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Abstract

We study the problem of generating a shared secret key betivee terminals in a joint
source-channel setup — the terminals communicate over cietihs memoryless wiretap channel
and additionally the terminals have access to correlatsecreie memoryless source sequences. We
establish lower and upper bounds on the secret-key capabitge bounds coincide, thus establishing
the capacity, when the underlying channel consists of a fsetdependent, parallel and reversely
degraded wiretap channels. In the lower bound expresdimenetiuivocation terms of the source
and channel components are functionally additive. Theesd@y rate is maximized by optimally
balancing the the source and channel contributions. Tadgeoff is illustrated in detail for the case
of parallel Gaussian channels and jointly Gaussian sountese it is also shown that Gaussian
codebooks achieve the capacity. When the eavesdroppenladsoves a source sequence, the secret-
key capacity is established when the sources and channtle ebvesdropper are a degraded version
of the legitimate receiver. Finally the case when the teatsimalso have access to a public discussion
channel is studied. We propose generating separate kaystfr® source and channel components
and establish the optimality of this approach when the wherchannel outputs of the receiver and
the eavesdropper are conditionally independent givenrtpeti

Index Terms

Information theoretic security, secret-key agreemermtetap channel, joint source-channel cod-
ing, public discussion

. INTRODUCTION

Several applications require that the legitimate ternsit@ve shared secret-keys, not avail-
able to unauthorized parties. Information theoretic sgc@ncompasses the study of source
and channel coding techniques to generate secret-keyedetlggitimate terminals. In the
channel coding literature, an early work in this area is theetap channel model [31]. It
consists of three terminals — one sender, one receiver ardeawesdropper. The sender
communicates to the receiver and the eavesdropper overceetdisnemoryless broadcast
channel. A notion of equivocation-rate — the normalizeddibonal entropy of the trans-
mitted message given the observation at the eavesdrogperiroduced, and the tradeoff
between information rate and equivocation rate is studiadfect secrecy capacity, defined
as the maximum information rate under the constraint thatettjuivocation rate approaches
the information rate asymptotically in the block length fsparticular interest. Information
transmitted at this rate can be naturally used as a shareet-$ey between the sender and
the receiver. Several extensions of this channel have leadred recently. See e.g., [3], [11],
[16], [20], [22]-[24], [30].

Part of the material in this paper was presented at the 20f@8ntation Theory and its Application Workshop [17]
and the 2008 International Symposium on Information ThgaB]. Ashish Khisti is with ECE Department, University of
Toronto, Toronto, ON, Canada (akhisti@comm.utoronto.8ahas Diggavi is with the Department of Electrical Engiireg
University of California, Los Angeles (UCLA) as well as withe School of Computer and Communication Sciences at
EPFL (suhas@ee.ucla.edu). Gregory Wornell is with thelfiaaf EECS Dept., MIT (gww@mit.edu).



In the source coding setup [1], [26], the two terminals obseorrelated source sequences
and use a public discussion channel for communication. Axfgrination sent over this
channel is available to an eavesdropper. The terminalsrgiena common secret-key that is
concealed from the eavesdropper in the same sense as th@pnhannel — the equivocation
rate asymptotically equals the secret-key rate. Severdtiuser extensions of this problem
have been subsequently studied. See e.g., [9], [10].

Motivated by the above works, we study a problem where thiéiregte terminals observe
correlated source sequences and communicate over a wechtamel and are required to
generate a common secret-key. One application of this sistup secret key generation
across sensors in a body area network [4], [5]. Sensors @latalifferent locations on a
human body measure correlated biological signals whichlmmsed to generate a secret
key. Further they need to communicate over a wireless mediutie presence of potential
eavesdropping sensors which would naturally be furtheyaWéile earlier works only exploit
signal correlation across sensors for key generation,rdarmation theoretic results suggest
that both signal correlation as well as channel equivonathust be used to maximize the
secret key rate.

How to simultaneously exploit both the source correlationd @hannel equivocation in
generating a common secret key? Our proposed approach istadgsign of source and
channel codebooks. The source sequence is quantized u¥iyger-Ziv like codebook and
the corresponding bin index constitutes a message for anehaodebook. The secret key
is generated by jointly exploiting the source and channeleuainties at the eavesdropper.
When the conditional entropy of the source sequences isufiitiently high, we only reserve
a certain fraction of the total channel uses for this schdmthe remaining time we transmit
an independent secret message over over channel. Opyiroéldur scheme is established
when the wiretap channel consists of parallel, independedtdegraded channels.

We also study the case when the eavesdropper observes & seguence correlated with
the legitimate terminals. The secret-key capacity is distadd when the sources sequence
of the eavesdropper is a degraded version of the sequendeedegitimate receiver and
the channel of the eavesdropper is a degraded version of thenel of the legitimate
receiver. Another variation — when a public discussion ctedns available for interactive
communication, is also discussed and the secret-key d¢gpa@stablished when the channel
output symbols of the legitimate receiver and eavesdropperconditionally independent
given the input.

The problem studied in this paper also provides an operatisignificance for the rate-
equivocation region of the wiretap channel. Recall thatrte-equivocation region captures
the tradeoff between the conflicting requirements of mazing the information rate to
the legitimate receiver and the equivocation level at theesdropper [7]. To maximize
the contribution of the correlated sources, we must opaatthe Shannon capacity of the
underlying channel. In contrast, to maximize the contidoutof the wiretap channel, we
operate at a point of maximum equivocation. In general, bl operating point lies in
between these extremes. We illustrate this tradeoff inildetathe case of Gaussian sources
and channels.

In related work [15], [27], [32] study a setup involving soas and channels, but require
that a source sequence be reproduced at the destinatie@ctdjo an equivocation level at
the eavesdropper. In contrast our paper does not imposeeguyrement on reproduction
of a source sequence, but instead requires that the tesngelerate a common secret
key. A recent work, [29], considers transmitting an indegert confidential message using
correlated sources and noisy channels. This problem isrdift from the secret-key generation



problem, since the secret-key, by definition, is an arbjtfanction of the source sequence,
while the message is required to be independent of the seem@ences. Independently and
concurrently of our work the authors of [28] consider thensg® of joint secret-message-
transmission and secret-key-generation, which when ajisil to the case of no secret-
message reduces to the scenario treated in this paper. Waikxpression for the achievable
rate in [28] appears consistent with the expression in thgep the optimality claims in [28]
are limited to the case when either the sources or the chalinebt provide any secrecy.

The rest of the paper is organized as follows. The problemtefést is formally introduced
in section Il and the main results of this work are summariiredection Ill. Proofs of the
lower and upper bound appear in sections IV and V respeygtiVéle secrecy capacity for the
case of independent parallel reversely degraded chammpl®vided in section VI. The case
when the wiretapper has access to a degraded source andeshs@nsmission through a
degraded channel is treated in section VII while section dhsiders the case when a public
discussion channel allows interactive communication betwthe sender and the receiver. The
conclusions appear in section IX.

[I. PROBLEM STATEMENT

Fig. 1 shows the setup of interest. The sender and receivemcmicate over a wiretap
channel and have access to correlated sources. They caacintaer a public-discussion
channel. We consider two extreme scenarios: (a) the discuskannel does not exist (b)
the discussion channel has unlimited capacity. The chafinel sender to receiver and
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Fig. 1. Secret-key agreement over the wiretap channel wittelated sources. The sender and receiver communicate ove
a wiretap channel and have access to correlated sourceg.cbhmunicate interactively over a public discussion clehnn
of rate R, if it is available.

wiretapper is a discrete-memoryless-channel (DMg), (-, -|-). The sender and intended
receiver observe discrete-memoryless-multiple-sou®NS) p,..(-,-) of length N and
communicate overn uses of the DMC. Throughout this paper assume that the sande
channels are independent i.éu, v) — x — (y, z) holds. Further the source sequences are
known to the terminals before the communication begins nen-causally. We separately
consider the cases when no public discussion is allowed alhited discussion is allowed.



A. No discussion channel is available

An (n, N) secrecy code is defined as follows. The sender samples amavat@ablem, *
from the conditional distributiop,, .~ (-|u"). The encoding functiorf,, : M, x UN — X"
maps the observed source sequence to the channel outpuddibiorm, two key generation
functionsk = K,,(M,,U") and/ = L,(VN, V") at the sender and the receiver are used for
secret-key generation. A secret-key rdtas achievable with bandwidth expansion factor
if there exists a sequence (i, fn) codes, such that for a sequengethat approaches zero
asn — oo, we have ()Pr(k # /) < e, (i) 1H(k) > R — &, (ii)1I(k;z") < e,. The
secret-key-capacity is the supremum of all achievablesrate

For some of our results, we will also consider the case whenwtinetapper observes a
side information sequenae”™ sampled i.i.dp,(-). In this case, the secrecy condition in (iii)
above is replaced with

1
—1I(k; z", WN) <e, Q)
n

In addition, for some of our results we will consider the specase when the wiretap
channel consists of parallel and independent channels afashich is degraded.

1) Parallel Channels:

Definition 1: A productbroadcast channel is one in which thé constituent subchannels
have finite input and output alphabets, are memoryless atependent of each other, and
are characterized by their transition probabilities

n

Pr ({yn, 2ttt | {25 mernn) = [T TTPr@a(®), 20 (®) | 2an(2)), )

m=1 t=1

where 2", = (z,,(1),2,(2),...,2,(n)) denotes the sequence of symbols transmitted on
subchanneln, wherey” = (y(1),ym(2), ..., yn(n)) denotes the sequence of symbols ob-
tained by the legitimate receiver on subchannebnd where:” = (z,,(1), 2,,(2), ..., zn(n))
denotes the sequence of symbols received by the eavesdmpebchanne.

[ |

A special class of product broadcast channels, known asettersely degraded broadcast
channel [12] are defined as follows.

Definition 2: A product broadcast channel reversely-degradedvhen each of thel/
constituent subchannels is degraded in a prescribed drdparticular, for each subchannel
m, one ofx,, = v,, = z, Or x,, = z,, — y,» holds.

[ |

Note that in Def. 2 the order of degradation need not be thedamall subchannels, so the
overall channel need not be degraded. We also emphasizethay subchannel the receiver
and eavesdropper aphysicallydegraded. Our capacity results, however, only depend on the
marginal distribution of receivers in each subchafn&tcordingly, our results in fact hold for
the larger class of channels in which there is only stocbakgradation in the subchannels.

We obtain further results when the channel is Gaussian.

The alphabets associated with random variables will be teenoy calligraphy letters. Random variables are denoted by
sans-serif font, while their realizations are denoted landard font. A lengtl sequence is denoted hy'.

2Throughout this work we only require that the normalized waltinformation between the key and the eavesdropper
output vanish as the block-length goes to infinity. A strangetion of secrecy can also be considered, which requiras th
the mutual information approach zero as the block lengtheees (see e.g., [6], [25]). We do not pursue this extension

3However, when we consider the presence of a public-dissussannel and interactive communication, the capacity
does depend on joint distributigm, .|, (-)



2) Parallel Gaussian Channels and Gaussian Sources:
Definition 3: A reversely-degraded product broadcast channé&asissianwhen it takes
the form
Ym = X + Ny m,

Zm = Xm + Ne m,

m=1,.... M 3)

where the noise variables are all mutually independent,apd~ CN (0, afvm) and ne ,;, ~
CN(0,0?,,). For this channel, there is also an average power constraint

M

D%

m=1

E <P

|
Furthermore we assume thatindv are jointly Gaussian (scalar valued) random variables,
and without loss of generality we assume that A/ (0,1) andv = u+s, wheres ~ N (0, S)
is independent of’.

B. Presence of a public discussion channel

We will also consider a variation on the original setup whepualic discussion channel
is available for communication. This setup was first introghliin the pioneering works [1],
[26]. The sender and receiver can interactively exchangesages on the public discussion
channel.

The sender transmits symbols, . .. x, at times0 < i; < i3 < ... < i, over the wiretap
channel. At these times the receiver and the eavesdropgenabsymbolg, y», ..., y, and
7, 7, ..., z, respectively. In the remaining times the sender and recexehange messages
¢; andyy;. We consider a total of rounds of exchanges i.€..< ¢t < k and define,,,; = k+1.
Note thatk is an arbitrary integer in this setup.The eavesdropperrebsés,, 1 }+=. More
formally,

« At time 0 the sender and receiver sample random variataleand m, respectively from

conditional distributiong,, |~ (-|u") andp,, |,~(-|vV). Note thatm, — v — vV —
m, holds.

o At times 0 < t < i; the sender generates = ®;(m,,u",¢'"!) and the receiver

generates), = ¥,(m,, vV, ¢'"!). These messages are exchanged over the public channel.
. Attimesi;, 1 < j < n, the sender generates = X;(m,, uv"¥,4%~!) and sends it over
the channel. The receiver and eavesdropper obgerae z; respectively. For these times
we Set¢ij = ’(/JZJ = 0.

o For timesi; < t < i;.;, wherel < j < n, the sender and receiver computge =
Oy (my, N ) and gy, = Uy (my, v, y7, ¢'71) respectively and exchange them over
the public channel.

« At time k + 1, the sender and receiver compute= K, (m,, u”,*) and the receiver

computes/ = L,,(m,, vV, y™ ¢").

We require that for some sequencethat vanishes as — oo, Pr(k # /) < ¢, and

k2ot o) < e @



[I[l. STATEMENT OF MAIN RESULTS

Below we consider the case when a public discussion chasnadtiavailable. The results
for the case of public discussion are stated in section .llI-E

It is convenient to define the following quantities whichMié used in the sequel. Suppose
thatt is a random variable such that— v — v, anda and b are random variables such that
b— a— x— (y,z) holds and(y; b) < I(z; b) and

I(a;y|b) > I(a; z|b). (5)
Furthermore define

Ra, = I(ayy), (6a)
R, = I(a;y|b) — I(a; z|b) (6b)
Ry =1(t;v), (6¢)
Ry, = I(t;u) — I(t;v). (6d)
R, =I(x;y | 2). (6e)
RE =I(x:y), (67)

We establish the following lower and upper bounds on theesda@y rate in Section IV
and V respectively.
Theorem 1:A lower bound on the secret-key rate is given by

Ry, = BRs+ R, @)
where the random variablgsa and b defined above additionally satisfy the condition
BRy, < R (8)
and the quantities?,,,, R, R, and Ry, are defined in (6d), (6c), (6b) and (6a) respectively.
Theorem 2:An upper bound on the secret-key rate is given by, .
Rf{oy = max { BRs + R;tl , (9)

{G1)}
where the supremum is over all distributions over the rand@miables(x, t) that satisfy
t — u — v, the cardinality oft is at-most the cardinality of plus one, and

BRy, < R, (10)

The quantitiesi;, R,,, R, and R} are defined in (6c), (6d), (6e) and (6f) respectively.
Furthermore, it suffices to consider only those distrimgiavhere(x, t) are independent.
[ |
As suggested to us by an anonymous reviewer, the upper boufthaorem 2 can be
further tightened as stated below.
Proposition 1: An upper bound on the secret-key rate is given by,
Ry = it hax {BI(t;v) + 1(x;ylg) + 1(x;8l2)}, (11)
g,y,z|x UX,
where the infimum is over three-receiver memoryless charofehe formp, , .|.(-) for which
the distributionp, ,.(-) coincides with the given channel whereas the maximizasoovier
independent random variablés, t) that satisfy (10).

“The condition in (5) will be satisfied even if not explicitiyferced in the optmization of Theorem 1. Suppose thab)
are such that the expression in (5) is violated. We note tizt a choice cannot be the optimal choice in Theorem 1. Define
a' = b’ = (a,b). Observe that (a;y) = I(a’; y) and hence the expression fBf_ in (7) increases whereas the constraint
set in (8) remains unchanged with this new choice of varg@able
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Fig. 2. An example of independent parallel and reverselyattgfd Gaussian channels. On the first channel, the eavesdrop
channel is noisier than the legitimate receiver’'s chanrt@leaon the second channel the order of degradation is reders

A. Reversely degraded parallel independent channels

The bounds in Theorems 1 and 2 coincide for the case of rdyatsgraded channels as
shown in section VI-A and stated in the following theorem.

Theorem 3:The secret-key-capacity for the reversely degraded ghiallependent chan-
nels in Def. 2 is given by

M
Crey = max {ﬁI(W t) + ZI(Xz’§yZ'|Zz')} ; (12)

{(Xl ..... X]V[,t)}

where the random variablés, . .., x)/, t) are mutually independent,— v — v, and
M
> I06y:) > B{I(u; t) — I(v; 1)} (13)
=1

Furthermore, the cardinality af obeys the same bounds as in Theorem 2.
[

B. Gaussian Channels and Sources

For the case of Gaussian sources and Gaussian channelgcteéley capacity can be
achieved by Gaussian codebooks as established in secti@navid stated below.

Corollary 1: The secret-key capacity for the case of Gaussian paralgirais and Gaus-
sian sources in subsection 1I-A2 is obtained by optimizihg)(and (13) over independent
Gaussian distributions i.e., by selectirg~ N (0, P,) andu = t+d, for somed ~ N (0, D),
independent ot and>>" P, < P, P, >0, and0 < D < 1.

14+ P02,
Ciy = max élog(1+5)+ Z llog(ﬂ) : (14)

O'T,'L'_S;e,i
where D, Py, ..., Py, also satisfy the following relation:

1 P 1 1\ 1 145
Zilog <1+02') 2B{§log (5) — §log (m)} (15)

i=1 Ty



C. Remarks

1) Note that the secret-key capacity expression (12) etgphmth the source and channel
uncertainties at the wiretapper. By setting either una@stato zero, one can recover
known results. Wherd (u; v) = 0, i.e., there is no secrecy from the source, the secret-
key-rate equals the wiretap capacity [31]/(k; y|z) = 0, i.e., there is no secrecy from
the channel, then our result essentially reduces to thdt tesCsiszar and Narayan [9],
that consider the case when the channel is a noiselesspleitwith finite rate.

2) In general, the setup of wiretap channel involves a tridestween information rate
and equivocation. The secret-key generation setup prevadeoperational significance
to this tradeoff. Note that the capacity expression (12)hedrem 3 involves two terms.
The first termpg1(t; v) is the contribution from the correlated sources. In genenid
quantity increases by increasing the information rate; y) as seen from (13). The
second term/(x; y|z) is the equivocation term and increasing this term, ofteneat
the expense of the information rate. Maximizing the sekegtrate, involves operating
on a certain intermediate point on the rate-equivocatiadeoff curve as illustrated by
an example in section llI-F.

D. Side information at the wiretapper

We consider the setup described in Fig. 1, but with a modifinathat the wiretapper
observes a source sequencg, obtained byN — independent samples of a random variable
w. In this case the secrecy condition takes the form in (1). Wg oonsider the case when
the sources and channels satisfy a degradedness condition.

Theorem 4:Suppose that the random variablesv, w) satisfy the degradedness condition
u — v — w and the broadcast channel is also degradedx.es, y — z. Then, the secret-
key-capacity is given by

Chey ZI(gag{ﬁ(I(t; v) = I(t;w)) + 1(x;y[z)}, (16)

where the maximization is over all random variablesx) that are mutually independent,
t—u—v—wand

I(x;y) =2 B(I(u;t) = I(v;t)) (17)

holds. Furthermore, it suffices to optimize over randomalagst whose cardinality does

not exceed that ofi plus two.
[ |

E. Secret-key capacity with a public discussion channel

In the presence of public interactive communication we haeefollowing result.
Theorem 5:An secret-key capacity for source-channel setup with aipuldcussion chan-
nel and a wiretap channel, ,.(-) that satisfies eithex -y — zory - x — z is

Crey < max I(x;y|z)+ I(u;v). (18)
Px

The expression (18) continues to be an upper bound even Wkenitetap channel does not

satisfy either of the upper bounds.
[



The presence of a public discussion channels allows us tougée the source and channel
codebooks. We generate two separate keys — one from theesoamgponent using a Slepian-
Wolf codebook and one from the channel component using tlyeagesement protocol
described in [1], [26].

The upper bound expression (18) in Theorem 5 is establisbied) tiechniques similar to
the proof of the upper bound on the secret-key rate for th@radlamodel [1, Theorem 3].
A derivation is provided in section VIII.

F. Example: Gaussian Channels with and without public discan
Consider a pair of Gaussian parallel channels,
Vi=aXx+na, z1=>bx+n;
Yo =X+ N2, 2o =Y
wherea; = 1, ay = 2, andb; = 0.5. Furthermoreu ~ N(0,1) andv = u + s, where
s ~ N(0,1) is independent of.. The noise variables are all sampled from th’(0,1)
distribution and appropriately correlated so that the sisge degraded on each channel. A

total power constrainf’ = 1 is selected and the bandwidth expansion fagt@quals unity.
1) Without Public DiscusionFrom Theorem 1, in absence of the public discussion channel,

(19)

1 2
Chor = gy, Fleal P2 o) 508 75, (20)
such that
1.1 1 2
D)= —log— — =1 21
Ru,(D) = 5 log 5 38T (21)
1
< 3 (log (14 aiPy) +1og(1 + a3P)) , (22)
1
Reo(P1, Py) = 3 (log(1+ aiPy) —log(1 + b1 Py)). (23)

Fig. 3 illustrates the (fundamental) tradeoff between eateé equivocation for this channel,
which is obtained as we vary power allocation between theswmchannels. We also present
the functionRg,. = I(t; v) which monotonically increases with the rate, since largerrate,
smaller is the distortion in the source quantization. Thenagl point of operation is between
the point of maximum equivocation and maximum rate as iridtdy the maximum of the
solid line in Fig. 3. This corresponds to a power allocatiéh, P») ~ (0.29,0.71) and the
maximum value isRy., ~ 0.6719.

2) With Public Discussionfig. 4 illustrates the contribution of source and channelirng
components for the case of Gaussian parallel channels §b8)sting of (physically) degraded
component channels. The tetitu; v) is independent of the channel coding rate, and is shown
by the horizontal line. The channel equivocation rate; y|z) is maximized at the secrecy
capacity. The overall key rate is the sum of the two companeaxote that unlike Fig. 3,
there is no inherent tradeoff between source and channeigaodntributions in the presence
of public discussion channel and the design of source andnethaodebooks is decoupled.

IV. ACHIEVABILITY: PROOF OFTHEOREM 1

We demonstrate the coding theorem in the special case whexandb = 0 in Theorem 1.
Furthermore via (5) we require that

I(x;y) > I(x; ) (24)
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Accordingly we have that (6a) and (6b) reduce to
Ray=1(x;y) (25a)
Re, = I(x;y) — I(x; 2) (25b)

The more general case, can be incorporated by introducirsgigitiary channebk — x and
superposition coding [8] as outlined in Appendix A. Furthere, in our discussion below we
will assume that the distributions,, and p, are selected such that, for a sufficiently small
but fixedd > 0, we have

/BRWZ = Rch — 30. (26)

Remark 1:We note that the optimization over the joint distributionsTiheorem 1 is over
the regionsR,,, < Rg. If the joint distributions satisfy that R,,, = a(R., — 30) for some
a < 1, one can use the code proposed construction for a blockHeng and then transmit
an independent message at r&g using a perfect-secrecy wiretap-code. This provides a rate

of

(@ (gRWZ + Rc_q) + (1 - OZ)RC_q - Rc_q + Bsza

as required.

Remark 2:The region in Theorem 1 is achieved as we take the ldmit 0. Note that the
set of joint distribution is compact. Hence the sequenceafimizing distributions converges
to a limit aso — 0. By continuity, this limit converges to the maximizing dibution in
Theorem 1.

The rest of the proof is structured as follows. In sectionER-IV-D we describe an
ensemble of codebooks as illustrated in Fig. 5 and the assocencoding and decoding
schemes at the receiver and at the eavesdropper (with ageopide information) for each
such codebook. We then show in section IV-E that the errobaidity averaged over the
ensemble of these codebooks can be made arbitrarily sntab. ifnplies the existence of
at-least one codebook with the desired error probabilitpalfy our secrecy analysis in
section IV-F for this particular codebook completes theofiro

A. Codebook Construction
Throughouts > 0 andn = §/3 > 0 are constants. L&t

Mz = expy(N(Rs — 1)) (273)
NWZ - eXpQ(N(RWZ + 27})) (27b)
Msk = expy(n(I(x;z) —9)) (27¢)
Nsk = expy(n(BRs + Ry, — 6)) (27d)
Substituting (6a)-(6d) and (26) into (27a)-(27d) we havat th
Niot = Mgk - Nsg = Myz - Nwz = expy (N(I(t;u) +1)) (28)

« Selection of 7: Construct a sef consisting ofV,,, sequences, each sampled uniformly
from the setl? of typical sequencés

*We use the notationxp, (z) = 2° throughout the paper.
®Throughout we use the notion of strong typicality. See ¢1@®, Chapter 2].
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Wyner-Ziv Codebook

N

Random Permutation
— Secret-Key Codebook

MSK

Iv'WZ

Fig. 5. Construction of the codebook ensemble. TheTsebnsists ok 2V/(4t sequences, each sampled uniformly from
the setT}" of typical sequences. The Wyner-Ziv codebook is formed bpraying these sequences iméyz bins, each
consisting of Mwz sequences. The elements of getare then randomly permuted to form the 8Kt7). The elements of
II(7) are then arranged to form the secret-key codebook as shown.

« Wyner-Ziv Codebook: ConstructCV# as follows. Partition the sef into Ny, bins,
BY*, ..., B} each consisting ofi/y; codeword sequences so that }Y* consists
of sequences numberéd— 1) - My + 1 to i - My in T. The sequences in biB}*

are enumerated as
BVZ — {tﬁ’wz, o tN’WZ}. (29)

7 ) YiMy g

« Secret-Key Codebook: ConstructC>¥ as follows. Randomly permute the elementsjof
to construct another s&l(7). Partition the elements @f(7") into Nsk binsB*, ... B3E ,
each consisting ol/six sequences. The bii’X consists of sequences that are numbered
(i —1)Mgsk + 1,...,iMsk in TI(T). The sequences in bi®X are enummerated as

SK N,SK N,SK
BZ - {tll PERIRE 7tZMSK} . (30)

« Channel Codebook ConstructC“® consisting of Ny, sequencegx{, ..., xx } each
of which is sampled from the typical s&t'.
Remark 3: We note that our codebook construction does not requireirgnas in the
wiretap codebook construction [31]. The analysis of thergorobability however reveals
that our source-channel codebook should also constitut®d gode for an eavesdropper
when revealed the secret-key (36), analogous to the wiedpbook.

The codebooks are revealed to all the three terminals. Astiited in Fig. 5, note that while
the Wyner-Ziv codebook is obtained by arranging the elemeh¥ in a Nywy x My, table,
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the secret-key codebook is obtained by first randomly permguhe elements of and then
arranging these elements intoNgx x Mgk table. In the analysis of the error probability,
averaged over the ensemble of codebooks, this construgtiarantees that two sequences
belonging to the same bin in the secret-key codebook argerdtently assigned to the bins
of the Wyner-Ziv codebook (c.f. 185).

B. Encoding

. Given a sequence”, the encoder searches for an elemghie 7 such thatv”, tV) €
Tj\[’e. If no such sequence exists then an error evgnts declared

« The encoder computes the Wynzer-Ziv bin index= ®w,(t"). The function®y, :
T —{1,2,..., Nwz} is defined as follows

Dy (tY) =i, if Y e BV (31)
« The encoder then selects the codewggdand transmits it overn. uses of the discrete

memoryless channel.

« The encoder computes the Secret-key gk (V). The function®dgi : 7 — {1,..., Nk}
is defined as follows

b (tV) =4, if N e BK. (32)

C. Decoding at legitimate receiver

The main steps of decoding at the legitimate receiver arel&sns.

. Given a received sequengg, the receiver looks for a unique indésuch that x”*, y") €
Ty, .- An error eventt, happens ifx;" is not the transmitted codeword or no sughis

found.
« Given the observed source sequemée the decoder then searches for a unique index
j € {1,..., Mwz} such that(t]""* v¥) € T)_. An error eventé; is declared if a

unique index does not exist. R
. The decoder computds= ®gx(t, ") and declares as the secret key.
The encoding and decoding steps are illustrated in Fig. 6.

D. Decoding with side-information at the eavesdropper

We construct a decoder at the eavesdropper when the segrét-kevealed as side infor-
mation i.e., the decoder produces when given(k, z") via the following steps:

. The eavesdropper constructs a et {i | (x*,z") € T, _}.

Xy,

. It searches for all sequences#, whose Wyner-Ziv bin index belongs bi.e.,
T = {tV[t"Y € B, @wy (1Y) € I} (33)

Let £ be the event that the s6f does not contain the sequenct selected by the
sender or contains more than one sequence.
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x" y"
Wiretap —>| Decoder
> Codebook >
Bin |Index Bin |Index
Vv
u™ v w Zi
Wyner-Ziv 3 yner-ziv
: Codebook Decoder
W-Z| Codeword W-Z Codeword
\ 2
Secret-Key k k S t K
- ecre ey
® e ® > Codebook E <€ Codebook
@® @ .. |@®
@ C) @
O O © Encoder Decoder

ON(I(tu)—-1(tv)) bins
2N (®v) cws/bin
Fig. 6. Source-Channel Code Design for secret-key distiiaproblem. The source sequenc® is mapped to a codeword

in a Wyner-Ziv codebook. This codeword determines the sd@y via the secret-key codebook. The bin index of the
codeword constitutes a message in the channel codebook.

@
‘ Eavesdropper . gQ
—> Decoder .
© 2NI(tv) codewords per bin
Source

Codewords

List Size: 2"(1(}’;3|b)_1(2§3‘b)
Eavesdropper List

Source-Channel Secrecy

Fig. 7. Equivocation at the eavesdropper through the sexlraanel codebook. The channel codebook induces an ampigui
of 2 @vIb)=1(218) among the codeword sequencéswhen the decoder observe8. Each sequence” only reveals the

bin index of the Wyner-Ziv codeword. In induces an ambiguif2™/(%*) at the eavesdropper, resulting in a total ambiguity
of 2n(BI(t;v)+1(ay|b))—1(az|b)
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E. Error Probability Analysis
We show that averaged over the ensemble of codebooks

Pl'(gl U 82 U 53 U 84) —0 (34)

asn — oo. This implies the existence of at-least one codebook inrabgewith this property.
Since

4
Pr(& UEUEUE) <> Pr(&),
i=1
it suffices to show thaPr(&;) — 0 for eachi =1,... 4.

Recall that&; is the event that the encoder does not find a typical codewotidei Wyner-
Ziv codebook. Since the number of sequendgs = 2V/(EW+N jt follows from standard
arguments that this event happens with vanishing prolyb8ince the number of channel
codewords equaldVy; = 2"Ux¥)=9) the error event, which denotes the failure at the
legitimate receiver to decode the channel codeword saiBii€€,) — 0. Since the number
of sequences in each bin satisfiggy; = 2VU (V)= the eventS; that the decoder fails to
uniquely decode” satisfiesPr(€3) — 0.

A proof for the fact that the error eve#} also happens with a vanishing probability when
e<d/4die.,

Pr(&4) — 0 (35)

asn — oo is provided in Appendix B.

Now consider a codeboak for which the error events have vanishing probability. Fos t
codebook the legitimate receiver will be able to decode #oeet-keyk with high probability.
Also sincePr(&,) — 0, applying Fano’s lemma,

%H(tN|k,z") = 0,(1). (36)

F. Secrecy Analysis

In this section, we show that for the codebook selected gbibwe equivocation at the
eavesdropper is close (in an asymptotic sensej.to.

First we establish some uniformity properties which willused in the subsequent analysis.

1) Uniformity Properties:

Lemma 1:For any code in the random codebook ensemble, the resulting randomblaria
dyyy, satisfies the following,

%H(‘sz) = BRwz + oy(1) (37a)
%H(tN\CDWZ) — BI(t:v) + 0,(1) (37b)
%H(‘bwﬂzn) =I(x;y) — I(x;2) + 0y(1). (37¢)

Remark 4:The relation (37a) states that the Wyner-Ziv bin index pomdly is nearly
uniformly distributed over{1,..., Nwz}. The second condition (37b) states that in given a
bin B}V% all the codeword sequences in this bin are selected with dynagiform probability.

To interpret the last relation, recall that the Wyner-Zin bidex is a message for the channel
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codebook. Hence (37c) states that the equivocation ratheofmessage at the eavesdropper
is governed by the channel equivocation in [31].

Proof:

To establish (37a), define the functidiy; : 7 — {1,..., Mwz} which identifies the
position of the sequencé’ € 7 in a given bin i.e.I'w(t"*) = j and note that,

PI"(FWZ =7, Pwyz = 7,) = Pr(tg’wz)

< > Pr(u) (38)
uN €Ty, en (1)

- Z 9~ N(H(u)+0,(1)) (39)
uN €Tyt (V7

— oN(H(ult)+oy(1)) g—N(H(u)+on(1)) (40)

— 9= NU(t;u)+on(1)) (41)

where (38) follows from the construction of the joint-tygiity encoder, and (39) from the
fact that the number of sequence¥ jointly typical with t;;"* is equal to2"(H(ult)+es(L),
Since there are a total @f¥!(“1))+7 codewords sequences, it follows from (41) that

1
NH((bwz,sz) = I(t; U) —|—077(1). (42)
Furthermore, marginalizing (38), we have that
Mwz
PI"(CI)WZ = ’L) = Z PI(FWZ = j, (I)WZ = Z)
j=1
< Mg 2~ NU(Eu)+o,(1))
_ 2—N(I(t;u)—[(t;v)+o,,(l))
— 9= N(Rwz+on(1)) (43)
Since®ywy € {1,...,2NEwz+21 it follows that
1
Furthermore,
1 N 1 1 1
NH(t |(I)WZ> = NH(FWZ‘(I)WZ) = NH(sz, (bwz) — NH((bwz) = I(T.’; V) + 077(1).
(45)

To establish (37c) note that in our construction there is a-torone correspondence
betweendy; and x"”. Hence we have that

%H((I)Wz|z")
_ %H((I)WZ) + %H(z"@wz) _ %H(z") (46)
— BRwy + oy(1) + %H(zﬂxn) _ %H(z”) (47)

— I(xiy) =35+ 0y(1) + %H(z"|x") - %H(Z”) (48)
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where (47) follows from (43) which provides a bound on thebatality of &, and the
fact that there is a one-to-one correspondence betwggn and x, and (48) follows by
substituting the expression fdty; in the relation (26).

To simplify the remaining two expressions |éidenote the indicator variable, which equals
Lif (2", x") € 17, , and zero otherwise. Recall that eachis sampled uniformly from the
setT} and since the channgl,(-) is memoryless it follows from the conditional typicality
lemma thatPr(J/ =1) =1 —0,(1) and also that

%H(z”|x”) > %H(z”|x”, J=1)Pr(J=1) (49)
> H(z|x) — oy(1) (50)
and furthermore
%H(z”) < %mznu —1)Pr(J = 1)+ %H(J) (51)
< H(z) + 0,(1). (52)

Substituting (50) and (52) in (48) establishes (37¢).
[ |

It remains to show that the equivocation rate at the eavppéraapproaches the secret-key
rate asn — oo, which we do below.

H(k|z") = H(k, tV|z") — H(t"V|z", k)
= H(t"|z") — H(t"|z", k) (53)
= H(t", ®wy|2z") — H(t"|2" k) (54)
= H(tV|®wyz, 2") + H(Pwz|2") — H(tY|2", k)
= H(t"|Owy) + H(Pwz|2") — H(tY|2", k), (55)
=nBI(t;v) +n{l(x;y) — I(x;2)} + 0,(1) (56)
= n{Riey +04(1)}, (57)

where (53) and (54) follow from the fact théy, is a deterministic function of¥ and (55)
follows from the fact that” — ®y, — z" holds for our code construction. and (56) follows
from (37b) and (37c) in Lemma 1 and (36).

Thus we have that

1
gH(k‘Zn) = Ryey + 077(1)7

as required.

V. CONVERSE PROOF OF THETHEOREM 2
Given a sequence ¢f, V) codes that achieve a secret-key-rRlg,, there exists a sequence

£, Such thats,, — 0 asn — oo, and
1
EH(k|y", vY) < e, (58a)

%H(k|z") > %H(k) — En. (58b)
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We can now upper bound the rat&., as follows.

nRyey = H(k)
= H(Kly" vV) + (k" vY)
< ey + Ik y™, vN) — I(k; 2") + I(k; ") (59)
< 2ne, + I(k;y", v™) — I(k;z") (60)
= 2ne, + I(k;y™) — I(k; z") + I(k; vV |y™)
< 2ne, + I(k;y™) — I(k; 2") + I(k,y™; v™) (61)
where (59) and (60) follow from (58a) and (58b) respectively
Now, let J be a random variable uniformly distributed over the §&t2,..., N} and

independent of everything else. Let= (k, y™, vi¥,, ui ™) andt = (k,y", v¥.,,u{ "', J), and

v, be a random variable that conditioned 1= i has the distribution of,,. Note that since
vV is memorylessy; is independent off and has the same marginal distributionvasilso

note thatt — u; — v; holds since the source sequences are memoryless.

I(k,y"; v kay vilvii1)
<Zlky ) z+17 )

<ZIkY7z+172 7i)

—NI(k y", vJJrl,u1 VJ|<])
= NI(k,y", vJJrl,u1 LT vy) —I(J;vy)
— NI(t; v) (62)

where (62) follows from the fact that; is independent of/ and has the same marginal
distribution asv.

Next, we upper bound (k;y™) — I(k;z") as below. Letp,, denote the channel input
distribution at time: and letp,, ., denote the corresponding output distribution. pet=
LS px and letp, andp, be defined similarly.

I(k; y") = I(k; 2") < I(k; y"|z")

( ;y"2") (63)

< Z I(xi; yil ) (64)
i=1

< nl(x;y|z), (65)

where (63) follows from the Markov conditioh — x™ — (y",z") and (64) follows from
the fact that the channel is memoryless and (65) follows fdmmsen’s inequality since the
term I(x; y|z) is concave in the distributiop, (see e.g., [19, Appendix-I]).

Combining (65) and (62) we have that

Riey < I(x:y|z) + BI(v;t), (66)
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thus establishing the first half of the condition in Theoremt2emains to show that the
condition

B{I(t;u) = I(t;v)} < I(x;y)
is also satisfied. Since” — x™ — y" holds, we have that

nl(x;y) > I(x";y") (67)
> I(u™;y™) (68)
> I(u™;y" k) — I(VYN;y" k) — ne,, (69)

where the last inequality holds, since
L™ kly™) = IV y7 k) = =I(v™;y™) + T(u™; kly™) = T(vY; k[y™)
< (a5 kly™) = I(v™; kly")
= H(k|yn7 VN) - H(k|.yn7 UN)
< NéEp,

where the last step holds via (58a) and the fact ffiék|y™, u™¥) > 0.
Continuing (69), we have

nl(x;y) > I(u™;y" k) — I(vY;y" k) — ne, (70)
N
= D {T(usy" klui™ vlYy) = vy Klui VL)) + ey (71)
i=1
N
= Z{](ui; y" k, ui_lvz‘]—\if-l) - ](Vi; y" k, ui_lvz‘]—\if-l)} +ney (72)
i=1
= N{I(upy" ko =i [ T) = I(vas y" kw7 Hvii | ) + en}

:N{I(UJ;t) —I(VJ; t)+I(VJ;J) —I(UJ;J)—FE”}
= N{I(u;t) — I(v;t) +¢e,} (73)

where (71) follows from Csiszar's Lemma (see e.g., [8, ®&act/]) which states that for any
triple (M, y™, z") with an arbitrary joint distributiop(M, y", z") and anyn > 1 we have
that

I(M;y™) = I(M;2") =Y I(M;yily™", zy) = I(M; zly" ™", 2I\). (74)
i=1

Furthermore (72) follows from the fact that;, v;) is independent ofu'~*, v |) and (73)
again follows from the fact that the random variablgsand u; are independent of and
have the same marginal distribution @snd u respectively.

The cardinality bound ornt is obtained via Caratheordory’s theorem and is shown in
Appendix C.

Finally, since the upper bound expression does not depetttegoint distribution of{ ¢, x),
it suffices to optimize over those distributions whétex) are independent.
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A. Proof of Proposition 1

Following [14] we introduce a fictitious memoryless chanpgl, . .(-) whose marginal
distributionp, ,,(-) coincides with the original channel transition probabilit

nRyey = H(k)
= H(kly", v") + I(k;y",v")
< nen + Ik y",v) = I(k;g") + I(k; ") (75)
= ne, + 1(ky") = I(k; g") + I(k; v¥|y™) + I(k; g")
<ne, + 1(k;y") = I(k; g") + I(k,y™;v™) + I(k; g"). (76)
Following the steps leading to (65) we can establish that
I(k;y") — I(k;g") < nl(x;ylg) (77)
and witht = (k,y", vl.,,u{ ™", J) we have via (62) that
Ik, y™;vY) < NI(t;v) (78)
and finally
I(k:g") < I(k;g") — I(k;z") + I(k; z")
< I(k;g") — I(k;Z") + ne, (79)
< nl(x;glz) + ne, (80)

where (79) follows from the secrecy constraint with respecthe receiver who observes
z" (c.f. (58b)) and the last step can be established in a manr&ogous to that in (65).
Substituting (77), (78) and (80) into (76) and normalizing:bwe have that

Riey < BI(t;v) + 1(x;y|g) + I(x; g]2).- (81)

The remaining constraint does not involgeand directly follows from (73).

Following the discussion in [14] we can interpret the bou8dl)(as follows. We split the
total secret-key into two parts. The first part is kept sefraeh the fictitious user only and its
rate is upper bounded b¥(x; y|g) whereas the second part is shared with the fictitious user
and kept secret from the eavesdropper. Its rate is upperdeduby /(x; g|z). The claim is
that the secret-key capacity in the original problem camaxaeed the sum of two rates split
in this way.

VI. REVERSELY DEGRADED CHANNELS
A. Proof of Theorem 3

First we show that the expression is an upper bound on thecitgpplarom Theorem 2, we
have that
Chey < r(na>)<I(X;y|Z) + BI(t; v),
X,t

where we maximize over those distributions wheret) are mutually independent,— u —
v, and
I(x;y) = B(I(t;u) — I(t;v)).
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For the reversely degraded parallel independent chanmets,that
M
I(x;y) < ZI(XH)G)

X .y| XZ?yZ|ZZ

||M§

with equality when(xy, ..., x,,) are mutually mdependent. Thus it suffices to téke. . . , xy)
to be mutually independent, which establishes that theqeeg expression is an upper bound
on the capacity.

For achievability, we propose a choice of auxiliary randcamiables(a, b) in Theorem 1,
such that the resulting expression reduces to the capétiparticular, assume without loss
in generality that for the firsb/* channels we have that — y; — z and for the remaining
channels we have that — z; — y;. Leta = (X1, x0,...,xp) @andb = (Xar+41, .-, X0r)
where the random variablelsi;} are mutually independent. Note that this choice(afb)
is feasible i.e., it satisfie$(b;z) < I(b;y) and I(a;y|b) > I(a;z|b). It follows from (6a)
and (6b) that

M

R, = Z I(x:; y4) (82)
r

Re, = ZI(XiQYi) — 1(x;;z) (83)
M+

= ZI(X’LayZ|ZZ) = Z (Xi;yi|z,-), (84)

where the last equality follows since fot — z — y;, we have that/(x; y;|z) = 0.
Substituting in (7) and (8) we recover the capacity expssi

B. Gaussian Case (Corollary 1)

For the Gaussian case we show that Gaussian codebookseatieegapacity as in Corol-
lary 1.

Recall that the capacity expression involves maximizingraandom variables = (xi, ..., xy),
andt — u — v,

Chey = Z I(x; yilz:) + BI(t; v) (85)

subjected to the constraint tha{> " x?] < P and

ZI(Xi;yi) > p{I(t;u) = I(t;v)}. (86)

Let us first fix the distributiorpx and upper bound the objective function (85). LRt2
3 LS I(x;y;) andv = u + s, wheres ~ N(0,S) is independent of.. We will use the
condltlonal entropy power inequality due to Bergmans [2],

exp(2h(u + s|t)) > exp(2h(ult)) + exp(2h(s)) (87)
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for any pair of random variable@, u) independent ok. The equality happens {fu, t) are
jointly Gaussian.
Note that we can express (86) as

R+ h(v) — h(u) > h(v|t) — h(ult) (88)
= h(u+ s|t) — h(ult) (89)
> %log (exp(2h(u]t)) + 27eS) — h(u]t) (90)
Letting
h(u|t)) = %log 2meD, (91)
we have that
D> 5 . (92)

~ exp(2(R+ h(v) — h(u))) — 1
Rearranging we have that

Z I(x;:y:) > {log (1 + %) —log(1 + S)] . (93)

The termI(t; v) in the objective function (85) can be upper bounded as
I(t;v) = h(v) — h(v]t)

= h(v) — h(u + s|t)

< h(v) — %log(exp(Qh(u\s)) + 2meS) (94)
1 1+ 8

=38 ps (95)

where (94) follows by the application of the EPI (87) and (8jows via (91). Thus the
objective function (85) can be expressed as

1
Crey = ZI xi; vilzi) + log ii (96)
where D satisfies (92).

It remains to show that the optimal has a Gaussian distribution. Note that the set of
feasible distributions fok is closed and bounded and hence an optimum exists. Algg if
is any optimum distribution, we can increase baéthand I(x;; y;|z;) by replacingp, with a
Gaussian distribution (see e.g., [21]) with the same secoddr moment. Since the objective
function is increasing in both these terms, it follows thabaussiarp, also maximizes the
objective function (85).

VIl. SIDE INFORMATION AT THE WIRETAPPER
We now provide an achievability and a converse for the cépatated in Theorem 4
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A. Achievability

The coding scheme is a natural extension of the case when 0. In particular the
construction involves a subs@t of TV partitioned into a Wyner-Ziv codeboak# and a
secret-key codebook® . In addition the channel codebodk" is a subset of the sét”. As
before the Wynzer-Ziv codebook consists 8y, bins, each consisting of a total dffy,
codewords, where we seledty; = exp,(N(I(t;v) — 1)) and Nywz = expy(N (R, + 27)).
However the parameters of the secret-key codebook argeelecreflect the side information
at the eavesdropper. The secret-key codebook consistsotdlant Ngi bins, each consisting
of Mgk sequences, where

Msk = exp, (n(I(x;z) + BI(w; t)) — ) (97)
Nsk = expy (n(BRs + Rey — 6)) (98)

reflect the increase in number of codewords in each bin touwtdor the side information
at the eavesdropper. Furthermore we repl&cen (6¢) with

Ry =1(t;v) — I(t;w) (99)
and the resulting secret-key rate in (7) is
Rip = BRs + R, (100)

as reflected in the exponent dfsk. Finally since the channels are assumed to be degraded
note thatR,, and R, in (6a) and (6b) are defined as

R = I(x;y) (101)
Ry =1(xy) = 1(x;2) = I(x; y|2). (102)

The channel codebook consists of a totaleef(nR., — nd) codewords as in the no-side
information case. Furthermore as in (26), we present thengostheme for

Rwz = Ray — 30, (103)

and the case wheRy; < R4 — 30 follows by a time-sharing argument. Thus the total
number of codewords is

Niot = NwzMwz = NsgMsk = expy (N(I(u;t) +1)) (104)

The encoder is analogous to the case without side informatéscribed in section IV-B.
The transmitter upon observing" finds a sequence” < 7 that is jointly typical. If there
is more than one sequence, any one of the candidates iseskl@ctandom. The encoder
declares the bin index af¥ in the C5¥ as the secret-key codebook whereas the bin index of
tV in CW% is used as the message for the channel codebook. The rgseidtitewordx™ is
then transmitted over channel uses. The decoder at the legitimate receiver is asibled
in section IV-C. We summarize the main steps below

« The decoder searches for a unique sequena@&tinthat is jointly typical with y™. If
successful, it obtains the bin-index of the Wyner-Ziv coatgh
« It then searches for a unique sequence in this bin jointlycatpwith v,
« It declares the bin-index of the resulting sequence in tloeesdey codebook to be the
secret key.
The decoding at the eavesdropper, with the knowledge oféli@& described in section IV-D,
needs to be modified to take into account the additional sittermationw” . The decoder



24

searches for a sequence in the Bgt that is (a) jointly typical withw" i.e., (w", t;) €
T2 .and (b) the Wyner-Ziv bin index; = &y (t,>) is such that is jointly typical with
the received sequencé i.e., (x;,2") € T7. .
The probability of error analysis at the encoder and thetitegie decoder follows from
the no-side information case as there are no modificatiotieeiWyner-Ziv codebook and the
channel codebook whereas the secret-key codebook is oaly fos a lookup. To compute
the error probability at the modified eavesdropper, notetti@failure event can be expressed

as:
Msk

F=r U 7 (105)
J=13#jo

wherej, denotes the index of the secret-keyfK i.e., t¥ = t,ﬁ’OSK andF, denotes the event

that the sequence selected by the transmitter fails to beeirypical set of the eavesdropper
while 7; denotes the event that the sequene™ for j # j, appears in the typical set of
the eavesdropper. Thus we have that

Pr(F) < Pr(Fo) + Y Pr(F). (106)
J#jo
From the law of large numbers it follows thBi:(F,) — 0. Furthermore we can express
Fi=T\Z,  i#do (107)
where J; denotes the event thad{;j is jointly typical with z* and Z; is the event that
(tYS% wN) e TN _. Following the analysis in Appendix B leading to (187) we &akat

Pr(J;) < expy(—n(I(x: 2) — 4¢)) (108)

and furthermore since*" is selected independent of" for j # j, we have thaPr(Z;) <
expy(—N(I(t; w) — 3¢)). Since the events; andZ; are due to atypical channel and source
events respectively they are mutually independent andehenc

Pr(F;) = Pr(Z;) Pr(J;) = expy {—n(I(x;z) + BI(t;w) — ')} (109)

wheres’ = 35¢ + 4¢. Using (97) we have that
Pr(F) < Pr(Fy) + Mgk Pr(F)) (110)
= Pr(Fo) + expy(—n(d —€)), (1112)

which vanishes as — oco. In the secrecy analysis in the next subsection we use théhaic
any codebook satisfying (111) as satisfies, from Fano’s lamm

1
NH(tN\k, w", z") = o,(1). (112)
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B. Secrecy Analysis

We show that the equivocation condition at the eavesdrofijeholds for the code con-
struction. This is equivalent to showing that

1

gH(k\wN, ") = B(I(t;v) — I(t;w)) + I(x; y|z) + 0,(1), (113)

which we will now do.
We first provide an alternate expression for the left hand gid(113).

H(k|lw™, z") = H(k, tN|w", z") — H(t" |k, w", z") (114)
= H(t"|w", 2") — H(t" |k, w",2")
= H(t"|w",2") — No,(1) (115)
= H(t", dwz|w", z") — No, (1) (116)
= H(®wz|w", z") + H(t" |Pwz, w") — No,(1) (117)

where (115) follows from (112), (116) follows from the fadtat oy is a deterministic
function of tV, while (117) follows from the fact that¥ — (w?, ®wyz) — z" forms a
Markov chain. The right hand side in (113) is established liywsng that

1
gH(cpwz\wN, ") > I(x;y|z) + 0,(1) (118a)

—H(t"|®wz, wh) = B(I(t;v) — I(t; w)) + 0,(1) (118b)

To interpret (118a), recall thdtyy, is the message to the channel codebook. The equivocation
introduced by the channel codebogk! (®vw|z") equalsi(x;y|z). Eq. (118a) shows that if
in addition toz", the eavesdropper has accesat, a degraded source, the equivocation still
does not decrease (except for a negligible amount). Théioridehind this claim is that since
the bin index®y,, is almost independent af¥ (see Lemma 2 below), it is also independent
of w" due to the Markov condition. Eq. (118b) shows that the kndgéeof w” reduces the
list of £ sequences in any bin fromxp,(N(I(t;v))) to expy(N(I(t;v) — I(t;w))).

To establish (118a),

1 1
EH((I)WZ|WN,ZH) > EH((I)WZ‘ZH, vY) (119)
1 1
= —H(‘bwz|2n) — —](‘bwz, VN|Zn)
n n
1
> 1(x;y|2) + 0,(1) — EI(CDWZ; vV z"), (120)

166 y12) + 0,(1) = - I(@yz; ™), (121)

where (119) follows from the fact that™ — vV — (Pwg,z"), (120) from Lemma 1
and (121) from the fact that’ — ®ywy, — z" so that

1 1
—I(Dwz; vY]2") < —I1(Pwz; v7Y). (122)
n n

Thus we need to show the following.
Lemma 2:

%I((I)WZ; vy = 0,(1). (123)
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Proof: From Lemma 1 note that

1
NH(CI)WZ) = I(t;u) — I(t;v) + 0,(1)

and hence we need to show that
1

NH(QWZWN) = I(t;u) — I(t;v) + 0,(1)

as we do below.
1

1 1
NH((I)WZ|VN) = NH((I)WZ’ tN|VN) — NH(Z'.'N|VN, (bwz)

— %H(tNWN) + 0,(1) (124)

Where (124) follows since each bin hddyw; = exp, (N(I(t;v) —n)) sequences, (from
standard joint typicality arguments) we have that

SHE Y, Bz) = 0,(1). (125)
Furthermore,
iH(tN|vN) = iH(VN|15N) + iH(tN) — iH(VN) (126)
N le le N
= HVNE) + FH(EY) - H(v) (127)
_ %H@N“N) + I(u;t) — H(v) + 0,(1) (128)

where (127) follows from the fact” is an i.i.d. sequence whereas (128) follows via (41)
since we have thatl (t) = H(I'wz, Pwz). Furthermore defind to be an indicator variable
that equalsl if (vV,tV) € TVNM7 and zero otherwise. From standard typicality arguments,

Pr(J =1) =1-0,(1) andPr(J = 0) = 0,(1) and by counting the number of jointly typical
sequences ifTy', for eacht" ¢ . we can show (see e.g., [13, pp. 2.32—2.34])

%H(VNH'N,J: 1) = H(v|t) + 0,(1) (129)
Hence,
Ly = Laevey )+ e
N N ’ N
= %H(VNH'N,J) + 0,(1) (130)
1 1
= NH(VN“'N, J=1)Pr(J=1)+ NH(VN“'N, J=0)Pr(J =0)+o0,(1)
= %H(VNHN, J=1)+0,(1) (131)
= H(v|t) + 0,(1), (132)

where (130) follows from the fact that/(J/) < 1, since.J is a binary random variable,
and (131) follows from the fact thdtr(J = 0) = o,(1) and the last step follows from (129).
Combining (132), (128) and (124) completes the proliif.
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To establish (118b), we begin by observing that,

1 1 1 1
EH(tN\CI)WZ, wh) = EH(WNH'N, Dwyz) + EH(tN|<I>WZ) — EH(WN‘(I)WZ) (133)

= H(WE) + H (Y @)~ H (W D) (134)
— GH(w|e) + LH(E|Bwz) — ~HW"|Byz) +0,(1) (139
— BH(w|t)+ BI(£v) — %H(W@WZ) 4 o,(1) (136)
= BH(w]t) + BI(5v) — THW") + ~T(w"; @) +0,(1)
= BH(wlt) + BI(t;v) — %H(WN) + 0,(1) (137)
= BH (wlt) + BI(t; v) = BH(w) + 0,(1) (138)
= BI(t;v) — BI(t; w) + 0,(1) (139)
(140)

where (134) follows from the fact thaty, is a deterministic function of", and (135) follows
through an argument analogous to that used to establisl) &é2R(136) follows from (37b),
is established in Lemma 1, and (137) follows from Lemma 2 esifg, — vV — w?
and (139) follows from the fact that the sequenc is i.i.d.

C. Converse

Consider a sequences 0f, V) codes that achieves a secret key ratd?olLet 5 = N/n.
Then from Fano’s Lemma,
H(kly", v) < ne,,

and from the secrecy constraint.
%I(k;z", wh) < e,.
Combining these inequalities, we have that,
NRyey < I(k;y™, vY) — I(k; 2", w™) + 2ne,,
< I(k;y™ v | 2%, w™) + 2ne,
<HWY"|z27)+HWY | wh) —H(y" | 2%, wh k) — H(vY | y™, 2", w, k) + 2ne,
<HWY"|z27)+HWY | wh) = Hy" | 2%, wh k,x™) — HVN | y™, 2", w”, k) + 2ne,
=Hy" |2+ HWY | w™) = H(y" | 2", x") — HWY | y", 2", w, k) + 2ne,

(141)

< ZI<Xz7yZ ‘ Zi) + H(VN | WN) - H<VN|yn7 WN7 k) + Qngn (142)
i=1

<nl(x;y | z)+ HWY | wh) = HWYy", wh | k) + 2ne, (143)

where the (141) follows from the fact thaw™, k) — (z",x") — y", and (142) follows
from the Markov conditionz” — (y",w™, k) — vV that holds for the degraded channel,
while (143) follows from the fact thaf(x; y|z) is a concave function of,, (see e.g., [19,
Appendix-I]) and we selecp,(-) = 23"  p,(-). Now, lett; = (k,uly,vi"',y"), J be a

T n
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random variable uniformly distributed over the $et2,... N] andt = (J, k, u}, v/, y")
we have that

N
H Ny w™ k) = ST Hwmv =y, wV, k)
i=1

H(Vi|vi_1>yn> WN7 UZZYH» k)

] =

1

.
Il

] =

H(v|vi = y™ wy, uly, k) (144)
1
. H(VJ|T.', WJ)

I
=

where we have used the fact that'~*, w/,) — (v, y", w;, ul |, k) = v; which can be
verified as follows

i—1 N i—1 N n
p(Vi | wi, w s Wig1, V s U1, Y 7k)

= E b (Vi | Wi, U; = U, Wl_lv Wz?]-\(-h VZ_ ol N l
u;=u

1 N n - N n
y Ui, Y 7k)p(ul_u Wi, W y Wig1, V yUin1, Y 7k)

=Y p(vilwiu=u)p(u=u|w, v ul,y" k) (145)

1 N n
7ui+17y 7k) )

where (145) follows from the fact that since the sequentds sampled i.i.d. , we have that

=p (Vi | wi, v'™
Vi — (ui> WZ) — (Wi_la Wij—vi-la Vi_la uﬁ-layna k)

and sinceu — v — w, it follows that

i—1 i—1 N )

up — (v ,uﬁl,y”, w;, k) — (W', wiy,y
Since,v; and w; are both independent of, we from (143) that
Ry < I(x;ylz) + BI(t; v|w) + 2e,.
Finally, using the steps between (70)-(73) as in the corvEnsthe case whew = 0, we
have that
I(x;y) = B(I(t;u) — I(t;v)), (146)

which completes the proof.

VIII. PUBLIC DISCUSSION CHANNEL

We establish the upper bound on the secret key capacity irptésence of interactive
communication over a public discussion channel.

Proof:
First from Fano’s lemma we have the following,
nR = H(k) (147)
= H(K|I) + I(k; ) (148)

< ne, + 1(k; 1) (149)
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where the last inequality follows from Fano’s lemma. Alsonfr the secrecy constraint we
have that

L1tk 6%, 0k, 2) < e,
n

which results in the following

nR < ne, + I(k; 1, 9% ¢, 2" (150)
< 2ne, + 1(k; [|y", 6", 27) (151)
S 2n5n+I(mx>UN;my7VN7.yn|wk7¢kazn)v (152)

where the last step follows from the data-processing inégugnce k = K (m,, u™,¢"*) and
/ - L(m)’7 VNayn7¢k)' .
Using the chain rule, we have that

Iimg, u™; my N,y ¢, 27) (153)
= I(m)m UN; my7 VN7 yna wk7 ¢k7 Zn) - I(m)u UN; ¢k7 ¢k7 Zn) (154)

= I(myg, u™;my, vV 0" ) £ T F 4+ G

7=1
— I(my, o™ o) =+ Gy, (155)
j=1
where for eachj = 1,2,...,n we define

Fy = 1 sy, 7y Ny 207 01 i) (156)
Gj - (mxv UN; ¢ij+17 BRI ¢ij+1—17 ,lvbij-i-lv BRI ¢ij+1—1|my7 VN).ij Zj7 ¢ij_17 ,lvbij_l) (157)
By = I(my,u"; 2|27t g™ g (158)
GAij - ](mxv UN; ¢ij+17 sy ¢ij+1—17 ,lvbij-i-lv BRI ¢ij+1—1|zj7 ¢ij_17 wij_l)' (159)

We now bound the expression in (155). First note that
](mxa UN; mya VNv ,lvbil_lv ¢i1_1) - ](mX7 UN; wil_lv ¢i1_1)
= I(my, u™;my, VM=t ot
< I(mxa uNa ,lvbh—l; my7 VN|Q/)i1_27 ¢i1_1)
= I(my, u™;my, VN7 o)
S I(mxa UN; my7 VN7 ¢i1—1|wi1_27 ¢i1_2)
= I(my, u™; my, VN 72 ¢ %)
where the third and fifth step follow from the fact that , = ¥;, (m,, v, ¢"~?) and
¢i—1 = D;,_1(my, vV, 1172). Recursively continuing we have that
I(my, ™y my N1 o) < I(my, u™ s my, v = T(u™;vY) = NI(u; v) (160)

where we use the facts that, — v — v — m, and that(v",v") are discrete and
memoryless.
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Also note that
F;— F} (161)
= I(mX7 UN; y]? Zj|my7 VN7 yj_17 Zj_17 ¢ij_17 wij_l) - I<mX7 UN; Zj‘zj_17 wij_lv ¢ij_1)
= H(y]7 Zj|my7 VN7 yj_17 Zj_17 ¢ij_17 wij_l) - H(y]7 Zj|my7 VN7 yj_17 Zj_17 ¢ij_17 wij_lv my, UN)
o H(Zj‘zj_l,lpij_l,(bij_l) 4 H(Zj|2j_1,¢ij_1,¢ij_1, m, UN)
= H(y;, z;lmy, v™,y? =1 2771 @87 =Y — Hiy;, zj]x;) — H(z|2/ 7 0571 6571 + H(z]x))
(162)
< H(yj‘zj7 ¢ij_17 ¢ij_1) o H<yj|zj7 Xj)
< I(x;:y512), (163)
where (162) follows from the fact that; = X;(m,, v",¢%~!) and that since the channel
is memorylesgm,, m,, u™ v, @it opli=l yi=l 271y 5 xi — (y;, z;) holds. The last two

steps follow from the fact that conditioning reduces engrop
Finally to upper bound~, — G},

G; — G
= I(me, ™ hisq1, oy Gyt Vgt - s ippy 1| my, vy 20 T T
— I(m, u™ i1, i1 ity - - Vi 1]27, 99T T
= I(m, UN% my, VNJ’ja ¢z‘j+17 cee ¢ij+1—17 ¢z‘j+17 ces 7¢ij+1—1|2j7 ¢ij_17 W'f‘l)
— I(my, ™ my, v, 7|2 5 ) = I (m, Ny, Byt Wi s iy —1]2, 99T T
= I(my, u™;m,, VN yd|gler =t gttt 20 — I(my, u™ymy,, vN, yd |ttt Z9)

Furthermore since;,,, ; = ® (me, u™ P72 andey, 1 = Uy, 1 (my, vV, ¢l+172)

we have that

ijp1—1

[(mm UN; m,, VN’yj‘¢ij+1_17 wiﬂl—l, Zj)
< I(my,u”, Gijpr—15 My, ARSI AR U EAS R 2D
— ](mm UN; m,, VNjyj‘¢ij+1_2’¢ij+l—17 Zj)
< I(m, u™smy vy @t TR T 2
_ ](mm UN; m,, VN,yj7 ¢ij+1—2’¢ij+1—27 Zj)
Continuing this process we have that

I(mX7 UN; my7 VN7yj|¢ij+1_17 wij+1_17 Zj) S I<mX7 UN; my7 VN7yj‘¢ij_17 wij_17 Zj)

and thus R
G;—G;<0. (164)
Substituting (160), (163) and (164) into (155) we have that
nR <Y I(x;yilz) + NI(u;v) + 2ne, (165)
j=1
< maxnl(x;y|z) + NI(u;v) + 2ne, (166)
pX

thus yielding the stated upper bound.
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IX. CONCLUSIONS

In this paper we introduced a secret-key agreement tecariftpt harnesses uncertainties
from both sources and channels. We first consider the case Wigelegitimate terminals
observe a pair of correlated sources and communicate ovéretap channel for generating
secret keys. The secret-key capacity is bounded by edtaigisipper and lower bounds.
The lower bound is established by providing a coding theotkat combines ideas from
source and channel coding. Its optimality is establishedmtine wiretap channel consists
of parallel, independent and degraded channels. The loaandin general involves us to
operate at a point on the wiretap channel that balances titelmation of source and channel
contributions and this illustrated for the Gaussian ch&nne

In addition we also establish the capacity when the wiretagms access to a source
sequence which is a degraded version of the source sequétiee legitimate receiver. Fur-
thermore the case when a public discussion channel is biaiiar interactive communication
is also studied and an upper bound on the secret-key capagtpvided. For the practically
important case, of “independent noise” channels we showitlsuffices to separately treat
source and channel components without loss of optimality.

In terms of future work, there can be many fruitful avenuesexplore for secret-key
distillation in a joint-source-channel setup. One can mersmulti-user extensions of the
secret-key generation problem along the lines of [10] aso abnsider more sophisticated
channel models such as the compound wiretap channels, MIM&ap channels and wire-
tap channels with feedback and/or side information. Cotmes of this setup to wireless
channels, biometric systems and other applications canbedsnteresting.

ACKNOWLEDGEMENT

Ashish Khisti thanks Matthieu Bloch for detailed commentsl @also spotting an error in
an earlier version of this paper. The authors work was sup@doy Natural Science and
Engineering Research Council of Canada (NSERC) discovanyt gorogram, NSF Grant No.
CCF-0515109 and Swiss National Science Foundation thriN@BR-MICS.

APPENDIX A
EXTENSION OF THEOREM 1 TO GENERAL (a, b)

In section IV the coding theorem was derived for the case whenx and b = const. In
this section we complete the proof of the general case. Weowly consider the case when
a = x, since the general case follows by sampling the codewoais the typical sef” and
then passing each symbol of through an auxiliary channei,(-).

A. Codebook Construction

We describe the construction of an ensemble of codebookshgntbmputing the error
probability averaged over this ensemble, show that theistseane codebook with the desired
property.

1) Channel CodebookDefine R, = I(x;y|b) and R, = I(b;y) and recall that since
b — x — y we have thatR, + R, = I(x;y). We construct @asecodebookC, consisting
of N, = exp, (nR, —nd,) sequences, which forms the could center of a superposition
code. For each sequend¢ < C, we generate a codeboak, (b)) consisting of N, =
exp, (nl(x;y|b) —nd,) sequences. All sequences @ are sampled uniformly at random
from the setZ} while all sequences ig,(b}) are sampled uniformly at random from the
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conditionally typical setl’”(b!"). Hered, > 0 and g, > 0 as arbitrary constants such that
0. + &, = 0, which satisfies (26). If this condition is not satisfied, &scdssed in section 1V,
time-sharing between transmitting an independent mesaadehe source coding approach
discussed here is necessary.

2) Source Codebookshe Wyner-Ziv codebookV? is constructed as in section V. A set
T consisting ofV,,; sequences is constructed by selecting the sequencesmlyifatrrandom
from the setlV. These sequences are partitioned int@, bins, each consistnig affyy,
sequences where the constanfg;;, and Ny, are defined in (27a) and (27b) respectively.
The secret-key codebod®®® consists of a total ofVgk bins, each withMgkx codewords,
where

Mgk = exp, (n(I(b;y) + I(x; z|b) —9)), (167a)
Nsk = expy (n(BI(t;v) + I(x;y|b) — I(x; z|b) — §)). (167b)

Via (26), note that,
Niot = NskMsk = NwzMwyz = NaNp = epr(nI(x; Y) - né). (168)

B. Encoding

The encoder finds a sequenct jointly typical with v"¥ and declares its bin index in
the secret-key codebook as the secret-key. The bin indelxein\tyner-Ziv codebook is the
message that is transmitted to the receiver. The bin idgex is split into two indicesd, €
{1,2,...,N,} and®y, € {1,..., Ny}, which form messages for the two channel codebooks
C,(-) andC, respectively. Thus the encoder first mapsto a codewordb™ in C, and then
maps the message, to the codeword™ in C,(b™). The sequence” is transmitted over.
channel uses.

C. Decoding

The decoder upon observing searches for sequencg® € C,, andx™ € C,(b}") that are
jointly typical i.e., (y",x", b}) € T}, , - By our choice of Ny, and N, this succeeds with
high probability. It then reconstructs the bin indéx,, and searches for a sequenéec T
that lies in this bin and is jointly typical witlr’V'. As in section IV-C, this step succeeds with

high probability. The secret-key is then computedkas dg (tV).

D. Decoding with side information at the eavesdropper

The eavesdropper, when revealedh addition toz", can reconstruct” as follows. Upon
observingz", the decoder searches for a sequehtec C, that is jointly typical. This
event succeeds with high probability sinééb;z) > I(b;y) = Ry. Thereafter it searches
for sequences iBFK = {1, 77} such that{®,;, Py] = wz (6 ") satisfies: (1)
dy; =i and (2)xg, € Co(b}) is jointly e— typical with z".

J

The probability that a false sequenceB* satisfies these conditions is
Pr(e) = exp, {—n(I(x; z|b) + I(b;y) — €)} (169)

and hence the choice df/sk in (167a) guarantees that the error probability approazbes
providedes < J.
Thus by Fano’s lemma, there exists one particular codeboatkdatisfies

%H(tN\z", k) = 0,(1) (170)
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E. Secrecy Analysis
Following the steps leading to (55) we have
H(k|z") = H(®wz|z") + H(t"|Dwz) — H(t" |k, 2") (171)
= H(Pwyz|z") + H(t"|Pwz) — No,(1) (172)
where the second step follows from (170).

For the superposition codebook, sinég; is the transmitted message we have from [8,
Corollary 2, pp. 341]

H(@wsl2") = T0x:y16) — 1(x:2]b) + 0,(1). (173)
and from (37b) in Lemma 1,
%H(tNM)WZ) = I(t;v) + 0,(1). (174)
Substituting these relations into (172) we have that
LH(K2") = {6 y|b) ~ T(x; 2[b)} + BI(£:v) + 0, (1) (175)
as required.
APPENDIX B
PROOF OF(35)
We can express
E=D\ AR Tio-r U Tiper -\ Tt (176)

wherej, is the index of the sequenceé selected by the sender in bBYX of C5X, and where
the event7, is defined as the event,

Jo={Pwa(ty,") ¢ T} (177)
andJ; for 1 < j < Mgk, j # jo IS

J; = {@Wz(tffﬁ‘) eI} (178)
It follows that
Msk
Pr(€4) <Pr(Jo)+ Y. Pr(J|T5). (179)
J=1.3#jo

where 75 denotes the compliment of the evefi.

By law of large numbers it follows thdtr(J,) — 0. To evaluatePr(7;|J5) we deflne the
eventJ' as the event that the Wyner-Ziv bin indices of the seque €0§ andt,f]0
|denncalle

T = {owa(tl™) = dwat)5)} (180)
Using jf"l we can upper bound the error event as

Pr(J;]75) < Pr(TNTg) + Pr(J;| T N Tg) (181)
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where the first term is the error probability due to a collisevent and the second term is
the error probability when there is no collision.
The first term can be upper bounded as follows

Pr(J;T5) = Pr(J;*) (182)
= expy(—n(BRwz + 20)) (183)
— expy(—n(I(x;y) —9)) (184)

where (182) follows from the fact the evepk, is due to the atypical channel behaviour
and is independent of the random partitioning evﬁ;ﬁl, (183) follows from the fact that
since both the codebook¥"? andCSX are obtained by partitioning the sgtafter a random
permutation, we have for any’, t) € T

1

MWigs)

and Nywz = expo{n(SRwz + 26)} and (184) follows via relation (26). The second term
reduces to an event that € C, sampled independent of! satisfies(x",z") € T, ..
Hence we have

Pr (Pwz(t]) = Pwz(t))| sk (t]) = Psk (1)) = Pr (Pwz(t])) = Pwz(ty')) =

Pr(J;| 5 0 T;*) < expy(—n(I(x; 2) — 3¢)). (186)
Combining (184) and (186) we have

Pr(Tj|J5) < expy(=n(l(x; 2) = 3¢)) + expy(—n(l(x;y) = 9))

< expy(—n(l(x; 2) — 4e)),  n = no, (187)
where we use the fact thd(x;y) > I(x;z) from (24) in the last step so that the required
no exists. Finally using relation (27c) favlsk, we have that

Mgk

> Pr(J)) < expy(—n(d — 4e)) + 0,(1), (188)

7=1,5#5o

which vanishes wittm, whenever the decoding function seleets: §/4. Thus we have that
Pr(&) — 0 asn — oo.

APPENDIX C
CARDINALITY BOUNDS ONtIN THEOREM 1

Let the alphabet of; be denoted by{1,..., ||} and letp,,(-|t) be a probability mass
function indexed byt. Define the following functions of thg,.(-|¢):

pu\t(]ﬁ)? j:177|u|_1
9i(Puie(-[t)) = ¢ H(ult = 1), j = U] (189)
H(vlt=t) j=|Ul+1

The first|U/| — 1 functions are conditional probabilitigs v = j|t = ¢}, each of which is a
continuous function of the conditional pmfu|t). The functionH (u|t = t) is also continuous
in p(ult) by virtue of the continuity of the entropy function. Finallige functionH (v|t = t)

is a continuous function gf(u|t) due to the linear relatiop(v|t) = 3" p(v|u)p(ult). Hence
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by the Caratheodry theorem (see e.g., [13, Appendix C]etbgists another random variable
t’ taking no more thar/| + 1 values such that

H(u|t) = H(u|t)) (190)
H(v|t) = H(v|t), (191)
Ep(ult)] = p(u) = Evp(ult)],  we{l,... U] -1} (192)

(193)

Since the sum of the probability mass functiond ithe last relation also holds far = |i/|.
It is thus easy to see that any point that can be achieved ioréhel can also be achieved
by restrictingt to have cardinality no more that{| + 1. This completes the argument.
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