not hard to see that user k can meet his optimal
latency.

Given such latitude in our problem, an exhaustive approach
to considering possible segment orderings is therefore out of
the scope of this article. In the following two subsections, we
will instead consider two simple orderings. They will consist
of transmitting the Pi in either increasing or decreasing order
of i. A numerical comparison of these two approaches will be
given in Section V-C.

A. Parity Segments Sent in Decreasing Order

In this subsection, we consider the case when Pi, the parity
for segment Si, is sent in decreasing order of i. That is, we first
transmit Pn followed by Pn−1 to P1 (see Fig. 8a). We will
calculate the excess latency each user experiences with this
ordering. The excess latency is defined relative to the point-
to-point optimal latency, w∗k, which is given for user k by

w∗k =
1− dk
1− εk

. (13)

Given that user k achieves a latency of wk, we then define his
excess latency, δk, to be

δk = wk − w∗k. (14)

To calculate δk, we first remind the reader that for the
example we are considering, user k requires parities from Pi
for i ∈ {k, k + 1, . . . , n} but does not require any parities
from Pj , j ∈ {1, 2, . . . , k − 1}, since they are intended for
users with better channel qualities. He can therefore meet his
distortion constraint after Pk is sent (see Fig. 8a). We recall
from the previous section that user k needs to listen to only
pik of the pii symbols in Pi. By combining (10) and (12), we
see that the excess latency incurred by listening to the full pii
parity symbols is therefore cumulatively given by

δk =
1

N

n∑
i=k+1

(pii − pik) (15)

=

n∑
i=k+1

(
εi

1− εi
− εk

1− εk

)
ai. (16)

Hence, the latency tuple (w∗1 + δ1, w
∗
2 + δ2, . . . , w

∗
n + δn) is

(d1, d2, . . . , dn)-achievable, where the ai’s that appear in (16)
are given by Theorem 3 for i ∈ {0, 1, . . . , n}.

B. Parity Segments Sent in Increasing Order

In this subsection, we consider the case when Pi, the parity
for segment Si, is sent in increasing order of i. That is, we
first transmit P1 followed by P2 to Pn (see Fig. 8b). We will
again calculate the excess latency user k experiences with this
ordering, which we will denote this time by ∆k.

In calculating ∆k, we again observe that the first k − 1
parities, P1,P2, . . . ,Pk−1, are useless to user k since they
are intended for users with better channel qualities. For j ∈
{1, 2, . . . , k−1}, the excess latency for each of these segments
is thus pjj .

In contrast, user k does require parities from Pi for i ∈
{k, k + 1, . . . , n}. For each of these parities, we can again
derive the excess latency incurred as being (pii−pik). Notice,
however, that user k is not forced to listen to the full amount
of parity symbols for Pn. Since this is the last parity segment
sent, he can actually decode after listening to pnk of these
symbols, and so there is no excess latency incurred from
Pn (see Fig. 8b). The cumulative excess latency is therefore
given by

∆k =
1

N

(
k−1∑
i=1

pii +

n−1∑
i=k+1

(pii − pik)

)
(17)

=

k−1∑
i=1

εi
1− εi

ai +

n−1∑
i=k+1

(
εi

1− εi
− εk

1− εk

)
ai. (18)

Again, the latency tuple (w∗1 + ∆1, w
∗
2 + ∆2, . . . , w

∗
n + ∆n)

is therefore (d1, d2, . . . , dn)-achievable, where the ai’s that
appear in (18) are given by Theorem 3 for i ∈ {0, 1, . . . , n}.

C. A Numerical Comparison of Orderings

We now compare the individual latencies achieved with
the orderings proposed in Sections V-A and V-B. We do
the comparison for the example discussed in Sections III-C4
and III-D, where each user i’s distortion is quadratic in his
erasure rate, i.e., di = ε2i for i ∈ {1, 2, . . . , 5}.

Let ε = (ε1, ε2, . . . , ε5) and d1 = (d1, d2, . . . , d5).
In the first example of Fig. 9a, we again take ε =
(0.1, 0.2, 0.3, 0.4, 0.5) and d1 = (0.01, 0.04, 0.09, 0.16, 0.25).
In this figure, each user is shown on the horizontal axis and the
individual latency he achieves is plotted on the vertical axis.
Each user’s point-to-point optimal latency, as given by (13), is
also shown so that the excess latency can easily be inferred.

From this figure, we see that the sum excess latency is lower
when the parities are sent in increasing order. At first, this
may seem counterintuitive since when Pi are transmitted in
increasing order of i, a user k has no use for parities Pj for
j ∈ {1, 2, . . . , k − 1} and essentially postpones the decoding
process until the transmission of these parities is complete (see
Fig. 8b). On the other hand, when Pi are sent in decreasing
order of i, user k has already finished decoding by the time
any parities Pj , j ∈ [k−1], are sent (see Fig. 8a). The lengths
of the parities in Figures 8a, and 8b were drawn only for
convenience, however, as pii, the number of parity symbols in
Pi, will generally vary depending on i (see (10)). As discussed
in Section V-B, the ability for certain users to avoid receiving



11

wwk

Pn Pn−1
b b b Pk

b b b P1

b bb b

I II
(a)

wwk

P1 P2
b b b Pk

b b b Pn

b bb b

II I
(b)

Fig. 8: The ordering of Pi for (a) decreasing and (b) increasing i. In both cases, user k decodes the parities in Region I and
ignores those in Region II. The latency of user k is wk.
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Fig. 9: The individual latency of each user for the segment orderings of Sections V-A and V-B. In (a), we set ε =
(0.1, 0.2, 0.3, 0.4, 0.5) and d = d1 = (0.01, 0.04, 0.09, 0.16, 0.25). In (b), we take ε = (0.31, 0.32, 0.33, 0.34, 0.35) and
d3 = (0.155, 0.192, 0.231, 0.272, 0.315). The point-to-point optimal latency for each user, as given in (13), is also shown.

the entire p55 parities of P5 = Pn is the other important
benefit in this example as P5 happens to be the longest of all
parity segments.

In contrast, Figure 9b plots when the distortions
and erasure rates have been chosen such that the
lengths of all coded segments are equal. Specifically,
we set ε = (0.31, 0.32, 0.33, 0.34, 0.35) and
d3 = (0.155, 0.192, 0.231, 0.272, 0.315) so that
(a1, a2, a3, a4, a5) = (0.1, 0.1, 0.1, 0.1, 0.1). The erasure
rates were also chosen within a short interval so that users
experience similar channel qualities. In turn, the excess
latency that stronger users incur when listening to parities of
weaker users is small. Thus, each term in (15) is small and
the excess latency for sending parities in decreasing order
is minimal. On the other hand, differing channel qualities
does not account for the entire excess latency when sending
parities in increasing order. There is also the excess latency
incurred by beginning transmission with parities that are not
decodable for certain users, which is represented by the first
summation in (17). We see then that in Figure 9b, the sum
excess latency is lower when sending parities in decreasing
order.

VI. CONCLUSIONS

In this paper, we proposed a successive segmentation-based
coding scheme for broadcasting a binary source over a multi-

receiver erasure broadcast channel. Each receiver has indi-
vidual distortion constraints and experiences distinct channel
erasure rates. The proposed scheme partitions the source
sequence into multiple segments and applies a systematic
erasure code to each segment. We provided optimal choices
for segment sizes and code rates for each segment, which
were based on the users’ channel erasure rates, and distortion
constraints.

Not only does this proposed scheme outperform Raptor and
network coding, it also has two other practical advantages,
namely simplicity and scalability. Firstly, it uses only off-
the-shelf systematic erasure codes rather than a joint source-
channel code, which would otherwise be required for optimal-
ity. Secondly, it can easily be adjusted as users are added or
deleted from the system and thus scales to an arbitrary number
of users while retaining optimality.

We also discussed the effects that segment transmission
orderings has on the decoding latencies of individual users.
We provided closed-form expressions for each individual
user’s excess latency when parity check bits are successively
transmitted in both increasing and decreasing order of their
segment’s coded rate. We then demonstrated how each of the
two orderings could be more favourable than the other in terms
of incurring a smaller average individual latency.

For future work, it is our interest to conduct a thorough
analysis of individual latencies achieved by users in our
segmentation-based scheme. We would also like to analyze the
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segmentation-based scheme for finite block-lengths and extend
the scheme for multiple-description-coded Gaussian sources.

APPENDIX A
PROOF OF CLAIM 2

By way of contradiction, suppose that the optimal rates do
not belong to the set R = {1}∪ {1− εi, i ∈ [n]}. Then in the
optimal solution (K∗,a∗, r∗), there exists some j, l ∈ [K∗],
j ≤ l, and i′ ∈ {0} ∪ [n], such that 1 − εi′ > r∗j > r∗j+1 >
· · · > r∗l > 1 − εi′+1, where we have defined ε0 = 0. Let
j′ = min{j : 1− εi′ ≥ r∗j }. Then, consider (K ′,a′, r′), where
K ′ = K∗ − (l − j′),

a′k =


a∗k, k = 0, 1, . . . , j′ − 1,∑l
k=j′ a

∗
k, k = j′,

a∗k+l−j′ , k = j′ + 1, . . . ,K ′,

and

r′k =


r∗k, k = 0, 1, . . . , j′ − 1,
1− εi′ , k = j′,
r∗k+l−j′ , k = j′ + 1, . . . ,K ′.

It is not hard to verify that (K ′,a′, r′) satisfies all the distortion
constraints while the latency (2) is strictly reduced. This
contradicts the optimality assumption.

APPENDIX B
PROOF OF THEOREM 3

We first reformulate the optimization problem in (4) by
introducing a change of variables. If we let bi =

∑i
j=0 aj

for i = 0, 1, . . . , n, (and hence a0 = b0 and ai = bi− bi−1 for
i = 1, 2, . . . , n), we can rearrange terms so that (4) becomes

min
b0,...,bn

bn
1− εn

− b0
(

1

1− ε1
− 1

)
−
n−1∑
i=1

bi

(
1

1− εi+1
− 1

1− εi

)
(19a)

subject to
0 ≤ b0 ≤ b1 ≤ · · · ≤ bn ≤ 1 (19b)
(1− εi+1)bi + (bn − bi) ≥ 1− di+1 (19c)

for i = 0, 1, 2, . . . , n− 1

Our problem is therefore reduced to finding the optimal
solution for Problem (19), and it is not hard to see that this
will in turn allow us to construct the optimal solution for
Problem (4). We proceed along these lines by first giving
a lemma that states that in our search for a segmentation-
based code that minimizes latency, we do not sacrifice any
optimality by restricting our search to those codes whose
segments partition the entire source sequence, i.e., those with
bn = 1.

Lemma 4. Let b∗ = (b∗0, b
∗
1, . . . , b

∗
n) be an optimal solution

to (19) where b∗n < 1. Then β∗ = (b∗0 +∆, b∗1 +∆, . . . , b∗n−1 +
∆, 1) is also an optimal solution where ∆ = (1− b∗n)/εn.

Proof: It is readily verified that in addition to being
feasible, β∗ also does not change the objective function in

comparison to b∗. The verification relies on the fact that
dn ≤ εn, which is assumed in our setup.

We now use Lemma 4 in order to show that Theorem 3
gives the optimal segmentation-based scheme.

Theorem 5. For the optimization problem in (19), there is an
optimal solution with bn = 1 and bi = minnj=i+1

{
dj
εj

}
for

i = 0, 1, . . . , n− 1.

Proof: From Lemma 4, it is sufficient to consider
segmentation-based codes with bn = 1. From the feasibility
constraints of (19b) and (19c) evaluated with bn = 1, we have

bi−1 ≤ min

{
bi,

di
εi

}
for i ∈ [n]. (20)

Upon inspection of (19a), we see that in order to min-
imize the objective function, we would like to maximize
bi−1 for i ∈ [n]. Consider first, bn−1, which is upper-
bounded as bn−1 ≤ dn/εn. Continuing, we have that bn−2 ≤
min{dn−1/εn−1, dn/εn} and in general

bi ≤ min
j∈{i+1,...,n}

{
dj
εj

}
for i = 0, 1, . . . , n− 1. (21)

We can therefore individually maximize each bi by choosing
equality in (21). This completes the claim.

Finally, to complete the justification of Theorem 3, we note
that the expression for bi in (21) is simply an alternative
representation for the variables (a0, a1, . . . , an) stated in The-
orem 3.
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channels: digital schemes,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp.
1782–1799, Apr. 2010.

[18] Y. Li and E. Soljanin, “Rateless codes for single-server streaming to
diverse users,” in Proc. 47th Annual Allerton Conference on Communi-
cation, Control, and Computing, Montecello, IL, Sep. 2009.

[19] Y. Li, E. Soljanin, and P. Spasojević, “Three schemes for wireless
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