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Abstract—We study the problem of broadcasting a
Gaussian source over a Gaussian broadcast channel to
two users with individual source-channel bandwidth mis-
matches, under a quadratic distortion measure. Specifically
we study the tradeoff between the achievable distortion
pairs between the two users as a function of the two
bandwidth-expansion factors as well as the two signal-
to-noise ratios. The case when the bandwidth-expansion
factors of the two users are identical has been well studied
in the literature and to our best knowledge remains an
open problem. Surprisingly, when the bandwidth expansion
factors are different, we characterize a range of values
where both the users simultaneously attain their point-to-
point optimal distortion. Furthermore in the high signal-to-
noise ratio regime, this set includes nearly all points where
the weaker user has the higher bandwidth expansion factor.
In other cases, we propose an achievable tradeoff between
the distortion pairs.

I. INTRODUCTION

Consider the problem of sending a bandlimited Gaus-
sian source over an additive bandlimited Gaussian noise
channel. Suppose that we are unclear about the exact
channel noise variance, however we still require that
the encoder guarantees certain levels of reconstruction
quality depending on the channel noise actually realized
when the system is operational. For example, we design
a single encoder and require that it achieves a low distor-
tion for low noise power while relaxing our requirements
and allowing for a higher distortion when experiencing
higher noise power. This problem has been treated in
the literature by considering a single transmitter that
in fact broadcasts simultaneously to multiple receivers,
each with different signal to noise ratios [1]–[3]. Given
that the source and channel bandwidths are Ws and Wc

(Hz) respectively, we typically sample the source at a rate
of 2Ws samples per second, and subsequently encode
the samples to be sent over the discrete-time Gaussian
channels at a rate of 2Wc channel uses per second. The
associated bandwidth expansion factor is b = Wc/Ws

channel uses per source sample and for a given b and the

signal-to-noise ratios, a tradeoff between the achievable
distortion pairs at the two users is of interest.

Now consider a variation on this problem. Imagine
that we require a low distortion even when experiencing
a weaker channel but we are willing to wait longer,
i.e., observe more channel symbols before making a
reconstruction. That is, we have the option of trading
distortion for delay. In this setup, the transmitter contin-
ues broadcasting and each receiver continues listening
until the distortion is sufficiently small. Such a problem
can be modelled as an extension of the model considered
in [1]–[3] where each receiver has a different bandwidth
expansion factor.

In [4] a single server streaming model has been
introduced. A server wishes to communicate a source
sequence to a group of heterogeneous users over a broad-
cast channel. The underlying channels are modelled as
erasure channels and each user’s channel has a certain
loss probability. Furthermore each user is only interested
in retrieving a certain fraction of source packets. The
transmitter continuously broadcasts coded packets and
each receiver waits until it is able to retrieve sufficiently
many packets of the underlying source. While the focus
in [4] is to optimize the degree distribution of a rateless
codes for this application, it can also be formulated as a
joint source-channel coding problem for sending a binary
source over a binary erasure broadcast channel with an
erasure distortion measure [5]. In the present paper we
only focus on the Gaussian version of the problem.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. We consider a
memoryless stationary Gaussian source {S(i)}i=1,2,...

producing symbols according to N (0, σ2), which we
wish to communicate to two users. Denote the vector
(S(1), S(2), . . . , S(k)) as Sk. The source is communi-
cated by a block encoding function that maps the length
k source sequence Sk, to a length n channel input
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Fig. 1. Broadcasting a Gaussian source over a Gaussian broadcast
channel with individual bandwidth mismatches. Here, the total number
of channel uses, n = max(n1, n2) = n2.

sequence Xn = (X(1), X(2), . . . , X(n)) where X(l)
denotes the lth channel input and Xn satisfies a power
constraint. Note here that our notation defines Xn as the
first n channel symbols sent.

Let Yi(l) be the channel output observed by user i on
the lth channel use for i ∈ {1, 2} and l = 1, 2, . . . , n.
The channel model is given by

Yi(l) = X(l) + Zi(l), (1)

where Zi(l) is the zero-mean additive Gaussian noise
observed at user i’s lth channel output. The channel is
memoryless in the sense that Zi(l) is drawn i.i.d. from
a N (0, Ni) distribution.

Now although the length n channel input is broad-
casted to both users, we will assume that due to each
user’s delay constraint, the ith user reconstructs the
source after observing only the first ni channel input
symbols, denoted as Xni , where ni ≤ n. Specifically, we
have that n = max(n1, n2). The reconstruction’s fidelity
is measured with the squared error distortion

d(sk, ŝk) =
1

k

k∑
j=1

(s(j)− ŝ(j))2. (2)

Definition 1. A (k, P, n1, n2, D1, D2) source-channel
code for source S on the Gaussian broadcast channel
consists of

1) An encoding function f : Rk → Rn satisfying
(1) n = max(n1, n2), (2)Xn = f(Sk) and (3)
1
n

∑n
j=1 E(X(j))2 ≤ P .

2) Two decoding functions gi : Rni → Rk for i ∈
{1, 2} such that Ed(Sk, gi(Xni + Zni

i )) ≤ Di

holds for i ∈ {1, 2}.
where E(·) is the expectation operation.

Now as mentioned in Section I, we associate with
the ith user, a delay parameter bi ∈ [0,∞), called the
bandwidth expansion factor. This represents the number
of channel uses per source symbol that are delivered over
the ith user’s channel. That is, the ith user requires that
at most bi · k channel uses be employed on his channel
before he reconstructs Sk subject to his distortion con-
straint. Our problem is now defined as characterizing
the achievable distortion region under a given pair of
bandwidth expansion factors as per the next definition.

Definition 2. A distortion pair (D1, D2) is said to be
(b1, b2) achievable over the Gaussian broadcast channel
under power constraint P , if for every δ > 0 there exists
for sufficiently large k, a (k, P, b1·k, b2·k, d1, d2) source-
channel code such that

Di + δ ≥ di, i ∈ {1, 2}. (3)

The achievable distortion region is the set of all
achievable distortion pairs under the prescribed band-
width expansion pair.

III. AN INNER BOUND FOR THE ACHIEVABLE
DISTORTION REGION

In this section, we propose several coding schemes
that collectively provide an inner bound for the achiev-
able distortion region. Assume that N1 < N2. Since
the performance of the Gaussian broadcast channel is
identical to that of a degraded Gaussian broadcast chan-
nel, we will refer to user 1 as the strong user, and
user 2 as the weak user. We specialize our analysis and
focus on the case in which both users have bandwidth
expanded and the strong user has the more stringent
delay constraint, i.e., 1 < b1 < b2. In this case, we
will find particular values b∗1 and b2 in Section III-A, for
which both users can simultaneously achieve distortions
that are point-to-point optimal. In particular, we say that
user i achieves his point-to-point distortion at bandwidth
expansion factor bi, if he achieves a distortion D∗

i given
by

D∗
i (bi) =

σ2(
1 + P

Ni

)bi , i ∈ {1, 2}, (4)

where (4) is obtained from substituting for the rate
distortion and channel capacity functions of the Gaussian
source/channel into the separation theorem. Since we
will be interested in studying how the distortions of the
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Fig. 2. The splitting into analog and digital branches in time.

two users depend on their bandwidth expansion factors,
we use a slight abuse of notation and express D∗

i as
a function of only bi. In the following sections, we
will parameterize the problem by fixing any arbitrary
b2, while considering the distortions of both users as we
vary b1 relative to b2.

A. A Critical Bandwidth Expansion Value

Consider first, the problem of coding entirely for the
weak user so that he achieves his point-to-point distor-
tion at some b2 > 1. We will use a hybrid digital-analog
coding scheme as in [1]–[3]. We first split our channel
block of length n = b2k into a lower analog branch and
an upper digital branch which are to be concatenated
together, i.e., multiplexed in that order in time (see
Fig. 2). The digital branch is of blocklength k(b2 − 1)
and contains a coarse description of the source sequence
Sk. Specifically, we perform vector quantization of the
source at average distortion DQ, which is set so that
the quantizer rate is equal to the weak user’s channel
capacity on the digital branch, i.e.,

1

2
log

(
σ2

DQ

)
=

(b2 − 1)

2
log

(
1 +

P

N2

)
. (5)

Denote the output of the source quantizer as SkQ.
We subtract SkQ from the source sequence Sk, and the
resultant quantization error E, is scaled and sent over
the analog branch, which has blocklength k.

At the receiver, the weak user demultiplexes the
analog and digital branches and first recovers the coarse
description from the digital branch. He then obtains the
linear minimum mean squared error (MMSE) estimate
of the quantization error Ê from the analog branch, and
reconstructs the source sequence as Ŝk = SkQ + Ê. It is
readily verified that this scheme is point-to-point optimal
for the weak user at b2.

Now consider the strong user as all this transpires. He
also demultiplexes the analog and digital branches. That
is, he observes the first k channel symbols and sets this
aside as the analog branch and then observes the next
k(b2 − 1) channel symbols as a digital branch. We note
however, that the strong user can actually listen to only
k(b∗1 − 1) < k(b2 − 1) channel symbols after the analog
branch and yet still recover the coarse description.

In the digital branch, note that the encoder employs
a Gaussian codebook composed of 2k(b2−1)C2 length
k(b2 − 1) codewords whose components are sampled

i.i.d. from a N (0, P ) distribution, where C2 is the
channel capacity for the weak user, i.e., C2 = 1

2 log(1+
P/N2). From the channel coding theorem, it is not hard
to see that with arbitrarily small probability of error, the
strong user has to listen to only k(b∗1 − 1) channel uses
before being able to uniquely identify which codeword
was sent by joint-typicality decoding, where b∗1 satisfies
k(b∗1 − 1)C1 = k(b2 − 1)C2, i.e.,

(b∗1 − 1)

2
log

(
1 +

P

N1

)
=

(b2 − 1)

2
log

(
1 +

P

N2

)
.

(6)
After recovering the channel codeword and thus the

coarse description, the strong user can perform their own
MMSE estimate of the quantization error to achieve a
distortion of

D1 =
DQ(

1 + P
N1

) . (7)

Combining (4), (5), (6) and (7), we have that at b∗1, the
strong user can in fact achieve distortion D1 = D∗

1(b
∗
1).

Theorem 1. Let b2 > 1. Then for some b∗1 satisfying (6),
the distortion pair (D1, D2) = (D∗

1(b
∗
1), D

∗
2(b2)) is

(b∗1, b2) achievable.

Again, it is worth mentioning that the result of both
users achieving their point-to-point distortion in The-
orem 1 is not possible in the familiar problem where
b1 = b2. Naturally, the question now arises as to what
the achievable distortions would be if we deviate from
these critical bandwidth expansion factors. We explore
this in the next two sections.

B. A Successive Refinement Coding Scheme

In this section, we consider the case that the delay of
the strong user, b1, is even stricter than that given by
b∗1, i.e., 1 < b1 < b∗1 < b2. In this case, we will use a
“successive refinement” strategy consisting of the coding
scheme of Section III-A followed by Wyner-Ziv coding
to show that both users can still simultaneously achieve
point-to-point optimal distortions.

Now given that b1 < b∗1, we first find a b̃2 satisfying
(6) when b∗1 and b2 are replaced by b1 and b̃2 respectively.
In other words, we find a b̃2 such that k(b1 − 1)C1 =
k(b̃2 − 1)C2, i.e.,

(b1 − 1)

2
log

(
1 +

P

N1

)
=

(b̃2 − 1)

2
log

(
1 +

P

N2

)
.

(8)
Operationally, this is equivalent to employing the

coding scheme of Section III-A with a coarse de-
scription that achieves distortion D̃Q using rate
(1/2) log(σ2/D̃Q) = (b̃2 − 1) log(1 + P/N2). Here b̃2
is chosen as in (8) and from Theorem 1, we achieve
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the point-to-point optimal distortions for both user 1 and
user 2 at b1 and b̃2 respectively. To show that we can also
be optimal for user 2 at b2, we use Wyner-Ziv coding
immediately after the coding scheme of Section III-A.
Specifically, after kb̃2 channel uses, we send a Wyner-
Ziv bit stream for the weak user assuming that he has
side information at a mean squared error of D∗

2(b̃2) with
respect to the source. Note here that we can invoke the
upper bound on the quadratic Wyner-Ziv rate-distortion
function as in [2], to show that in order to achieve a
new distortion of D2, a bit stream of rate RWZ(D2) is
sufficient, where

RWZ(D2) =
1

2
log

D∗
2(b̃2)

D2
. (9)

Setting (9) equal to the channel capacity of the weak
user’s remaining digital branch, we get that

1

2
log

D∗
2(b̃2)

D2
=

(b2 − b̃2)
2

log

(
1 +

P

N2

)
. (10)

Combining (4), (8) and (10) and rearranging for D2,
we have that after sending the Wyner-Ziv bit stream, we
can in fact achieve D2 = D∗

2(b2) at b2.

Theorem 2. Let b2 > 1 and let b∗1 satisfy (6) for the
choice of b2. Then for any b1 such that 1 < b1 ≤ b∗1, the
distortion pair (D1, D2) = (D∗

1(b1), D
∗
2(b2)) is (b1, b2)

achievable.

As an interesting aside, from (6) we have that in the
limit of high SNR (P � N1), b∗1 = b2 − oP (1) where
oP (1) goes to zero as P → ∞. Theorem 2 then states
that we can nearly achieve point-to-point optimality for
both users for any b1 < b2 under bandwidth expansion.

C. An Achievable Tradeoff

In this section, we present an achievable tradeoff in
distortion pairs for when 1 < b∗1 < b1 < b2. We will
again use a hybrid-digital analog scheme, however this
time, we will further divide the digital branch (in time)
into two regions. Region I will include the channel uses
from k to kb1 while Region II will include the channel
uses from kb1 to kb2 (see Fig. 3). Following this division,
we now view the digital branch analogously to the
product of two unmatched degraded broadcast channels
[6]. Here, Region I corresponds to a degraded brodcast
channel in which user 1 is the stronger user, while
Region II corresponds to another broadcast channel in
which user 2 is the stronger user and user 1 has infinite
noise power. We will use these two broadcast channels
to send a common message intended for both users, and
a private message intended only for user 1; cf. [2], [3].

We denote the common and private message rates,
measured in bits per source symbol, as R0 and R1

b1 b∗
1 b1 b2

b bb bb b

Analog I II

βP

P

Fig. 3. The splitting into analog and digital branches. The digital
branch is further split into Region I and Region II and the power in
it (shown vertically) is allocated between a common message (cross-
hatched) and a private message.

respectively. As the private message is intended only
for user 1, we can send it only over Region I. We
will dedicate a portion β ∈ [0, 1] of the total power in
Region I for this purpose. Specifically, we set

R1 =
b1 − 1

2
log

(
1 +

βP

N1

)
. (11)

The common message is a coarse description of the
source. It is sent over both regions, however only a
portion (1 − β) of the power in Region I will be used
for this purpose while the full power of Region II will
be used. Specifically, we perform vector quantization of
the source at an average distortion D̂Q, set so that

R0 =
1

2
log

(
σ2

D̂Q

)
=
b1 − 1

2
log

(
1 +

(1− β)P
N2 + βP

)
+
b2 − b1

2
log

(
1 +

P

N2

)
. (12)

Equation (12) makes it clear that user 2 will be able
to recover the coarse description by treating the private
message as noise in Region I, and then recovering the
rest of the message in Region II. In order for user 1 to
also recover the message in Region I, we require that

R0 ≤
b1 − 1

2
log

(
1 +

(1− β)P
N1 + βP

)
. (13)

After each user recovers the coarse description, they
again estimate the quantization error over the analog
branch, after which, user i can achieve distortion D̃i of

D̃i =
D̂Q

1 + P
Ni

, i ∈ {1, 2}. (14)

Since this is all we will be sending to the weak
user, D̃2 is the final distortion user 2 achieves. We
will however, send extra Wyner-Ziv bits for user 1 in
Region I assuming that he already has side information
at distortion D̃1 relative to the source. The extra bits help
user 1 achieve a distortion D1, where we set D1 so that
the Wyner-Ziv rate equals the private message rate, i.e.,

RWZ(D1) =
1

2
log

D̃1

D1
= R1. (15)

Suppose for now that user 1 is to be optimal at b1. In
this case, we see that (13) must be met with equality. To
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D1(β) ,
σ2(

1 + (1−β)P
N2+βP

)b1−1 (
1 + P

N2

)b2−b1 (
1 + P

N1

)(
1 + βP

N1

)b1−1
(16)

D2(β) ,
σ2(

1 + (1−β)P
N2+βP

)b1−1 (
1 + P

N2

)b2−b1+1
. (17)

this end, define β0 as the value of β that accomplishes
this. Combining (12) and (13), we have that

β0 =

(
1 + P

N1

)
−
(
1 + P

N2

) b2−1
b1−1

P
N1

(
1 + P

N2

) b2−1
b1−1 −

(
1 + P

N1

)
P
N2

. (18)

It can be verified that 0 < β0 < 1 whenever 1 < b∗1 <
b1 < b2, which is the region of interest and so β0 is
indeed a valid power allocation. Defining the functions
D1(β) and D2(β) as in (16) and (17), after combining
(11), (12), (14) and (15) for user 1 and (12) and (14) for
user 2, we have that the distortion pair (D1(β0),D2(β0))
is achievable. In particular, since the right hand sides of
(12) and (13) are equal when β = β0, we can confirm
that user 1 is optimal at b1 for this power allocation.

Let us now consider the scenario if we did not require
user 1 to be optimal at b1. To this end, we restrict β by
setting β = αβ0 for some α ∈ [0, 1]. In particular, if
α = 1, we recover β = β0 as our power allocation, and
user 1 is optimal. As we decrease α (and in turn β),
we introduce more slackness in (13) until β = 0. This
makes the coding identical to that in Section III-A, so
that the weak user is optimal. In general, we may achieve
a tradeoff in distortions by letting α vary in [0, 1].

Theorem 3. Let b2 > 1 and let b∗1 satisfy (6) for the
choice of b2. Then for any α ∈ [0, 1] and for any b1 such
that 1 < b∗1 < b1 < b2, the distortion pair (D1, D2) =
(D1(αβ0),D2(αβ0)) is (b1, b2) achievable, where β0 is
given by (18)

We remark that as b1 → b2, from (18) we have
that β0 → 1. In this case, the coding scheme of this
section reduces to the one proposed in [2]. In light of
the results in [3] and [6] we also suggest that the results
in this section may be improved by further allocating
power amongst the digital and analog branches and sub-
branches, introducing a private message to user 2 and
optimizing over the boundaries of Regions I and II
however for conciseness, we do not pursue this here.
Finally, we mention that the outer bound in [2] using
b = max (b1, b2) = b2 may also be applied here since
this bound would be obeyed a fortiori when b1 < b2.

Theorem 3 completes our coding scheme for any b1
and b2 such that 1 < b1 < b2. Fig. 4 plots our achievable
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Fig. 4. Distortion of the weak user when the strong user is optimal at
b1. We vary b1 and fix b2 = 2, SNR1 = 6.02 dB, SNR2 = 3.01 dB,
σ2 = 1.

scheme for the weak user when the strong user is always
optimal at b1 and we vary b1 relative to a fixed b2. As
is readily seen, the weak user is also able to achieve
an optimal distortion, shown as the dashed line, until a
critical bandwidth expansion factor b∗1. After this critical
value, the requirement that the strong user is optimal
results in an increasing distortion for the weak user.
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