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Abstract—A two-receiver MIMO broadcast-wiretap channel
is considered where the channel state of the eavesdropper is
arbitrarily varying. It is assumed that the eavesdropper knows
this channel state perfectly whereas the legitimate nodes have
no knowledge of it. It is further assumed that the eavesdropper
experiences no additive noise. The channel between the trans-
mitter and the two legitimate receivers is a constant MIMO
Gaussian broadcast channel. This paper establishes the secrecy
degrees of freedom region for transmitting a common-confidential
message as well as a private-confidential message to each receiver.
It is observed that a straightforward extension of single user
random binning does not achieve the optimal secrecy degrees
of freedom (s.d.o.f.) region. The proposed coding scheme that
achieves the s.d.o.f. region involves simultaneous diagonalization
of the channel matrices of the two legitimate receivers using the
generalized singular value decomposition (GSVD) as well as a
particular structured binning across codebooks that minimizes
the rate of the fictitious message. While the focus is on achieving
weak secrecy for ease of exposition, an outline is provided on
how the results can be extended for achieving strong secrecy.

I. INTRODUCTION

All secrecy schemes are based on a small set of reasonable

assumptions. The approach of studying secrecy problems using

information theory was first studied by Shannon in [1] and was

later extended to different network models, see for example,

[2]–[6]. The distinctive feature of this approach is that instead

of assuming the adversary is computationally limited as in

the case of computational security, secrecy is achieved relying

solely on assumptions on the communication network, usually

described in terms of network topology, channel states or the

signal to noise ratio, allowing the adversary to be compu-

tationally unlimited. Such an approach therefore establishes

the fundamental limits for secure communication rates, and

identifies properties inherent to the communication network

that can be leveraged to achieve positive secrecy rates for

legitimate communication parties.

The possibility of achieving secure communication using

multiple antennas has been studied extensively in literature.

Most works assume (partial) knowledge of the eavesdropper

channel state information and characterize the rates at which

secure communication can take place, see [7]–[10] for exam-

ple.

Since the eavesdropper does not transmit and hence its

channel states are hard to obtain for legitimate communication

parties, recent works [11], [12] have started to consider the

case where the eavesdropper channel is arbitrarily varying

and its channel states are known to the eavesdropper only.

Reference [12] has studied the single-user Gaussian MIMO

wiretap channel and found its secrecy degrees of freedom,

which is a high SNR characterization of the capacity of this

model. Reference [12] has also provided the secrecy degrees of

freedom region for a two-receiver Gaussian MIMO broadcast

channel where each legitimate node has the same number of

antennas, which is obtained as a straightforward extension of

the single user case. In both cases, only the number of antennas

employed by the eavesdropper is known to the transmitter.

This assumption can be justified for the scenarios where the

eavesdropping device is small and hence is unlikely to employ

more than a certain number of antennas.

In this work, we consider the general setting where the

nodes have any number of antennas and characterize the se-

crecy degrees of freedom region for the two-receiver Gaussian

MIMO broadcast channel. The achievability proof is not a

straightforward extension of [12] which involves constructing

a vector codebook sampled in an i.i.d. fashion and random

binning. A direct construction of two codebooks in this manner

introduces an independent randomization for each codebook

and creates higher than necessary interference between the

legitimate users. Instead, our approach involves carefully

transmitting a fictitious message, of just enough rate, in a

common subspace between the two users so that it can be

simultaneously useful for providing secrecy for both users.

This scheme can be viewed as inducing a structured binning

of the codebooks to minimize the size of each bin.

II. SYSTEM MODEL

We consider a MIMO Broadcast (BC) wiretap channel with

two receivers, as shown in Figure 1. We assume that the

transmitter has NT antennas. For t = 1, 2, receiver t has NRt

antennas, The eavesdropper has NE antennas. During the ith
channel use, the channel is:

Yt(i) = HtX(i) + Zt(i), t = 1, 2 (1)

Ỹ(i) = H̃(i)X(i) (2)

where Yt(i), t = 1, 2 denote the signals received at the

legitimate receivers, and Ỹ(i) denotes the received signal

at the eavesdropper. Ht, t = 1, 2 and H̃(i) are the channel



matrices. Zt, t = 1, 2 is the additive Gaussian noise observed

by the intended receiver t, which is composed of independent

rotationally invariant complex Gaussian random variables with

unit variance. H̃(i) is unknown to the legitimate parties.

Ht, t = 1, 2 are known by both the legitimate parties and

the eavesdropper(s).1

For clarity, we shall use γ to represent a sequence of {H̃(i)}
and use {Ỹγ(i)} to represent the outputs of the eavesdropper

channel that corresponds to this sequence of eavesdropper

channel states.

Each receiver t receives a confidential message Wt, and a

common confidential message W0 from the transmitter over n̄
channel uses. W0, W1, W2 must be kept confidential from the

eavesdropper. Let Wi, i = 0, 1, 2 denote the alphabet for Wi.

|Wi| denotes the cardinality of Wi.

The average power constraint for the transmitter is

lim
n̄→∞

1

n̄

n̄
∑

i=1

trace(X(i)(X(i))H ) ≤ P̄ (3)

We assume the eavesdropper channel state information

sequence {H̃(i)} is independent from X. In this case, as

shown in [12], the secrecy constraint can be defined as:

lim
n̄→∞

I
(

W0, W1, W2; Ỹ
n̄
γ

)

= 0, ∀γ (4)

where γ is used to index the eavesdropper channel state

sequence. We require the limit in (4) to be uniform over all

possible sequences of eavesdropper channel states [12].

The secrecy rate for the message Wi, Rs,i, is defined as

Rs,i = limn̄→∞
1
n̄
H(Wi), i = 0, 1, 2 such that {W0, Wt} can

be reliably decoded by receiver t, t = 1, 2.

In this paper, we use the secrecy degrees of freedom

(s.d.o.f.) region as a characterization of the high SNR behavior

of the secrecy capacity for this channel. The s.d.o.f. region is

defined as:

{(d0, d1, d2) : di = lim sup
P̄→∞

Rs,i

log2 P̄
, i = 0, 1, 2} (5)

III. MAIN RESULT

Theorem 1: Let r1, r2 be the rank of H1 and H2 respec-

tively. Let r0 be the rank of [HT
1 ,HT

2 ]T . The secrecy degrees

of freedom region for the MIMO broadcast wiretap channel

in Figure 1 is given by

0 ≤ dj , j = 0, 1, 2 (6)

0 ≤ d0 + di ≤ max{0, ri − NE}, i = 1, 2 (7)

0 ≤ d0 + d1 + d2 ≤ max{0, r0 − NE} (8)

Remark 1: The result here can be viewed as a Gaussian

model counterpart of [13] that establishes the secrecy degrees

of freedom for a class of deterministic memoryless broadcast

channels. However, the result in [13] is based on the use

1Since the eavesdropper channel is arbitrarily varying, the model includes
the case of having any number of non-colluding eavesdroppers.
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Fig. 1. The MIMO Broadcast Wiretap Channel where NT = 3, NR1
=

NR2
= 2, NE = 1.

of rank metric codes and does not generalize to Gaussian

channels. We also observe that when NE = 0, i.e., there is no

eavesdropper, the result here can be shown to be equivalent to

the rate region derived in [14] by applying Fourier-Motzkin

elimination on [14, (50)-(53)], the constraints on η, δ below

[14, (50)-(53)], and di ≥ 0, i = 0, 1, 2.

IV. MOTIVATING EXAMPLE: 3 × 2 × 2 × 1 CHANNEL

Consider the example in Figure 1 where Nt = 2, NE = 1
and NR1 = NR2 = 2. Assume that r1 = r2 = 2 and

r0 = 3. As we discuss in the sequel, after an appropriate

transformation, the channel matrices of the two legitimate

receivers reduce to:

H1 = [I(2×2),0(2×1)], H2 = [0(2×1), I(2×2)] (9)

while the effective channel matrix of the eavesdropper is an

arbitrary rank one matrix. Reference [12] shows that there

exists a codebook C1 that can be transmitted over the first

and the second antenna to achieve d1 = 1, and there exists a

codebook C2 that can be transmitted over the second and the

third antenna to achieve d2 = 1. However, since W1 and W2

are independent, the signals that C1 uses to represent W1 over

the second antenna in general do not agree with the signals that

C2 uses to represent W2 over this antenna, causing a conflict.

Thus, we need to construct a new scheme.

Our proposed scheme resolves this conflict by constructing

three codebooks, one for each link. A codebook on the second

link CE is used to transmit a fictitious message WE via a

codeword Xn
E(WE). An independent codebook on the first

link C1, of twice the rate, is used to transmit a codeword

Xn
1 (WE , W1) while another codebook C2 on the third link is

used to transmit a codeword Xn
2 (WE , W2). It can be verified

that both users 1 and 2 can decode (W1, WE) and (W2, WE)
respectively whereas the secrecy analysis reveals that both

(W1, W2) are protected from the eavesdropper. In the next

section we generalize this scheme to arbitrary number of

antennas and a common message W0.

Note that the proposed construction has three indepen-

dent messages. In contrast, the naive extension of single-

user random binning consists of four independent mes-
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Fig. 2. Codebook generation: (a) s ≤ NE < min{r1, r2} (b) 0 < NE < s

sages: one message for each user and one message from

random codeword selection in each bin and forces the

users to decode more information than is necessary. Our

construction induces structured binning across the code-

books: given a choice of messages w0, w1, w2 the bin

index Bw0,w1,w2 consists of all sequences of the form
{
⋃

wE
(xn

1 (w1, w0, wE), xn
E(w0, wE), xn

2 (w2, w0, wE))
}

. The

following lemma, whose proof will be omitted due to space

constraints is used in the secrecy analysis.

Lemma 1: Let |WE | denote the cardinality of the set of

possible values for the fictitious message WE . Then

1) The size of each Bw0,w1,w2 equals |WE |.
2) The codewords within Bw0,w1,w2 are i.i.d..

V. PROOF OUTLINE

The converse follows from standard pairwise upper bound

considerations, see [13]. We focus on the achievability proof

here.

Define d(x) as d(x) = lim supP̄→∞
x

log2 P̄
. For ease of

explanation, we shall first prove Theorem 1 in terms of the

following secrecy requirement:

lim
n̄→∞

1

n̄
d(I

(

W0, W1, W2; Ỹ
n̄
γ

)

) = 0, ∀γ, (10)

and restrict ourselves to the case where the eavesdropper

channel state is arbitrary but does not change over time. Later,

in Section V-F, we shall outline the techniques required to

strengthen the result for the strong secrecy case (4) when the

eavesdropper channel is arbitrarily varying.

In the proof, we focus on a special form of channel

model. It can be shown through generalized singular value

decomposition [8], [14] that the general channel model can be

converted to the form we are considering while preserving the

degrees of freedom region. In this special form, NT = r0 and

Σ̄t is a NRt
× r0 matrix:

Yt(i) = Σ̄tX(r0×1)(i) + Zt(i), t = 1, 2 (11)

Ỹ(i) = H̃(NE×r0)(i)X(r0×1)(i) (12)

The only nonzero elements in Σ̄t are the first r1 leading

elements on the main diagonal line of Σ̄1 and the last r2

elements on the main diagonal line of Σ̄2. These nonzero

elements are all positive and share the same value, which we

denote with s2
min.

As in [12], without loss of generality, we assume r0 > NE

and consider H̃ that has the following form:

H̃ = [INE×NE
,0NE×(r0−NE)]UE(i) (13)

where UE(i) is a unitary matrix only known to the eavesdrop-

per. As in [12], [15], we then introduce artificial noise into X

in (11) and (12) by computing X as:

X(i) = X̃(r0×1)(i) + N(i) (14)

where N is the r0 × 1 artificial noise vector consisting of

independent rotationally invariant complex Gaussian random

variables with zero mean and unit variance. The codebook is

designed to transmit X̃.

Define N ′
E as N ′

E = NE + d0. As in [13], in the proof we

consider two cases:

1) s ≤ N ′
E < min{r1, r2}. In this case (8) is not active and

to prove the region is achievable we only need to show

for a given value of d0, the pair (d1 = r1 − N ′
E, d2 =

r2 − N ′
E) is achievable.

2) 0 < N ′
E < s. In this case (8) is active. To prove the

region is achievable we only need to show for a given

value of d0 the two corner points (d1 = r1 −N ′
E , d2 =

r̃2) and (d1 = r̃1, d2 = r2 − N ′
E) are achievable.

We shall prove the pair (d1 = r1 − N ′
E, d2 = r̃2) is

achievable since the proof for the other pair is similar.

A. Input Distribution

Let C (x) = log2 (1 + x). Define P such that P +r0 is pro-

portional to P̄ . Define R as R = C(s2
min(P/r0)/(s2

min + 1)).
We shall allocate a total power of r0 units on artificial noise

N in (14) and P/r0 units on each antenna for X̃.

As mentioned in Section IV, we shall divide the antennas

into different groups, which will be described in Section V-B,

and generate codebooks for each group. The input distribu-

tion we use to generate codebooks is a truncated Gaussian

distribution: For a group that contains k antennas, let X̃[k]

denote a random vector formed by any k components of

X̃ in (14). For a positive constant εP , define Q
X̃[k]

(x)

be a k-dimensional rotationally invariant complex Gaussian

distribution with covariance matrix (P (1 − εP )/r0)I(k×k).

We define the following truncated n-letter input distribution

Q
X̃n

[k]
(xn) used to generate the codebooks: Let xi denote the

ith component of xn. Q
X̃n

[k]
(xn) is given by:

Q
X̃n

[k]
(xn) = µ−1

n,k,εP
ϕ (xn)

n
∏

i=1

Q
X̃[k]

(xi) (15)

where µn,k,εP
=

∫

ϕ (xn)
n
∏

i=1

Q
X̃[k]

(xi)dxn and ϕ (xn)

equals 1 if 1
n
‖xn‖2 ≤ kP/r0 and equals 0 otherwise.

B. Codebook Generation

Let {δn} be a positive sequence of n that can be made

arbitrarily small. Define s = r1 + r2 − r0. r̃t = rt − s, t =
1, 2. The codebook generation depends on how the antennas

are grouped based on the values of N ′
E . This is illustrated in

Figure 2 and described in detail below.



1) s ≤ N ′
E < min{r1, r2}:

a) For t = 1, 2, Ct is composed of 2n(rtR−2δn) i.i.d.

sequences sampled from Q
X̃n

[rt−N′

E
]

(xn).

b) C3 is composed of 2n(N ′

ER−δn) i.i.d. sequences sampled

from Q
X̃n

[2N′

E
−s]

(xn).

Each codeword in C3 is labeled with i3 and j3. 0 ≤ i3 ≤
2n(NER−δn) − 1. 0 ≤ j3 ≤ 2n(d0R) − 1. i3 shall play the role

of WE in Section IV.

For t = 1, 2, each codeword in Ct is labeled with it and jt,

0 ≤ it ≤ 2n(N ′

ER−δn) − 1, 0 ≤ jt ≤ 2n((rt−N ′

E)R−δn) − 1.

2) 0 < N ′
E < s: To prove the achievability of the corner

point (d1 = r1 − N ′
E, d2 = r̃2), Ct, 1 ≤ t ≤ 3 are generated

as follows:

a) C1 is composed of 2n(r1R−2δn) i.i.d. sequences sampled

from Q
X̃

n

[r1−N′

E
]

(xn).

b) C2 is composed of 2n((r̃2+N ′

E)R−2δn) i.i.d. sequences

sampled from Q
X̃n

[r̃2]
(xn).

c) C3 is composed of 2n(N ′

ER−δn) i.i.d. sequences sampled

from Q
X̃n

[N′

E
]

(xn).

We then label C3 with (i3, j3) as described in the previous

sub-section, Section V-B1. C1 is labeled with (i1, j1) as de-

scribed in Section V-B1. Each codeword in C2 is labeled with

i2 and j2: 0 ≤ i2 ≤ 2n(N ′

ER−δn)−1, 0 ≤ j2 ≤ 2n(r̃2R−δn)−1.

C. Encoder

Since {i3, j3} has the same cardinality as {it}, we can

define one-to-one mapping between these two. Denote the

mapping with ht.

a) The encoder chooses i3 based on uniform distribution.

b) The encoder chooses j3 = W0.

c) For t = 1, 2, we compute {it, jt} as follows:

it = ht(i3, j3), jt = Wt (16)

1) s ≤ NE < min{r1, r2}: The codeword with label i1, j1
is chosen from C1 and transmitted over the first r1 − NE

components of X̃ in (14).

The codeword with label i2, j2 is chosen from C2 and

transmitted over the last r2 − NE component of X̃ in (14).

The codeword with label i3 is chosen from C3 and trans-

mitted over the remaining 2NE − s components of X̃ in (14).

2) 0 < NE < s: As in Section V-C1, the codeword with

label i1, j1 is chosen from C1 and transmitted over the first

r1 − NE component of X̃ in (14).

The codeword with label i2, j2 is chosen from C2 and

transmitted over the last r̃2 component of X̃ in (14).

The codeword with label i3 is chosen from C3 and trans-

mitted over the remaining NE components of X̃ in (14).

D. Decoder

1) s ≤ NE < min{r1, r2}: For t = 1, 2,

a) Receiver t first decodes the codeword from C3.

In this step, for receiver 1, the decoder takes the last N ′
E

components of Yt in (11) as inputs. For receiver 2, the

decoder takes the first N ′
E components of Yt in (11) as

inputs.

Receiver t then uses the label of the decoded codeword

as its estimate for i3, j3, which is denoted by î3,t, ĵ3,t.

The estimate for the common confidential message W0,

denoted by Ŵ0,t , is then given by ĵ3,t. The estimate for

the label it, denoted by ît, is then given by ht(̂i3,t, ĵ3,t).
b) Receiver t then estimates the transmitted codeword from

Ct based on the remaining rt − N ′
E components of Yt

in (14). Note that only those codewords in Ct whose

label it = ît need to be considered. From the labels

of the most likely codeword in Ct, receiver t computes

its estimate for label jt, denoted by ĵt. Its estimate for

message Wt, denoted by Ŵt, is then given by ĵt.

2) 0 < NE < s: Each receiver first computes î3,t, ĵ3,t as

described in the previous subsection, Section V-D1. Receiver

1 computes Ŵ1 as in Section V-D1. Receiver 2 computes Ŵ2

as in Section V-D1 except that in step b), r2 −N ′
E should be

replaced by r̃2.

E. Secrecy Analysis

In this section, we prove (10). Let ‖‖ denote the Euclidean

distance. As in [12], define the following fictitious decoder:

φγ,w0,w1,w2(ỹ
n) = arg max

xn∈Bw0,w1,w2

‖ỹn − H̃xn‖ (17)

which is the maximum likelihood decoder the eavesdropper

can use to decode the transmitted signals when it assumes the

secret message values are Wi = wi, i = 0, 1, 2.

Define ηC,γ,w0,w1,w2 as the probability of decoding error for

this fictitious decoder, which is given by:

Pr
(

φγ,w0,w1,w2

(

Ỹ
n
γ

)

6= X̃
n|Wi = wi, i = 0, 1, 2

)

(18)

Define ηC,γ as the value of ηC,γ,w0,w1,w2 averaged over

w0, w1, w2, which is given by:

1

|W0| × |W1| × |W2|

∑

wi∈Wi,i=0,1,2

ηC,γ,w0,w1,w2 (19)

Following [12], using Lemma 1, we have the following lemma.

Its proof will be provided in the journal version of this work.

Lemma 2: There exists a codebook C, such that

limn→∞ ηC,γ = 0 uniformly over all γ.

For this codebook and for any γ, we have:

H
(

W0, W1, W2|Ỹ
n
γ

)

= I
(

W0, W1, W2; X̃
n|Ỹn

γ

)

(20)

=H
(

X̃
n|Ỹn

γ

)

− H
(

X̃
n|Ỹn, W0, W1, W2

)

(21)

(21) is lower bounded through Fano’s inequality by

H
(

X̃
n
)

− I
(

X̃
n; Ỹn

γ

)

− 1 − ηC,γ log2

∣

∣

∣
{X̃n}

∣

∣

∣
(22)

Due to Lemma 2 and the fact that log2

∣

∣

∣
{X̃n}

∣

∣

∣
grows linearly

with respect to n, we have

lim
n→∞

1

n
d(1 + ηC,γ log2

∣

∣

∣
{X̃n}

∣

∣

∣
) = 0 (23)



On the other hand, as shown in [12], we have:

lim
n→∞

1

n
d(I

(

X̃
n; Ỹn

γ

)

) ≤ NE (24)

For the first term in (22), we have:

H
(

X̃
n
)

= log2 |{i3}| +

2
∑

i=0

log2 |Wi| (25)

a) s ≤ N ′
E < min{r1, r2}: In this case, for t = 1, 2,

log2 |W0| + log2 |{i3}| = n(N ′
ER − δn) (26)

log2 |Wt| = log2 |{jt}| = n((rt − N ′
E)R − δn) (27)

lim
n→∞

1

n
d(H

(

X̃
n
)

) =

2
∑

t=1

(rt − N ′
E) + N ′

E (28)

Applying (28), (23) and (24) to (22), we

find lim
n→∞

1
n
d(H(W0, W1, W2|Ỹ

n
γ )) is lower

bounded by
∑2

t=1(rt − N ′
E) + d0, which equals

lim
n→∞

1
n
d(H (W0, W1, W2)).

b) If 0 < N ′
E < s, it can be verified that

lim
n→∞

1
n
d(H

(

X̃
n
)

) = r0. Therefore

lim
n→∞

1

n
d(H

(

W0, W1, W2|Ỹ
n
γ

)

) ≥ r0 − NE (29)

which equals lim
n→∞

1
n
d(H (W0, W1, W2)).

Hence we have proved (10) for both cases.

F. Strong Secrecy for Arbitrarily Varying Channel

In this section, we briefly outline the necessary changes in

order to prove the strong secrecy requirement (4) when the

eavesdropper channel is arbitrarily varying:

a) As shown in [12], to ensure secrecy when the eavesdrop-

per channel is arbitrarily varying, “correlation elimina-

tion” [16] should be used. A coding scheme implied

by this technique uses a collection of codebooks instead

of one codebook. Each time the transmitter randomly

chooses one codebook to use and reveals its choice as

a public message.

b) As we have seen in Lemma 1, the rate of each bin is

NER, which is smaller than the rate that the eavesdrop-

per can decode, which is Re = NEC(P/r0). To ensure

secrecy, we must amplify the bin size. This is done

by using 2n(Re−NER+δn) codebooks. Each time the

transmitter chooses one codebook to use and transmits

its choice to the two intended receivers as a common

confidential message.

The coding scheme combines the two solutions above: The

transmitter uses a collection of codebooks C1,..., CK . Each Ck

is composed of a collection of sub-codebooks denoted by Ct,k

where 1 ≤ t ≤ 3 and 0 ≤ k ≤ 2n(Re−NER+2δn)−1. Each Ct,k

is generated and labeled as shown in Section V-A-Section V-B.

a) The transmitter chooses the sub-codebook Ct,K′′ , t =
1, 2, 3 in CK′

where K ′, K ′′ are generated randomly.

The confidential messages is encoded as in Section V-C.

b) The transmitter transmits K ′ as a public message, and

K ′′ as a common confidential message to both receivers.

The receivers first decode K ′ and K ′′ and use the sub-

codebook Ct,K′′ , t = 1, 2, 3 in CK′

to decode the confidential

messages as shown in Section V-D. It can be shown that

the communication overhead for transmitting K ′ and K ′′

does not reduce the achieved secrecy degrees of freedom and

Theorem 1 still holds.

VI. CONCLUSION

In this work, we have introduced a new type of binning

scheme. Through this binning scheme, we characterized the

secrecy degrees of freedom region for a two-receiver MIMO

broadcast wiretap channel where the eavesdropper channel is

memoryless and arbitrarily varying for any given number of

antennas.
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