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Abstract

We study the problem of generating a shared secret key between two terminals in a joint
source-channel setup — the terminals communicate over a discrete memoryless wiretap channel
and additionally the terminals have access to correlated discrete memoryless source sequences. We
establish lower and upper bounds on the secret-key capacity. These bounds coincide, thus establishing
the capacity, when the underlying channel consists of a set of independent, parallel and reversely
degraded wiretap channels. In the lower bound expression, the equivocation terms of the source
and channel components are functionally additive. The secret-key rate is maximized by optimally
balancing the the source and channel contributions. This tradeoff is illustrated in detail for the case
of parallel Gaussian channels and jointly Gaussian sourceswhere it is also shown that Gaussian
codebooks achieve the capacity. When the eavesdropper alsoobserves a source sequence, the secret-
key capacity is established when the sources and channels ofthe eavesdropper are a degraded version
of the legitimate receiver. Finally the case when the terminals also have access to a public discussion
channel is studied. We propose generating separate keys from the source and channel components
and establish the optimality of this approach when the when the channel outputs of the receiver and
the eavesdropper are conditionally independent given the input.

Index Terms

Information theoretic security, secret-key agreement, wiretap channel, joint source-channel cod-
ing, public discussion

I. INTRODUCTION

Several applications require that the legitimate terminals have shared secret-keys, not avail-
able to unauthorized parties. Information theoretic security encompasses the study of source
and channel coding techniques to generate secret-keys between legitimate terminals. In the
channel coding literature, an early work in this area is the wiretap channel model [31]. It
consists of three terminals — one sender, one receiver and one eavesdropper. The sender
communicates to the receiver and the eavesdropper over a discrete-memoryless broadcast
channel. A notion of equivocation-rate — the normalized conditional entropy of the trans-
mitted message given the observation at the eavesdropper, is introduced, and the tradeoff
between information rate and equivocation rate is studied.Perfect secrecy capacity, defined
as the maximum information rate under the constraint that the equivocation rate approaches
the information rate asymptotically in the block length is of particular interest. Information
transmitted at this rate can be naturally used as a shared secret-key between the sender and
the receiver. Several extensions of this channel have been studied recently. See e.g., [3], [11],
[16], [20], [22]–[24], [30].

Part of the material in this paper was presented at the 2008 Information Theory and its Application Workshop [17]
and the 2008 International Symposium on Information Theory[18]. Ashish Khisti is with ECE Department, University of
Toronto, Toronto, ON, Canada (akhisti@comm.utoronto.ca). Suhas Diggavi is with the Department of Electrical Engineering,
University of California, Los Angeles (UCLA) as well as withthe School of Computer and Communication Sciences at
EPFL (suhas@ee.ucla.edu). Gregory Wornell is with the faculty of EECS Dept., MIT (gww@mit.edu).
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In the source coding setup [1], [26], the two terminals observe correlated source sequences
and use a public discussion channel for communication. Any information sent over this
channel is available to an eavesdropper. The terminals generate a common secret-key that is
concealed from the eavesdropper in the same sense as the wiretap channel — the equivocation
rate asymptotically equals the secret-key rate. Several multiuser extensions of this problem
have been subsequently studied. See e.g., [9], [10].

Motivated by the above works, we study a problem where the legitimate terminals observe
correlated source sequences and communicate over a wiretapchannel and are required to
generate a common secret-key. One application of this setupis in secret key generation
across sensors in a body area network [4], [5]. Sensors placed at different locations on a
human body measure correlated biological signals which canbe used to generate a secret
key. Further they need to communicate over a wireless medium, in the presence of potential
eavesdropping sensors which would naturally be further away. While earlier works only exploit
signal correlation across sensors for key generation, our information theoretic results suggest
that both signal correlation as well as channel equivocation must be used to maximize the
secret key rate.

How to simultaneously exploit both the source correlation and channel equivocation in
generating a common secret key? Our proposed approach is a joint design of source and
channel codebooks. The source sequence is quantized using aWyner-Ziv like codebook and
the corresponding bin index constitutes a message for a channel codebook. The secret key
is generated by jointly exploiting the source and channel uncertainties at the eavesdropper.
When the conditional entropy of the source sequences is not sufficiently high, we only reserve
a certain fraction of the total channel uses for this scheme.In the remaining time we transmit
an independent secret message over over channel. Optimality of our scheme is established
when the wiretap channel consists of parallel, independentand degraded channels.

We also study the case when the eavesdropper observes a source sequence correlated with
the legitimate terminals. The secret-key capacity is established when the sources sequence
of the eavesdropper is a degraded version of the sequence of the legitimate receiver and
the channel of the eavesdropper is a degraded version of the channel of the legitimate
receiver. Another variation — when a public discussion channel is available for interactive
communication, is also discussed and the secret-key capacity is established when the channel
output symbols of the legitimate receiver and eavesdropperare conditionally independent
given the input.

The problem studied in this paper also provides an operational significance for the rate-
equivocation region of the wiretap channel. Recall that therate-equivocation region captures
the tradeoff between the conflicting requirements of maximizing the information rate to
the legitimate receiver and the equivocation level at the eavesdropper [7]. To maximize
the contribution of the correlated sources, we must operateat the Shannon capacity of the
underlying channel. In contrast, to maximize the contribution of the wiretap channel, we
operate at a point of maximum equivocation. In general, the optimal operating point lies in
between these extremes. We illustrate this tradeoff in detail for the case of Gaussian sources
and channels.

In related work [15], [27], [32] study a setup involving sources and channels, but require
that a source sequence be reproduced at the destination subjected to an equivocation level at
the eavesdropper. In contrast our paper does not impose any requirement on reproduction
of a source sequence, but instead requires that the terminals generate a common secret
key. A recent work, [29], considers transmitting an independent confidential message using
correlated sources and noisy channels. This problem is different from the secret-key generation
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problem, since the secret-key, by definition, is an arbitrary function of the source sequence,
while the message is required to be independent of the sourcesequences. Independently and
concurrently of our work the authors of [28] consider the scenario of joint secret-message-
transmission and secret-key-generation, which when specialized to the case of no secret-
message reduces to the scenario treated in this paper. Whilethe expression for the achievable
rate in [28] appears consistent with the expression in this paper, the optimality claims in [28]
are limited to the case when either the sources or the channeldo not provide any secrecy.

The rest of the paper is organized as follows. The problem of interest is formally introduced
in section II and the main results of this work are summarizedin section III. Proofs of the
lower and upper bound appear in sections IV and V respectively. The secrecy capacity for the
case of independent parallel reversely degraded channels is provided in section VI. The case
when the wiretapper has access to a degraded source and observes transmission through a
degraded channel is treated in section VII while section VIII considers the case when a public
discussion channel allows interactive communication between the sender and the receiver. The
conclusions appear in section IX.

II. PROBLEM STATEMENT

Fig. 1 shows the setup of interest. The sender and receiver communicate over a wiretap
channel and have access to correlated sources. They can interact over a public-discussion
channel. We consider two extreme scenarios: (a) the discussion channel does not exist (b)
the discussion channel has unlimited capacity. The channelfrom sender to receiver and
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Fig. 1. Secret-key agreement over the wiretap channel with correlated sources. The sender and receiver communicate over
a wiretap channel and have access to correlated sources. They communicate interactively over a public discussion channel
of rateR, if it is available.

wiretapper is a discrete-memoryless-channel (DMC),py ,z |x(·, ·|·). The sender and intended
receiver observe discrete-memoryless-multiple-source (DMMS) pu,v (·, ·) of length N and
communicate overn uses of the DMC. Throughout this paper assume that the sourceand
channels are independent i.e.,(u, v ) → x → (y , z) holds. Further the source sequences are
known to the terminals before the communication begins i.e., non-causally. We separately
consider the cases when no public discussion is allowed and unlimited discussion is allowed.
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A. No discussion channel is available

An (n,N) secrecy code is defined as follows. The sender samples a random variablemx
1

from the conditional distributionpmx |uN (·|u
N). The encoding functionfn : Mx × UN → X n

maps the observed source sequence to the channel output. In addition, two key generation
functionsk = Kn(Mx,UN) and l = Ln(VN ,Yn) at the sender and the receiver are used for
secret-key generation. A secret-key rateR is achievable with bandwidth expansion factorβ
if there exists a sequence of(n, βn) codes, such that for a sequenceεn that approaches zero
as n → ∞, we have (i)Pr(k 6= l) ≤ εn (ii) 1

n
H(k) ≥ R − εn (iii) 1

n
I(k; zn) ≤ εn. The2

secret-key-capacity is the supremum of all achievable rates.
For some of our results, we will also consider the case when the wiretapper observes a

side information sequencewN sampled i.i.d.pw(·). In this case, the secrecy condition in (iii)
above is replaced with

1

n
I(k; zn,wN) ≤ εn (1)

In addition, for some of our results we will consider the special case when the wiretap
channel consists of parallel and independent channels eachof which is degraded.

1) Parallel Channels:
Definition 1: A productbroadcast channel is one in which theM constituent subchannels

have finite input and output alphabets, are memoryless and independent of each other, and
are characterized by their transition probabilities

Pr ({ynm, z
n
m}m=1,...,M | {xnm}m=1,...,M) =

M
∏

m=1

n
∏

t=1

Pr(ym(t), zm(t) | xm(t)), (2)

where xnm = (xm(1), xm(2), . . . , xm(n)) denotes the sequence of symbols transmitted on
subchannelm, whereynm = (ym(1), ym(2), . . . , ym(n)) denotes the sequence of symbols ob-
tained by the legitimate receiver on subchannelm, and whereznm = (zm(1), zm(2), . . . , zm(n))
denotes the sequence of symbols received by the eavesdropper on subchannelm.

�

A special class of product broadcast channels, known as the reversely degraded broadcast
channel [12] are defined as follows.

Definition 2: A product broadcast channel isreversely-degradedwhen each of theM
constituent subchannels is degraded in a prescribed order.In particular, for each subchannel
m, one ofxm → ym → zm or xm → zm → ym holds.

�

Note that in Def. 2 the order of degradation need not be the same for all subchannels, so the
overall channel need not be degraded. We also emphasize thatin any subchannel the receiver
and eavesdropper arephysicallydegraded. Our capacity results, however, only depend on the
marginal distribution of receivers in each subchannel3. Accordingly, our results in fact hold for
the larger class of channels in which there is only stochastic degradation in the subchannels.

We obtain further results when the channel is Gaussian.

1The alphabets associated with random variables will be denoted by calligraphy letters. Random variables are denoted by
sans-serif font, while their realizations are denoted by standard font. A lengthn sequence is denoted byxn.

2Throughout this work we only require that the normalized mutual information between the key and the eavesdropper
output vanish as the block-length goes to infinity. A stronger notion of secrecy can also be considered, which requires that
the mutual information approach zero as the block length increases (see e.g., [6], [25]). We do not pursue this extension.

3However, when we consider the presence of a public-discussion channel and interactive communication, the capacity
does depend on joint distributionpy,z|x (·)
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2) Parallel Gaussian Channels and Gaussian Sources:
Definition 3: A reversely-degraded product broadcast channel isGaussianwhen it takes

the form
ym = xm + nr,m,

zm = xm + ne,m,
m = 1, . . . ,M (3)

where the noise variables are all mutually independent, andnr,m ∼ CN (0, σ2
r,m) andne,m ∼

CN (0, σ2
e,m). For this channel, there is also an average power constraint

E

[

M
∑

m=1

x2
m

]

≤ P.

�

Furthermore we assume thatu andv are jointly Gaussian (scalar valued) random variables,
and without loss of generality we assume thatu ∼ N (0, 1) andv = u+s, wheres ∼ N (0, S)
is independent ofu.

B. Presence of a public discussion channel

We will also consider a variation on the original setup when apublic discussion channel
is available for communication. This setup was first introduced in the pioneering works [1],
[26]. The sender and receiver can interactively exchange messages on the public discussion
channel.

The sender transmits symbolsx1, . . . xn at times0 < i1 < i2 < . . . < in over the wiretap
channel. At these times the receiver and the eavesdropper observe symbolsy1, y2, . . . , yn and
z1, z2, . . . , zn respectively. In the remaining times the sender and receiver exchange messages
φt andψt. We consider a total ofk rounds of exchanges i.e.,1 ≤ t ≤ k and definein+1 = k+1.
Note thatk is an arbitrary integer in this setup.The eavesdropper observes{φt, ψt}

k+1
t=1 . More

formally,
• At time 0 the sender and receiver sample random variablesmx andmy respectively from

conditional distributionspmx|uN (·|u
N) and pmy |vN (·|vN). Note thatmx → uN → vN →

my holds.
• At times 0 < t < i1 the sender generatesφt = Φt(mx, u

N , ψt−1) and the receiver
generatesψt = Ψt(my , v

N , φt−1). These messages are exchanged over the public channel.
• At times ij, 1 ≤ j ≤ n, the sender generatesxj = Xj(mx, u

N , ψij−1) and sends it over
the channel. The receiver and eavesdropper observeyj adzj respectively. For these times
we setφij = ψij = 0.

• For times ij < t < ij+1, where1 ≤ j ≤ n, the sender and receiver computeφt =
Φt(mx, u

N , ψt−1) and ψt = Ψt(my , v
N , y j, φt−1) respectively and exchange them over

the public channel.
• At time k + 1, the sender and receiver computek = Kn(mx, u

N , ψk) and the receiver
computesl = Ln(my , v

N , yn, φk).
We require that for some sequenceεn that vanishes asn→ ∞, Pr(k 6= l) ≤ εn and

1

n
I(k; zn, ψk, φk) ≤ εn. (4)
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III. STATEMENT OF MAIN RESULTS

Below we consider the case when a public discussion channel is not available. The results
for the case of public discussion are stated in section III-E.

It is convenient to define the following quantities which will be used in the sequel. Suppose
that t is a random variable such thatt → u → v , anda andb are random variables such that
b → a → x → (y , z) holds andI(y ; b) ≤ I(z ; b) and4

I(a; y |b) ≥ I(a; z |b). (5)

Furthermore define

Rch = I(a; y ), (6a)

R−
eq = I(a; y |b)− I(a; z |b) (6b)

Rs = I(t; v ), (6c)

Rwz = I(t; u)− I(t; v ). (6d)

R+
eq = I(x ; y | z). (6e)

R+
ch = I(x ; y ), (6f)

We establish the following lower and upper bounds on the secret key rate in Section IV
and V respectively.

Theorem 1:A lower bound on the secret-key rate is given by

R−
key = βRs +R−

eq, (7)

where the random variablest, a andb defined above additionally satisfy the condition

βRwz ≤ Rch (8)

and the quantitiesRwz, Rs, R−
eq andRch are defined in (6d), (6c), (6b) and (6a) respectively.

�

Theorem 2:An upper bound on the secret-key rate is given by,

R+
key = max

{(x ,t)}

{

βRs +R+
eq

}

, (9)

where the supremum is over all distributions over the randomvariables(x , t) that satisfy
t → u → v , the cardinality oft is at-most the cardinality ofu plus one, and

βRwz ≤ R+
ch. (10)

The quantitiesRs, Rwz, R+
eq andR+

ch are defined in (6c), (6d), (6e) and (6f) respectively.
Furthermore, it suffices to consider only those distributions where(x , t) are independent.

�

As suggested to us by an anonymous reviewer, the upper bound in Theorem 2 can be
further tightened as stated below.

Proposition 1: An upper bound on the secret-key rate is given by,

R+
key = inf

pg,y,z|x
max
{(x ,t)}

{βI(t; v ) + I(x ; y |g) + I(x ; g |z)} , (11)

where the infimum is over three-receiver memoryless channels of the formpg ,y ,z |x(·) for which
the distributionpy ,z |x(·) coincides with the given channel whereas the maximization is over
independent random variables(x , t) that satisfy (10).

4The condition in (5) will be satisfied even if not explicitly enforced in the optmization of Theorem 1. Suppose that(a,b)
are such that the expression in (5) is violated. We note that such a choice cannot be the optimal choice in Theorem 1. Define
a′ = b′ = (a, b). Observe thatI(a; y) = I(a′; y) and hence the expression forR−

key in (7) increases whereas the constraint
set in (8) remains unchanged with this new choice of variables.
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Fig. 2. An example of independent parallel and reversely degraded Gaussian channels. On the first channel, the eavesdropper
channel is noisier than the legitimate receiver’s channel while on the second channel the order of degradation is reversed.

A. Reversely degraded parallel independent channels

The bounds in Theorems 1 and 2 coincide for the case of reversely degraded channels as
shown in section VI-A and stated in the following theorem.

Theorem 3:The secret-key-capacity for the reversely degraded parallel independent chan-
nels in Def. 2 is given by

Ckey = max
{(x1,...,xM ,t)}

{

βI(v ; t) +

M
∑

i=1

I(xi; yi|zi)

}

, (12)

where the random variables(x1, . . . , xM , t) are mutually independent,t → u → v , and
M
∑

i=1

I(xi; yi) ≥ β{I(u; t)− I(v ; t)} (13)

Furthermore, the cardinality oft obeys the same bounds as in Theorem 2.
�

B. Gaussian Channels and Sources

For the case of Gaussian sources and Gaussian channels, the secret-key capacity can be
achieved by Gaussian codebooks as established in section VI-B and stated below.

Corollary 1: The secret-key capacity for the case of Gaussian parallel channels and Gaus-
sian sources in subsection II-A2 is obtained by optimizing (12) and (13) over independent
Gaussian distributions i.e., by selectingxi ∼ N (0, Pi) andu = t+d , for somed ∼ N (0, D),
independent oft and

∑M
i=1 Pi ≤ P , Pi ≥ 0, and0 < D ≤ 1.

CG
key = max

{Pi}Mi=1,D















β

2
log

(

1 + S

D + S

)

+
∑

i:1≤i≤M

σr,i≤σe,i

1

2
log

(

1 + Pi/σ
2
r,i

1 + Pi/σ
2
e,i

)















, (14)

whereD,P1, . . . , PM also satisfy the following relation:
M
∑

i=1

1

2
log

(

1 +
Pi

σ2
r,i

)

≥ β

{

1

2
log

(

1

D

)

−
1

2
log

(

1 + S

D + S

)}

(15)

�
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C. Remarks

1) Note that the secret-key capacity expression (12) exploits both the source and channel
uncertainties at the wiretapper. By setting either uncertainty to zero, one can recover
known results. WhenI(u; v ) = 0, i.e., there is no secrecy from the source, the secret-
key-rate equals the wiretap capacity [31]. IfI(x ; y |z) = 0, i.e., there is no secrecy from
the channel, then our result essentially reduces to the result by Csiszar and Narayan [9],
that consider the case when the channel is a noiseless bit-pipe with finite rate.

2) In general, the setup of wiretap channel involves a tradeoff between information rate
and equivocation. The secret-key generation setup provides an operational significance
to this tradeoff. Note that the capacity expression (12) in Theorem 3 involves two terms.
The first termβI(t; v ) is the contribution from the correlated sources. In general, this
quantity increases by increasing the information rateI(x ; y ) as seen from (13). The
second term,I(x ; y |z) is the equivocation term and increasing this term, often comes at
the expense of the information rate. Maximizing the secret-key rate, involves operating
on a certain intermediate point on the rate-equivocation tradeoff curve as illustrated by
an example in section III-F.

D. Side information at the wiretapper

We consider the setup described in Fig. 1, but with a modification that the wiretapper
observes a source sequencewN , obtained byN− independent samples of a random variable
w . In this case the secrecy condition takes the form in (1). We only consider the case when
the sources and channels satisfy a degradedness condition.

Theorem 4:Suppose that the random variables(u, v ,w) satisfy the degradedness condition
u → v → w and the broadcast channel is also degraded i.e.,x → y → z . Then, the secret-
key-capacity is given by

Ckey = max
(x ,t)

{β(I(t; v )− I(t;w)) + I(x ; y |z)} , (16)

where the maximization is over all random variables(t, x) that are mutually independent,
t → u → v → w and

I(x ; y ) ≥ β(I(u; t)− I(v ; t)) (17)

holds. Furthermore, it suffices to optimize over random variablest whose cardinality does
not exceed that ofu plus two.

�

E. Secret-key capacity with a public discussion channel

In the presence of public interactive communication we havethe following result.
Theorem 5:An secret-key capacity for source-channel setup with a public discussion chan-

nel and a wiretap channelpy ,z |x(·) that satisfies eitherx → y → z or y → x → z is

Ckey ≤ max
px

I(x ; y |z) + βI(u; v ). (18)

The expression (18) continues to be an upper bound even when the wiretap channel does not
satisfy either of the upper bounds.

�
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The presence of a public discussion channels allows us to decouple the source and channel
codebooks. We generate two separate keys — one from the source component using a Slepian-
Wolf codebook and one from the channel component using the key-agreement protocol
described in [1], [26].

The upper bound expression (18) in Theorem 5 is established using techniques similar to
the proof of the upper bound on the secret-key rate for the channel model [1, Theorem 3].
A derivation is provided in section VIII.

F. Example: Gaussian Channels with and without public discussion

Consider a pair of Gaussian parallel channels,

y1 = a1x + nr,1, z1 = b1x + ne,1

y2 = a2x + nr,2, z2 = y2
(19)

where a1 = 1, a2 = 2, and b1 = 0.5. Furthermore,u ∼ N (0, 1) and v = u + s, where
s ∼ N (0, 1) is independent ofu. The noise variables are all sampled from theCN (0, 1)
distribution and appropriately correlated so that the users are degraded on each channel. A
total power constraintP = 1 is selected and the bandwidth expansion factorβ equals unity.

1) Without Public Discusion:From Theorem 1, in absence of the public discussion channel,

Ckey = max
P1,P2,D

Req(P1, P2) +
1

2
log

2

1 +D
, (20)

such that,

Rwz(D) =
1

2
log

1

D
−

1

2
log

2

1 +D
(21)

≤
1

2

(

log
(

1 + a21P1

)

+ log(1 + a22P2)
)

, (22)

Req(P1, P2) =
1

2

(

log(1 + a21P1)− log(1 + b21P1)
)

. (23)

Fig. 3 illustrates the (fundamental) tradeoff between rateand equivocation for this channel,
which is obtained as we vary power allocation between the twosub-channels. We also present
the functionRsrc = I(t; v ) which monotonically increases with the rate, since larger the rate,
smaller is the distortion in the source quantization. The optimal point of operation is between
the point of maximum equivocation and maximum rate as indicated by the maximum of the
solid line in Fig. 3. This corresponds to a power allocation(P1, P2) ≈ (0.29, 0.71) and the
maximum value isRkey ≈ 0.6719.

2) With Public Discussion:Fig. 4 illustrates the contribution of source and channel coding
components for the case of Gaussian parallel channels (19) consisting of (physically) degraded
component channels. The termI(u; v ) is independent of the channel coding rate, and is shown
by the horizontal line. The channel equivocation rateI(x ; y |z) is maximized at the secrecy
capacity. The overall key rate is the sum of the two components. Note that unlike Fig. 3,
there is no inherent tradeoff between source and channel coding contributions in the presence
of public discussion channel and the design of source and channel codebooks is decoupled.

IV. A CHIEVABILITY : PROOF OFTHEOREM 1

We demonstrate the coding theorem in the special case whena = x andb = 0 in Theorem 1.
Furthermore via (5) we require that

I(x ; y ) ≥ I(x ; z) (24)
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Accordingly we have that (6a) and (6b) reduce to

Rch = I(x ; y ) (25a)

R−
eq = I(x ; y )− I(x ; z) (25b)

The more general case, can be incorporated by introducing anauxiliary channela → x and
superposition coding [8] as outlined in Appendix A. Furthermore, in our discussion below we
will assume that the distributionspt|u and px are selected such that, for a sufficiently small
but fixedδ > 0, we have

βRwz = Rch − 3δ. (26)

Remark 1:We note that the optimization over the joint distributions in Theorem 1 is over
the regionβRwz ≤ Rch. If the joint distributions satisfy thatβRwz = α(Rch − 3δ) for some
α < 1, one can use the code proposed construction for a block-length αn and then transmit
an independent message at rateR−

eq using a perfect-secrecy wiretap-code. This provides a rate
of

α

(

β

α
Rwz +R−

eq

)

+ (1− α)R−
eq = R−

eq + βRwz,

as required.
Remark 2:The region in Theorem 1 is achieved as we take the limitδ → 0. Note that the

set of joint distribution is compact. Hence the sequence of maximizing distributions converges
to a limit as δ → 0. By continuity, this limit converges to the maximizing distribution in
Theorem 1.

The rest of the proof is structured as follows. In section IV-E—IV-D we describe an
ensemble of codebooks as illustrated in Fig. 5 and the associated encoding and decoding
schemes at the receiver and at the eavesdropper (with appropriate side information) for each
such codebook. We then show in section IV-E that the error probability averaged over the
ensemble of these codebooks can be made arbitrarily small. This implies the existence of
at-least one codebook with the desired error probability. Finally our secrecy analysis in
section IV-F for this particular codebook completes the proof.

A. Codebook Construction

Throughoutδ > 0 andη = δ/β > 0 are constants. Let5,

MWZ = exp2(N(Rs − η)) (27a)

NWZ = exp2(N(Rwz + 2η)) (27b)

MSK = exp2(n(I(x ; z)− δ)) (27c)

NSK = exp2(n(βRs +R−
eq − δ)) (27d)

Substituting (6a)-(6d) and (26) into (27a)-(27d) we have that

Ntot ,MSK ·NSK =MWZ ·NWZ = exp2 (N(I(t; u) + η)) (28)

• Selection of T : Construct a setT consisting ofNtot sequences, each sampled uniformly
from the setT n

t of typical sequences6.

5We use the notationexp2(x) = 2x throughout the paper.
6Throughout we use the notion of strong typicality. See e.g.,[13, Chapter 2].
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Random Permutation

Wyner-Ziv Codebook

Secret-Key Codebook

NWZ

MWZ

NSK

MSK

T

Fig. 5. Construction of the codebook ensemble. The setT consists of≈ 2NI(u;t) sequences, each sampled uniformly from
the setTn

t of typical sequences. The Wyner-Ziv codebook is formed by arranging these sequences intoNWZ bins, each
consisting ofMWZ sequences. The elements of setT are then randomly permuted to form the setΠ(T ). The elements of
Π(T ) are then arranged to form the secret-key codebook as shown.

• Wyner-Ziv Codebook: ConstructCWZ as follows. Partition the setT into NWZ bins,
BWZ
1 , . . . ,BWZ

NWZ
each consisting ofMWZ codeword sequences so that binBWZ

i consists
of sequences numbered(i− 1) ·MWZ + 1 to i ·MWZ in T . The sequences in binBWZ

i

are enumerated as
BWZ
i =

{

tN,WZ
i1 , . . . , tN,WZ

iMWZ

}

. (29)

• Secret-Key Codebook: ConstructCSK as follows. Randomly permute the elements ofT
to construct another setΠ(T ). Partition the elements ofΠ(T ) intoNSK binsBSK

1 , . . . ,BSK
NSK

,
each consisting ofMSK sequences. The binBSK

i consists of sequences that are numbered
(i− 1)MSK + 1, . . . , iMSK in Π(T ). The sequences in binBSK

i are enummerated as

BSK
i =

{

tN,SK
i1 , . . . , tN,SK

iMSK

}

. (30)

• Channel Codebook ConstructCCH consisting ofNWZ sequences
{

xn
1 , . . . , x

n
NWZ

}

each
of which is sampled from the typical setT n

x .
Remark 3: We note that our codebook construction does not require binning as in the
wiretap codebook construction [31]. The analysis of the error probability however reveals
that our source-channel codebook should also constitute a good code for an eavesdropper
when revealed the secret-key (36), analogous to the wiretapcodebook.

The codebooks are revealed to all the three terminals. As illustrated in Fig. 5, note that while
the Wyner-Ziv codebook is obtained by arranging the elements of T in aNWZ ×MWZ table,
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the secret-key codebook is obtained by first randomly permuting the elements ofT and then
arranging these elements into aNSK ×MSK table. In the analysis of the error probability,
averaged over the ensemble of codebooks, this constructionguarantees that two sequences
belonging to the same bin in the secret-key codebook are independently assigned to the bins
of the Wyner-Ziv codebook (c.f. 185).

B. Encoding

• Given a sequenceuN , the encoder searches for an elementtN ∈ T such that(uN , tN) ∈
TN
ut,ε. If no such sequence exists then an error eventE1 is declared

• The encoder computes the Wynzer-Ziv bin indexφ = ΦWZ(t
N ). The functionΦWZ :

T → {1, 2, . . . , NWZ} is defined as follows

ΦWZ(t
N ) = i, if tN ∈ BWZ

i . (31)

• The encoder then selects the codewordxn
φ and transmits it overn uses of the discrete

memoryless channel.
• The encoder computes the Secret-keyk = ΦSK(t

N). The functionΦSK : T → {1, . . . , NSK}
is defined as follows

ΦSK(t
N ) = i, if tN ∈ BSK

i . (32)

C. Decoding at legitimate receiver

The main steps of decoding at the legitimate receiver are as follows.
• Given a received sequenceyn, the receiver looks for a unique indexi such that(xn

i , y
n) ∈

T n
xy ,ε. An error eventE2 happens ifxn

i is not the transmitted codeword or no suchxn
i is

found.
• Given the observed source sequencevN , the decoder then searches for a unique index
j ∈ {1, . . . ,MWZ} such that(tN,WZ

ij , vN) ∈ TN
tv ,ε. An error eventE3 is declared if a

unique index does not exist.
• The decoder computeŝk = ΦSK(t

N,WZ
ij ) and declareŝk as the secret key.

The encoding and decoding steps are illustrated in Fig. 6.

D. Decoding with side-information at the eavesdropper

We construct a decoder at the eavesdropper when the secret-key is revealed as side infor-
mation i.e., the decoder producestN when given(k, zn) via the following steps:

• The eavesdropper constructs a setI = {i | (xn
i , z

n) ∈ T n
xy ,ε}.

• It searches for all sequences inBSK
k , whose Wyner-Ziv bin index belongs toI i.e.,

Te =
{

tN |tN ∈ BSK
k ,ΦWZ(t

N ) ∈ I
}

(33)

Let E4 be the event that the setTe does not contain the sequencetN selected by the
sender or contains more than one sequence.
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W y n e r - Z i v
C o d e b o o k

W i r e t a p
C o d e b o o k

S e c r e t - K e y
C o d e b o o k

B i n   I n d e x

W - Z   C o d e w o r d

E n c o d e r D e c o d e r

D e c o d e r

B i n   I n d e x

W y n e r - Z i v
D e c o d e r

S e c r e t  K e y
C o d e b o o k

W - Z  C o d e w o r d

xn yn

uN vN

kk

2N(I(t;u)−I(t;v)) bins
2N(t;v) cws/bin

Fig. 6. Source-Channel Code Design for secret-key distillation problem. The source sequenceuN is mapped to a codeword
in a Wyner-Ziv codebook. This codeword determines the secret-key via the secret-key codebook. The bin index of the
codeword constitutes a message in the channel codebook.

E a v e s d r o p p e r
D e c o d e r

Z

E a v e s d r o p p e r  L i s t

S o u r c e  
C o d e w o r d s

S o u r c e - C h a n n e l  S e c r e c y

List Size:2n(I(y ;a|b)−I(z ;a|b)

2NI(t;v) codewords per bin

Fig. 7. Equivocation at the eavesdropper through the source-channel codebook. The channel codebook induces an ambiguity
of 2n(I(a;y|b)−I(a;z|b)) among the codeword sequencesan when the decoder observeszn. Each sequencean only reveals the
bin index of the Wyner-Ziv codeword. In induces an ambiguityof 2NI(t;v) at the eavesdropper, resulting in a total ambiguity
of 2n(βI(t;v)+I(a;y|b))−I(a;z|b).
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E. Error Probability Analysis

We show that averaged over the ensemble of codebooks

Pr(E1 ∪ E2 ∪ E3 ∪ E4) → 0 (34)

asn→ ∞. This implies the existence of at-least one codebook in ensemble with this property.
Since

Pr(E1 ∪ E2 ∪ E3 ∪ E4) ≤
4

∑

i=1

Pr(Ei),

it suffices to show thatPr(Ei) → 0 for eachi = 1, . . . , 4.
Recall thatE1 is the event that the encoder does not find a typical codeword in the Wyner-

Ziv codebook. Since the number of sequencesNtot = 2NI(t;u)+Nη it follows from standard
arguments that this event happens with vanishing probability. Since the number of channel
codewords equalsNWZ = 2n(I(x ;y)−δ), the error eventE2 which denotes the failure at the
legitimate receiver to decode the channel codeword satisfies Pr(E2) → 0. Since the number
of sequences in each bin satisfiesMWZ = 2N(I(t;v)−η), the eventE3 that the decoder fails to
uniquely decodetN satisfiesPr(E3) → 0.

A proof for the fact that the error eventE4 also happens with a vanishing probability when
ε < δ/4 i.e.,

Pr(E4) → 0 (35)

asn→ ∞ is provided in Appendix B.
Now consider a codebookC for which the error events have vanishing probability. For this

codebook the legitimate receiver will be able to decode the secret-keyk with high probability.
Also sincePr(E4) → 0, applying Fano’s lemma,

1

n
H(tN |k, zn) = oη(1). (36)

F. Secrecy Analysis

In this section, we show that for the codebook selected above, the equivocation at the
eavesdropper is close (in an asymptotic sense) toRkey.

First we establish some uniformity properties which will beused in the subsequent analysis.
1) Uniformity Properties:
Lemma 1:For any codeC in the random codebook ensemble, the resulting random variable

ΦWZ satisfies the following,

1

n
H(ΦWZ) = βRWZ + oη(1) (37a)

1

n
H(tN |ΦWZ) = βI(t; v ) + oη(1) (37b)

1

n
H(ΦWZ|z

n) = I(x ; y )− I(x ; z) + oη(1). (37c)

Remark 4:The relation (37a) states that the Wyner-Ziv bin index produced, is nearly
uniformly distributed over{1, . . . , NWZ}. The second condition (37b) states that in given a
bin BWZ

i all the codeword sequences in this bin are selected with a nearly uniform probability.
To interpret the last relation, recall that the Wyner-Ziv bin index is a message for the channel
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codebook. Hence (37c) states that the equivocation rate of the message at the eavesdropper
is governed by the channel equivocation in [31].

Proof:
To establish (37a), define the functionΓWZ : T → {1, . . . ,MWZ} which identifies the

position of the sequencetN ∈ T in a given bin i.e.,ΓWZ(t
N,WZ
ij ) = j and note that,

Pr(ΓWZ = j,ΦWZ = i) = Pr(tN,WZ
ij )

≤
∑

uN∈Tu,t,η(t
N,WZ
ij )

Pr(uN ) (38)

=
∑

uN∈Tu,t,η(t
N,WZ
ij )

2−N(H(u)+oη(1)) (39)

= 2N(H(u|t)+oη(1))2−N(H(u)+oη(1)) (40)

= 2−N(I(t;u)+oη(1)) (41)

where (38) follows from the construction of the joint-typicality encoder, and (39) from the
fact that the number of sequencesuN jointly typical with t

N,WZ
ij is equal to2N(H(u|t)+oη(1)).

Since there are a total of2N(I(u;t))+η codewords sequences, it follows from (41) that

1

N
H(ΦWZ,ΓWZ) = I(t; u) + oη(1). (42)

Furthermore, marginalizing (38), we have that

Pr(ΦWZ = i) =

MWZ
∑

j=1

Pr(ΓWZ = j,ΦWZ = i)

≤MWZ2
−N(I(t;u)+oη(1))

= 2−N(I(t;u)−I(t;v)+oη(1))

= 2−N(RWZ+oη(1)) (43)

SinceΦWZ ∈ {1, . . . , 2N(RWZ+2η)} it follows that

1

N
H(ΦWZ) = RWZ + oη(1). (44)

Furthermore,

1

N
H(tN |ΦWZ) =

1

N
H(ΓWZ|ΦWZ) =

1

N
H(ΓWZ,ΦWZ) −

1

N
H(ΦWZ) = I(t; v ) + oη(1).

(45)

To establish (37c) note that in our construction there is a one-to-one correspondence
betweenΦWZ andxn. Hence we have that

1

n
H(ΦWZ|z

n)

=
1

n
H(ΦWZ) +

1

n
H(zn|ΦWZ)−

1

n
H(zn) (46)

= βRWZ + oη(1) +
1

n
H(zn|xn)−

1

n
H(zn) (47)

= I(x ; y )− 3δ + oη(1) +
1

n
H(zn|xn)−

1

n
H(zn) (48)
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where (47) follows from (43) which provides a bound on the probability of ΦWZ and the
fact that there is a one-to-one correspondence betweenΦWZ and xn, and (48) follows by
substituting the expression forRWZ in the relation (26).

To simplify the remaining two expressions letJ denote the indicator variable, which equals
1 if (zn, xn) ∈ T n

zx ,η and zero otherwise. Recall that eachxn is sampled uniformly from the
setT n

x and since the channelpz |x(·) is memoryless it follows from the conditional typicality
lemma thatPr(J = 1) = 1− oη(1) and also that

1

n
H(zn|xn) ≥

1

n
H(zn|xn, J = 1)Pr(J = 1) (49)

≥ H(z |x)− oη(1) (50)

and furthermore
1

n
H(zn) ≤

1

n
H(zn|J = 1)Pr(J = 1) +

1

n
H(J) (51)

≤ H(z) + oη(1). (52)

Substituting (50) and (52) in (48) establishes (37c).

It remains to show that the equivocation rate at the eavesdropper approaches the secret-key
rate asn→ ∞, which we do below.

H(k|zn) = H(k, tN |zn)−H(tN |zn, k)

= H(tN |zn)−H(tN |zn, k) (53)

= H(tN ,ΦWZ|z
n)−H(tN |zn, k) (54)

= H(tN |ΦWZ, z
n) +H(ΦWZ|z

n)−H(tN |zn, k)

= H(tN |ΦWZ) +H(ΦWZ|z
n)−H(tN |zn, k), (55)

= nβI(t; v ) + n{I(x ; y )− I(x ; z)}+ oη(1) (56)

= n{Rkey + oη(1)}, (57)

where (53) and (54) follow from the fact thatΦWZ is a deterministic function oftN and (55)
follows from the fact thattN → ΦWZ → zn holds for our code construction. and (56) follows
from (37b) and (37c) in Lemma 1 and (36).

Thus we have that
1

n
H(k|zn) = Rkey + oη(1),

as required.

V. CONVERSE: PROOF OF THETHEOREM 2

Given a sequence of(n,N) codes that achieve a secret-key-rateRkey, there exists a sequence
εn, such thatεn → 0 asn→ ∞, and

1

n
H(k|yn, vN) ≤ εn (58a)

1

n
H(k|zn) ≥

1

n
H(k)− εn. (58b)
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We can now upper bound the rateRkey as follows.

nRkey = H(k)

= H(k|yn, vN) + I(k; yn, vN)

≤ nεn + I(k; yn, vN)− I(k; zn) + I(k; zn) (59)

≤ 2nεn + I(k; yn, vN)− I(k; zn) (60)

= 2nεn + I(k; yn)− I(k; zn) + I(k; vN |yn)

≤ 2nεn + I(k; yn)− I(k; zn) + I(k, yn; vN) (61)

where (59) and (60) follow from (58a) and (58b) respectively.
Now, let J be a random variable uniformly distributed over the set{1, 2, . . . , N} and

independent of everything else. Letti = (k, yn, vN
i+1, u

i−1
1 ) andt = (k, yn, vN

J+1, u
J−1
1 , J), and

vJ be a random variable that conditioned onJ = i has the distribution ofpvi. Note that since
vN is memoryless,vJ is independent ofJ and has the same marginal distribution asv . Also
note thatt → uJ → vJ holds since the source sequences are memoryless.

I(k, yn; vN) =
n

∑

i=1

I(k, yn; vi|v
N
i+1)

≤
N
∑

i=1

I(k, yn, vN
i+1; vi)

≤
N
∑

i=1

I(k, yn, vN
i+1, u

i−1
1 ; vi)

= NI(k, yn, vN
J+1, u

J−1
1 ; vJ |J)

= NI(k, yn, vN
J+1, u

J−1
1 , J ; vJ)− I(J ; vJ)

= NI(t; v ) (62)

where (62) follows from the fact thatvJ is independent ofJ and has the same marginal
distribution asv .

Next, we upper boundI(k; yn) − I(k; zn) as below. Letpxi denote the channel input
distribution at timei and let pyi,zi denote the corresponding output distribution. Letpx =
1
n

∑n

i=1 pxi and letpy andpz be defined similarly.

I(k; yn)− I(k; zn) ≤ I(k; yn|zn)

≤ I(xn; yn|zn) (63)

≤
n

∑

i=1

I(xi; yi|zi) (64)

≤ nI(x ; y |z), (65)

where (63) follows from the Markov conditionk → xn → (yn, zn) and (64) follows from
the fact that the channel is memoryless and (65) follows fromJensen’s inequality since the
term I(x ; y |z) is concave in the distributionpx (see e.g., [19, Appendix-I]).

Combining (65) and (62) we have that

Rkey ≤ I(x ; y |z) + βI(v ; t), (66)
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thus establishing the first half of the condition in Theorem 2. It remains to show that the
condition

β{I(t; u)− I(t; v )} ≤ I(x ; y )

is also satisfied. SinceuN → xn → yn holds, we have that

nI(x ; y ) ≥ I(xn; yn) (67)

≥ I(uN ; yn) (68)

≥ I(uN ; yn, k)− I(vN ; yn, k)− nεn, (69)

where the last inequality holds, since

I(uN ; k|yn)− I(vN ; yn, k) = −I(vN ; yn) + I(uN ; k|yn)− I(vN ; k|yn)

≤ I(uN ; k|yn)− I(vN ; k|yn)

= H(k|yn, vN)−H(k|yn, uN)

≤ nεn,

where the last step holds via (58a) and the fact thatH(k|yn, uN) ≥ 0.
Continuing (69), we have

nI(x ; y ) ≥ I(uN ; yn, k)− I(vN ; yn, k)− nεn (70)

=

N
∑

i=1

{I(ui; y
n, k|ui−1

1 vN
i+1)− I(vi; y

n, k|ui−1
1 vN

i+1)}+ nεn (71)

=

N
∑

i=1

{I(ui; y
n, k, ui−1

1 vN
i+1)− I(vi; y

n, k, ui−1
1 vN

i+1)}+ nεn (72)

= N{I(uJ ; y
n, k, uJ−1

1 vN
J+1|J)− I(vJ ; y

n, k, uJ−1
1 vN

J+1|J) + εn}

= N{I(uJ ; t)− I(vJ ; t) + I(vJ ; J)− I(uJ ; J) + εn}

= N{I(u; t)− I(v ; t) + εn} (73)

where (71) follows from Csiszar’s Lemma (see e.g., [8, Section V]) which states that for any
triple (M, yn, zn) with an arbitrary joint distributionp(M, yn, zn) and anyn ≥ 1 we have
that

I(M ; yn)− I(M ; zn) =
n

∑

i=1

I(M ; yi|y
i−1, zni+1)− I(M ; zi|y

i−1, zni+1). (74)

Furthermore (72) follows from the fact that(ui, vi) is independent of(ui−1, vn
i+1) and (73)

again follows from the fact that the random variablesvJ and uJ are independent ofJ and
have the same marginal distribution asv andu respectively.

The cardinality bound ont is obtained via Caratheordory’s theorem and is shown in
Appendix C.

Finally, since the upper bound expression does not depend onthe joint distribution of(t, x),
it suffices to optimize over those distributions where(t, x) are independent.
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A. Proof of Proposition 1

Following [14] we introduce a fictitious memoryless channelpg ,y ,z |x(·) whose marginal
distributionpy ,z |x(·) coincides with the original channel transition probability.

nRkey = H(k)

= H(k|yn, vN) + I(k; yn, vN)

≤ nεn + I(k; yn, vN)− I(k; gn) + I(k; gn) (75)

= nεn + I(k; yn)− I(k; gn) + I(k; vN |yn) + I(k; gn)

≤ nεn + I(k; yn)− I(k; gn) + I(k, yn; vN) + I(k; gn). (76)

Following the steps leading to (65) we can establish that

I(k; yn)− I(k; gn) ≤ nI(x ; y |g) (77)

and with t = (k, yn, vN
J+1, u

J−1
1 , J) we have via (62) that

I(k, yn; vN) ≤ NI(t; v ) (78)

and finally

I(k; gn) ≤ I(k; gn)− I(k; zn) + I(k; zn)

≤ I(k; gn)− I(k; zn) + nεn (79)

≤ nI(x ; g |z) + nεn (80)

where (79) follows from the secrecy constraint with respectto the receiver who observes
zn (c.f. (58b)) and the last step can be established in a manner analogous to that in (65).
Substituting (77), (78) and (80) into (76) and normalizing by n we have that

Rkey ≤ βI(t; v ) + I(x ; y |g) + I(x ; g |z). (81)

The remaining constraint does not involveg and directly follows from (73).
Following the discussion in [14] we can interpret the bound (81) as follows. We split the

total secret-key into two parts. The first part is kept secretfrom the fictitious user only and its
rate is upper bounded byI(x ; y |g) whereas the second part is shared with the fictitious user
and kept secret from the eavesdropper. Its rate is upper bounded byI(x ; g |z). The claim is
that the secret-key capacity in the original problem cannotexceed the sum of two rates split
in this way.

VI. REVERSELY DEGRADED CHANNELS

A. Proof of Theorem 3

First we show that the expression is an upper bound on the capacity. From Theorem 2, we
have that

Ckey ≤ max
(x ,t)

I(x ; y |z) + βI(t; v ),

where we maximize over those distributions where(x , t) are mutually independent,t → u →
v , and

I(x ; y ) ≥ β(I(t; u)− I(t; v )).
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For the reversely degraded parallel independent channels,note that

I(x ; y ) ≤
M
∑

i=1

I(xi; yi)

I(x ; y |z) ≤
M
∑

i=1

I(xi; yi|zi),

with equality when(x1, . . . , xM) are mutually independent. Thus it suffices to take(x1, . . . , xM)
to be mutually independent, which establishes that the proposed expression is an upper bound
on the capacity.

For achievability, we propose a choice of auxiliary random variables(a, b) in Theorem 1,
such that the resulting expression reduces to the capacity.In particular, assume without loss
in generality that for the firstM+ channels we have thatxi → yi → zi and for the remaining
channels we have thatxi → zi → yi. Let a = (x1, x2, . . . , xM) and b = (xM++1, . . . , xM)
where the random variables{xi} are mutually independent. Note that this choice of(a, b)
is feasible i.e., it satisfiesI(b; z) ≤ I(b; y ) and I(a; y |b) ≥ I(a; z |b). It follows from (6a)
and (6b) that

Rch =

M
∑

i=1

I(xi; yi) (82)

R−
eq =

M+
∑

i=1

I(xi; yi)− I(xi; zi) (83)

=
M+
∑

i=1

I(xi; yi|zi) =
M
∑

i=1

I(xi; yi|zi), (84)

where the last equality follows since forxi → zi → yi, we have thatI(xi; yi|zi) = 0.
Substituting in (7) and (8) we recover the capacity expression.

B. Gaussian Case (Corollary 1)

For the Gaussian case we show that Gaussian codebooks achieve the capacity as in Corol-
lary 1.

Recall that the capacity expression involves maximizing over random variablesx = (x1, . . . , xM),
and t → u → v ,

Ckey =
∑

i

I(xi; yi|zi) + βI(t; v ) (85)

subjected to the constraint thatE[
∑M

i=1 x
2
i ] ≤ P and

∑

i

I(xi; yi) ≥ β{I(t; u)− I(t; v )}. (86)

Let us first fix the distributionpx and upper bound the objective function (85). LetR ,
1
β

∑M

i=1 I(xi; yi) and v = u + s, wheres ∼ N (0, S) is independent ofu. We will use the
conditional entropy power inequality due to Bergmans [2],

exp(2h(u + s|t)) ≥ exp(2h(u|t)) + exp(2h(s)) (87)
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for any pair of random variables(t, u) independent ofs. The equality happens if(u, t) are
jointly Gaussian.

Note that we can express (86) as

R + h(v )− h(u) ≥ h(v |t)− h(u|t) (88)

= h(u + s|t)− h(u|t) (89)

≥
1

2
log (exp(2h(u|t)) + 2πeS)− h(u|t) (90)

Letting

h(u|t)) =
1

2
log 2πeD, (91)

we have that

D ≥
S

exp(2(R + h(v )− h(u)))− 1
. (92)

Rearranging we have that

M
∑

i=1

I(xi; yi) ≥
β

2

[

log

(

1 +
S

D

)

− log(1 + S)

]

. (93)

The termI(t; v ) in the objective function (85) can be upper bounded as

I(t; v ) = h(v )− h(v |t)

= h(v )− h(u + s|t)

≤ h(v )−
1

2
log(exp(2h(u|s)) + 2πeS) (94)

=
1

2
log

1 + S

D + S
(95)

where (94) follows by the application of the EPI (87) and (95)follows via (91). Thus the
objective function (85) can be expressed as

Ckey =
∑

i

I(xi; yi|zi) +
β

2
log

1 + S

D + S
, (96)

whereD satisfies (92).
It remains to show that the optimalx has a Gaussian distribution. Note that the set of

feasible distributions forx is closed and bounded and hence an optimum exists. Also ifpx
is any optimum distribution, we can increase bothR and I(xi; yi|zi) by replacingpx with a
Gaussian distribution (see e.g., [21]) with the same secondorder moment. Since the objective
function is increasing in both these terms, it follows that aGaussianpx also maximizes the
objective function (85).

VII. SIDE INFORMATION AT THE WIRETAPPER

We now provide an achievability and a converse for the capacity stated in Theorem 4
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A. Achievability

The coding scheme is a natural extension of the case whenw = 0. In particular the
construction involves a subsetT of TN

t partitioned into a Wyner-Ziv codebookCWZ and a
secret-key codebookCSK. In addition the channel codebookCch is a subset of the setT n

x . As
before the Wynzer-Ziv codebook consists ofNWZ bins, each consisting of a total ofMWZ

codewords, where we selectMWZ = exp2(N(I(t; v )− η)) andNWZ = exp2(N(Rwz + 2η)).
However the parameters of the secret-key codebook are selected to reflect the side information
at the eavesdropper. The secret-key codebook consists of a total ofNSK bins, each consisting
of MSK sequences, where

MSK = exp2 (n(I(x ; z) + βI(w ; t))− δ) (97)

NSK = exp2

(

n(βRs +R−
eq − δ)

)

(98)

reflect the increase in number of codewords in each bin to account for the side information
at the eavesdropper. Furthermore we replaceRs in (6c) with

Rs = I(t; v )− I(t;w) (99)

and the resulting secret-key rate in (7) is

RLB = βRs +R−
eq. (100)

as reflected in the exponent ofNSK. Finally since the channels are assumed to be degraded
note thatRch andR−

eq in (6a) and (6b) are defined as

Rch = I(x ; y ) (101)

R−
eq = I(x ; y )− I(x ; z) = I(x ; y |z). (102)

The channel codebook consists of a total ofexp(nRch − nδ) codewords as in the no-side
information case. Furthermore as in (26), we present the coding scheme for

RWZ = Rch − 3δ, (103)

and the case whenRWZ < Rch − 3δ follows by a time-sharing argument. Thus the total
number of codewords is

Ntot = NWZMWZ = NSKMSK = exp2 (N(I(u; t) + η)) (104)

The encoder is analogous to the case without side information described in section IV-B.
The transmitter upon observinguN finds a sequencetN ∈ T that is jointly typical. If there
is more than one sequence, any one of the candidates is selected at random. The encoder
declares the bin index oftN in the CSK as the secret-key codebook whereas the bin index of
tN in CWZ is used as the message for the channel codebook. The resulting codewordxn is
then transmitted overn channel uses. The decoder at the legitimate receiver is as described
in section IV-C. We summarize the main steps below

• The decoder searches for a unique sequence inCch that is jointly typical with yn. If
successful, it obtains the bin-index of the Wyner-Ziv codebook.

• It then searches for a unique sequence in this bin jointly typical with vN .
• It declares the bin-index of the resulting sequence in the secret-key codebook to be the

secret key.
The decoding at the eavesdropper, with the knowledge of the key as described in section IV-D,
needs to be modified to take into account the additional side informationwN . The decoder
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searches for a sequence in the setBSK
k that is (a) jointly typical withwN i.e., (wN , tnkj) ∈

TN
wt,εand (b) the Wyner-Ziv bin indexhj = ΦWZ(t

N,SK
kj ) is such thatxn

hj
is jointly typical with

the received sequencezn i.e., (xN
hj
, zn) ∈ T n

xz ,ε.
The probability of error analysis at the encoder and the legitimate decoder follows from

the no-side information case as there are no modifications inthe Wyner-Ziv codebook and the
channel codebook whereas the secret-key codebook is only used for a lookup. To compute
the error probability at the modified eavesdropper, note that the failure event can be expressed
as:

F = F0

MSK
⋃

j=1,j 6=j0

Fj (105)

wherej0 denotes the index of the secret-key inBSK
k i.e., tN = t

N,SK
kj0

andF0 denotes the event
that the sequence selected by the transmitter fails to be in the typical set of the eavesdropper
while Fj denotes the event that the sequencet

N,SK
kj for j 6= j0 appears in the typical set of

the eavesdropper. Thus we have that

Pr(F) ≤ Pr(F0) +
∑

j 6=j0

Pr(Fj). (106)

From the law of large numbers it follows thatPr(F0) → 0. Furthermore we can express

Fj = Jj

⋂

Ij, j 6= j0 (107)

where Jj denotes the event thatxn
hj

is jointly typical with zn and Ij is the event that
(tN,SK

ij ,wN) ∈ TN
tw ,ε. Following the analysis in Appendix B leading to (187) we have that

Pr(Jj) ≤ exp2(−n(I(x ; z)− 4ε)) (108)

and furthermore sincetN,SK
kj is selected independent ofwN for j 6= j0 we have thatPr(Ij) ≤

exp2(−N(I(t;w)− 3ε)). Since the eventsJi andIi are due to atypical channel and source
events respectively they are mutually independent and hence

Pr(Fj) = Pr(Ij) Pr(Jj) = exp2 {−n(I(x ; z) + βI(t;w)− ε′)} (109)

whereε′ = 3βε+ 4ε. Using (97) we have that

Pr(F) ≤ Pr(F0) +MSK Pr(Fj) (110)

= Pr(F0) + exp2(−n(δ − ε′)), (111)

which vanishes asn→ ∞. In the secrecy analysis in the next subsection we use the fact that
any codebook satisfying (111) as satisfies, from Fano’s lemma,

1

N
H(tN |k,wn, zn) = oη(1). (112)
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B. Secrecy Analysis

We show that the equivocation condition at the eavesdropper(1) holds for the code con-
struction. This is equivalent to showing that

1

n
H(k|wN , zn) = β(I(t; v )− I(t;w)) + I(x ; y |z) + oη(1), (113)

which we will now do.
We first provide an alternate expression for the left hand side in (113).

H(k|wN , zn) = H(k, tN |wN , zn)−H(tN |k,wN , zn) (114)

= H(tN |wN , zn)−H(tN |k,wN , zn)

= H(tN |wN , zn)−Noη(1) (115)

= H(tN ,ΦWZ|w
N , zn)−Noη(1) (116)

= H(ΦWZ|w
N , zn) +H(tN |ΦWZ,w

N)−Noη(1) (117)

where (115) follows from (112), (116) follows from the fact that ΦWZ is a deterministic
function of tN , while (117) follows from the fact thattN → (wN ,ΦWZ) → zn forms a
Markov chain. The right hand side in (113) is established by showing that

1

n
H(ΦWZ|w

N , zn) ≥ I(x ; y |z) + oη(1) (118a)

1

n
H(tN |ΦWZ,w

N) = β(I(t; v )− I(t;w)) + oη(1) (118b)

To interpret (118a), recall thatΦWZ is the message to the channel codebook. The equivocation
introduced by the channel codebook1

n
H(ΦWZ|zn) equalsI(x ; y |z). Eq. (118a) shows that if

in addition tozn, the eavesdropper has access towN , a degraded source, the equivocation still
does not decrease (except for a negligible amount). The intuition behind this claim is that since
the bin indexΦWZ is almost independent ofvN (see Lemma 2 below), it is also independent
of wN due to the Markov condition. Eq. (118b) shows that the knowledge ofwN reduces the
list of tN sequences in any bin fromexp2(N(I(t; v ))) to exp2(N(I(t; v )− I(t;w))).

To establish (118a),

1

n
H(ΦWZ|w

N , zn) ≥
1

n
H(ΦWZ|z

n, vN) (119)

=
1

n
H(ΦWZ|z

n)−
1

n
I(ΦWZ; v

N |zn)

≥ I(x ; y |z) + oη(1)−
1

n
I(ΦWZ; v

N |zn), (120)

≥ I(x ; y |z) + oη(1)−
1

n
I(ΦWZ; v

N), (121)

where (119) follows from the fact thatwN → vN → (ΦWZ, z
n), (120) from Lemma 1

and (121) from the fact thatvN → ΦWZ → zn so that

1

n
I(ΦWZ; v

N |zn) ≤
1

n
I(ΦWZ; v

N). (122)

Thus we need to show the following.
Lemma 2:

1

N
I(ΦWZ; v

N) = oη(1). (123)
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Proof: From Lemma 1 note that

1

N
H(ΦWZ) = I(t; u)− I(t; v ) + oη(1)

and hence we need to show that
1

N
H(ΦWZ|v

N) = I(t; u)− I(t; v ) + oη(1)

as we do below.
1

N
H(ΦWZ|v

N) =
1

N
H(ΦWZ, t

N |vN)−
1

N
H(tN |vN ,ΦWZ)

=
1

N
H(tN |vN) + oη(1) (124)

Where (124) follows since each bin hasMWZ = exp2 (N(I(t; v )− η)) sequences, (from
standard joint typicality arguments) we have that

1

N
H(tN |vN ,ΦWZ) = oη(1). (125)

Furthermore,

1

N
H(tN |vN) =

1

N
H(vN |tN ) +

1

N
H(tN)−

1

N
H(vN) (126)

=
1

N
H(vN |tN ) +

1

N
H(tN)−H(v ) (127)

=
1

N
H(vN |tN ) + I(u; t)−H(v ) + oη(1) (128)

where (127) follows from the factvN is an i.i.d. sequence whereas (128) follows via (41)
since we have thatH(tN) = H(ΓWZ,ΦWZ). Furthermore defineJ to be an indicator variable
that equals1 if (vN , tN ) ∈ TN

vt,η and zero otherwise. From standard typicality arguments,
Pr(J = 1) = 1− oη(1) andPr(J = 0) = oη(1) and by counting the number of jointly typical
sequences inT n

v ,ε for eachtN ∈ T n
t,ε we can show (see e.g., [13, pp. 2.32—2.34])

1

N
H(vN |tN , J = 1) = H(v |t) + oη(1) (129)

Hence,

1

N
H(vN |tN ) =

1

N
H(vN |tN , J) +

1

N
I(J ; vN |tN)

=
1

N
H(vN |tN , J) + oη(1) (130)

=
1

N
H(vN |tN , J = 1)Pr(J = 1) +

1

N
H(vN |tN , J = 0)Pr(J = 0) + oη(1)

=
1

N
H(vN |tN , J = 1) + oη(1) (131)

= H(v |t) + oη(1), (132)

where (130) follows from the fact thatH(J) ≤ 1, sinceJ is a binary random variable,
and (131) follows from the fact thatPr(J = 0) = oη(1) and the last step follows from (129).
Combining (132), (128) and (124) completes the proof.
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To establish (118b), we begin by observing that,

1

n
H(tN |ΦWZ,w

N) =
1

n
H(wN |tN ,ΦWZ) +

1

n
H(tN |ΦWZ)−

1

n
H(wN |ΦWZ) (133)

=
1

n
H(wN |tN) +

1

n
H(tN |ΦWZ)−

1

n
H(wN |ΦWZ) (134)

= βH(w |t) +
1

n
H(tN |ΦWZ)−

1

n
H(wN |ΦWZ) + oη(1) (135)

= βH(w |t) + βI(t; v )−
1

n
H(wN |ΦWZ) + oη(1) (136)

= βH(w |t) + βI(t; v )−
1

n
H(wN) +

1

n
I(wN ; ΦWZ) + oη(1)

= βH(w |t) + βI(t; v )−
1

n
H(wN) + oη(1) (137)

= βH(w |t) + βI(t; v )− βH(w) + oη(1) (138)

= βI(t; v )− βI(t;w) + oη(1) (139)

(140)

where (134) follows from the fact thatΦWZ is a deterministic function oftN , and (135) follows
through an argument analogous to that used to establish (132) and (136) follows from (37b),
is established in Lemma 1, and (137) follows from Lemma 2 since ΦWZ → vN → wN

and (139) follows from the fact that the sequencewN is i.i.d.

C. Converse

Consider a sequences of(n,N) codes that achieves a secret key rate ofR. Let β = N/n.
Then from Fano’s Lemma,

H(k|yn, vN) ≤ nεn,

and from the secrecy constraint.

1

n
I(k; zn,wN) ≤ εn.

Combining these inequalities, we have that,

nRkey ≤ I(k; yn, vN)− I(k; zn,wN) + 2nεn

≤ I(k; yn, vN | zn,wN) + 2nεn

≤ H(yn | zn) +H(vN | wN)−H(yn | zn,wN , k)−H(vN | yn, zn,wN , k) + 2nεn

≤ H(yn | zn) +H(vN | wN)−H(yn | zn,wN , k, xn)−H(vN | yn, zn,wN , k) + 2nεn

= H(yn | zn) +H(vN | wN)−H(yn | zn, xn)−H(vN | yn, zn,wN , k) + 2nεn
(141)

≤
n

∑

i=1

I(xi; yi | zi) +H(vN | wN )−H(vN |yn,wN , k) + 2nεn (142)

≤ nI(x ; y | z) +H(vN | wN )−H(vN |yn,wN , k) + 2nεn (143)

where the (141) follows from the fact that(wN , k) → (zn, xn) → yn, and (142) follows
from the Markov conditionzn → (yn,wN , k) → vN that holds for the degraded channel,
while (143) follows from the fact thatI(x ; y |z) is a concave function ofpxi (see e.g., [19,
Appendix-I]) and we selectpx(·) = 1

n

∑n
i=1 pxi(·). Now, let ti = (k, uN

i+1v
i−1, yn), J be a
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random variable uniformly distributed over the set[1, 2, . . .N ] and t = (J, k, uN
J+1v

J−1, yn)
we have that

H(vN |yn,wN , k) =

N
∑

i=1

H(vi|v
i−1, yn,wN , k)

≥
N
∑

i=1

H(vi|v
i−1, yn,wN , uN

i+1, k)

=

N
∑

i=1

H(vi|v
i−1, yn,wi, u

N
i+1, k) (144)

= N ·H(vJ |t,wJ)

where we have used the fact that(w i−1,wN
i+1) → (v i−1, yn,wi, u

N
i+1, k) → vi which can be

verified as follows

p
(

vi | wi,w
i−1,wN

i+1, v
i−1, uN

i+1, y
n, k

)

=
∑

ui=u

p
(

vi | wi, ui = u,w i−1,wN
i+1, v

i−1, uN
i+1, y

n, k
)

p
(

ui = u | wi,w
i−1,wN

i+1, v
i−1, uN

i+1, y
n, k

)

=
∑

ui=u

p (vi | wi, ui = u) p
(

ui = u | wi, v
i−1, uN

i+1, y
n, k

)

(145)

=p
(

vi | wi, v
i−1, uN

i+1, y
n, k

)

,

where (145) follows from the fact that since the sequencevN is sampled i.i.d. , we have that

vi → (ui,wi) → (w i−1,wN
i+1, v

i−1, uN
i+1, y

n, k)

and sinceu → v → w , it follows that

ui → (v i−1, uN
i+1, y

n,wi, k) → (w i−1,wN
i+1).

Since,vJ andwJ are both independent ofJ , we from (143) that

Rkey ≤ I(x ; y |z) + βI(t; v |w) + 2εn.

Finally, using the steps between (70)-(73) as in the converse for the case whenw = 0, we
have that

I(x ; y ) ≥ β(I(t; u)− I(t; v )), (146)

which completes the proof.

VIII. PUBLIC DISCUSSION CHANNEL

We establish the upper bound on the secret key capacity in thepresence of interactive
communication over a public discussion channel.

Proof:
First from Fano’s lemma we have the following,

nR = H(k) (147)

= H(k|l) + I(k; l) (148)

≤ nεn + I(k; l) (149)



29

where the last inequality follows from Fano’s lemma. Also from the secrecy constraint we
have that

1

n
I(k;φk, ψk, zn) ≤ εn,

which results in the following

nR ≤ nεn + I(k; l , ψk, φk, zn) (150)

≤ 2nεn + I(k; l |ψk, φk, zn) (151)

≤ 2nεn + I(mx, u
N ;my , v

N , yn|ψk, φk, zn), (152)

where the last step follows from the data-processing inequality sincek = K(mx, u
N , ψk) and

l = L(my , v
N , yn, φk).

Using the chain rule, we have that

I(mx, u
N ;my , v

N , yn|ψk, φk, zn) (153)

= I(mx, u
N ;my , v

N , yn, ψk, φk, zn)− I(mx, u
N ;ψk, φk, zn) (154)

= I(mx, u
N ;my , v

N , ψi1−1, φi1−1) +

n
∑

j=1

Fj +Gj

− I(mx, u
N ;ψi1−1, φi1−1)−

n
∑

j=1

F̂j + Ĝj , (155)

where for eachj = 1, 2, . . . , n we define

Fj = I(mx, u
N ; yj, zj |my , v

N , y j−1, z j−1, φij−1, ψij−1) (156)

Gj = I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|my , v

N , y j, z j, φij−1, ψij−1) (157)

F̂j = I(mx, u
N ; zj |z

j−1, ψij−1, φij−1) (158)

Ĝj = I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z

j , φij−1, ψij−1). (159)

We now bound the expression in (155). First note that

I(mx, u
N ;my , v

N , ψi1−1, φi1−1)− I(mx, u
N ;ψi1−1, φi1−1)

= I(mx, u
N ;my , v

N |ψi1−1, φi1−1)

≤ I(mx, u
N , ψi1−1;my , v

N |ψi1−2, φi1−1)

= I(mx, u
N ;my , v

N |ψi1−2, φi1−1)

≤ I(mx, u
N ;my , v

N , φi1−1|ψ
i1−2, φi1−2)

= I(mx, u
N ;my , v

N |ψi1−2, φi1−2)

where the third and fifth step follow from the fact thatψi1−1 = Ψi1−1(mx, u
N , φi1−2) and

φi1−1 = Φi1−1(my , v
N , ψi1−2). Recursively continuing we have that

I(mx, u
N ;my , v

N |ψi1−1, φi1−1) ≤ I(mx, u
N ;my , v

N) = I(uN ; vN) = NI(u; v ) (160)

where we use the facts thatmx → uN → vN → my and that(uN , vN) are discrete and
memoryless.
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Also note that

Fj − F̂j (161)

= I(mx, u
N ; yj, zj |my , v

N , y j−1, z j−1, φij−1, ψij−1)− I(mx, u
N ; zj|z

j−1, ψij−1, φij−1)

= H(yj, zj |my , v
N , y j−1, z j−1, φij−1, ψij−1)−H(yj, zj|my , v

N , y j−1, z j−1, φij−1, ψij−1,mx, u
N)

−H(zj|z
j−1, ψij−1, φij−1) +H(zj|z

j−1, ψij−1, φij−1,mx, u
N)

= H(yj, zj |my , v
N , y j−1, z j−1, φij−1, ψij−1)−H(yj, zj|xj)−H(zj|z

j−1, ψij−1, φij−1) +H(zj |xj)
(162)

≤ H(yj|z
j, ψij−1, φij−1)−H(yj|zj, xj)

≤ I(xj; yj|zj), (163)

where (162) follows from the fact thatxj = Xj(mx, u
N , ψij−1) and that since the channel

is memoryless(mx,my , u
N , vN , φij−1, ψij−1, y j−1, z j−1) → xj → (yj, zj) holds. The last two

steps follow from the fact that conditioning reduces entropy.
Finally to upper boundGj − Ĝj,

Gj − Ĝj

= I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|my , v

N , y j, z j, φij−1, ψij−1)

− I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z

j, φij−1, ψij−1)

= I(mx, u
N ;my , v

N , y j, φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z
j, φij−1, ψij−1)

− I(mx, u
N ;my , v

N , y j|z j, φij−1, ψij−1)−I(mx, u
N;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z

j , φij−1,ψij−1)

= I(mx, u
N ;my , v

N , y j|φij+1−1, ψij+1−1, z j)− I(mx, u
N ;my , v

N , y j|φij−1, ψij−1, z j)

Furthermore sinceφij+1−1 = Φij+1−1(mx, u
N , ψij+1−2) andψij+1−1 = Ψij+1−1(my , v

N , φij+1−2)
we have that

I(mx, u
N ;my , v

N , y j|φij+1−1, ψij+1−1, z j)

≤ I(mx, u
N , φij+1−1;my , v

N , y j|φij+1−2, ψij+1−1, z j)

= I(mx, u
N ;my , v

N , y j|φij+1−2, ψij+1−1, z j)

≤ I(mx, u
N ;my , v

N , y j, ψij+1−1|φ
ij+1−2, ψij+1−2, z j)

= I(mx, u
N ;my , v

N , y j, φij+1−2, ψij+1−2, z j)

Continuing this process we have that

I(mx, u
N ;my , v

N , y j|φij+1−1, ψij+1−1, z j) ≤ I(mx, u
N ;my , v

N , y j|φij−1, ψij−1, z j)

and thus
Gj − Ĝj ≤ 0. (164)

Substituting (160), (163) and (164) into (155) we have that

nR ≤
n

∑

j=1

I(xj; yj|zj) +NI(u; v ) + 2nεn (165)

≤ max
px

nI(x ; y |z) +NI(u; v ) + 2nεn (166)

thus yielding the stated upper bound.
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IX. CONCLUSIONS

In this paper we introduced a secret-key agreement technique that harnesses uncertainties
from both sources and channels. We first consider the case when the legitimate terminals
observe a pair of correlated sources and communicate over a wiretap channel for generating
secret keys. The secret-key capacity is bounded by establishing upper and lower bounds.
The lower bound is established by providing a coding theoremthat combines ideas from
source and channel coding. Its optimality is established when the wiretap channel consists
of parallel, independent and degraded channels. The lower bound in general involves us to
operate at a point on the wiretap channel that balances the contribution of source and channel
contributions and this illustrated for the Gaussian channels.

In addition we also establish the capacity when the wiretapper has access to a source
sequence which is a degraded version of the source sequence of the legitimate receiver. Fur-
thermore the case when a public discussion channel is available for interactive communication
is also studied and an upper bound on the secret-key capacityis provided. For the practically
important case, of “independent noise” channels we show that it suffices to separately treat
source and channel components without loss of optimality.

In terms of future work, there can be many fruitful avenues toexplore for secret-key
distillation in a joint-source-channel setup. One can consider multi-user extensions of the
secret-key generation problem along the lines of [10] and also consider more sophisticated
channel models such as the compound wiretap channels, MIMO wiretap channels and wire-
tap channels with feedback and/or side information. Connections of this setup to wireless
channels, biometric systems and other applications can also be interesting.
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APPENDIX A
EXTENSION OF THEOREM 1 TO GENERAL (a, b)

In section IV the coding theorem was derived for the case whena = x andb = const. In
this section we complete the proof of the general case. We will only consider the case when
a = x , since the general case follows by sampling the codewords from the typical setT n

a and
then passing each symbol ofan through an auxiliary channelpx |a(·).

A. Codebook Construction

We describe the construction of an ensemble of codebooks andby computing the error
probability averaged over this ensemble, show that there exists one codebook with the desired
property.

1) Channel Codebook:Define Ra = I(x ; y |b) and Rb = I(b; y ) and recall that since
b → x → y we have thatRa + Rb = I(x ; y ). We construct abasecodebookCb consisting
of Nb = exp2 (nRb − nδb) sequences, which forms the could center of a superposition
code. For each sequencebni ∈ Cb we generate a codebookCa(bni ) consisting ofNa =
exp2 (nI(x ; y |b)− nδa) sequences. All sequences inCb are sampled uniformly at random
from the setT n

b while all sequences inCa(bni ) are sampled uniformly at random from the
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conditionally typical setT n
x (b

n
i ). Here δa > 0 and δb > 0 as arbitrary constants such that

δa + δb = δ, which satisfies (26). If this condition is not satisfied, as discussed in section IV,
time-sharing between transmitting an independent messageand the source coding approach
discussed here is necessary.

2) Source Codebooks:The Wyner-Ziv codebookCWZ is constructed as in section IV. A set
T consisting ofNtot sequences is constructed by selecting the sequences uniformly at random
from the setTN

t . These sequences are partitioned intoNWZ bins, each consistnig ofMWZ

sequences where the constantsMWZ andNWZ are defined in (27a) and (27b) respectively.
The secret-key codebookCSK consists of a total ofNSK bins, each withMSK codewords,
where

MSK = exp2 (n(I(b; y ) + I(x ; z |b)− δ)) , (167a)

NSK = exp2 (n(βI(t; v ) + I(x ; y |b)− I(x ; z |b)− δ)) . (167b)

Via (26), note that,

Ntot = NSKMSK = NWZMWZ = NaNb = exp2(nI(x ; y )− nδ). (168)

B. Encoding

The encoder finds a sequencetN jointly typical with uN and declares its bin index in
the secret-key codebook as the secret-key. The bin index in the Wyner-Ziv codebook is the
message that is transmitted to the receiver. The bin indexΦWZ is split into two indicesΦa ∈
{1, 2, . . . , Na} andΦb ∈ {1, . . . , Nb}, which form messages for the two channel codebooks
Ca(·) and Cb respectively. Thus the encoder first mapsΦb to a codewordbn in Cb and then
maps the messageΦa to the codewordxn in Ca(bn). The sequencexn is transmitted overn
channel uses.

C. Decoding

The decoder upon observingyn searches for sequencesbni ∈ Cb andxn ∈ Ca(bni ) that are
jointly typical i.e., (yn, xn, bni ) ∈ T n

y ,x ,b,η. By our choice ofNb andNa this succeeds with
high probability. It then reconstructs the bin indexΦWZ and searches for a sequencetN ∈ T
that lies in this bin and is jointly typical withvN . As in section IV-C, this step succeeds with
high probability. The secret-key is then computed ask̂ = ΦSK(t

N).

D. Decoding with side information at the eavesdropper

The eavesdropper, when revealedk in addition tozn, can reconstructtN as follows. Upon
observingzn, the decoder searches for a sequencebni ∈ Cb that is jointly typical. This
event succeeds with high probability sinceI(b; z) ≥ I(b; y ) = Rb. Thereafter it searches
for sequences inBSK

k = {tN,SK
k1 , . . . , tN,SK

kMSK
} such that[Φaj ,Φbj ] = ΦWZ(t

N,SK
kj ) satisfies: (1)

Φbj = i and (2)xn
Φaj

∈ Ca(bni ) is jointly ε− typical with zn.
The probability that a false sequence inBSK

k satisfies these conditions is

Pr(e) = exp2 {−n(I(x ; z |b) + I(b; y )− ε)} (169)

and hence the choice ofMSK in (167a) guarantees that the error probability approacheszero
providedε < δ.

Thus by Fano’s lemma, there exists one particular codebook that satisfies

1

N
H(tN |zn, k) = oη(1) (170)
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E. Secrecy Analysis

Following the steps leading to (55) we have

H(k|zn) = H(ΦWZ|z
n) +H(tN |ΦWZ)−H(tN |k, zn) (171)

= H(ΦWZ|z
n) +H(tN |ΦWZ)−Noη(1) (172)

where the second step follows from (170).
For the superposition codebook, sinceΦWZ is the transmitted message we have from [8,

Corollary 2, pp. 341]

1

n
H(ΦWZ|z

n) = I(x ; y |b)− I(x ; z |b) + oη(1), (173)

and from (37b) in Lemma 1,

1

N
H(tN |ΦWZ) = I(t; v ) + oη(1). (174)

Substituting these relations into (172) we have that

1

n
H(k|zn) = {I(x ; y |b)− I(x ; z |b)}+ βI(t; v ) + oη(1). (175)

as required.

APPENDIX B
PROOF OF(35)

We can express

E4 = J0

⋃

J1

⋃

. . .Jj0−1

⋃

Jj0+1 . . .
⋃

JMSK
(176)

wherej0 is the index of the sequencetN selected by the sender in binBSK
k of CSK, and where

the eventJ0 is defined as the event,

J0 = {ΦWZ(t
N,SK
kj0

) /∈ I} (177)

andJj for 1 ≤ j ≤MSK, j 6= j0 is

Jj =
{

ΦWZ(t
N,SK
kj ) ∈ I

}

(178)

It follows that

Pr(E4) ≤ Pr(J0) +

MSK
∑

j=1,j 6=j0

Pr(Jj|J
c
0 ). (179)

whereJ c
0 denotes the compliment of the eventJ0.

By law of large numbers it follows thatPr(J0) → 0. To evaluatePr(Jj|J c
0 ) we define the

eventJ col
j as the event that the Wyner-Ziv bin indices of the sequencestN,SK

kj and tN,SK
kj0

are
identical i.e.,

J col
j =

{

ΦWZ(t
N,SK
kj ) = ΦWZ(t

N,SK
kj0

)
}

(180)

UsingJ col
j we can upper bound the error event as

Pr(Jj|J
c
0 ) ≤ Pr(J col

j |J c
0 ) + Pr(Jj|J

col,c
j ∩ J c

0 ) (181)
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where the first term is the error probability due to a collision event and the second term is
the error probability when there is no collision.

The first term can be upper bounded as follows

Pr(J col
j |J c

0 ) = Pr(J col
j ) (182)

= exp2(−n(βRWZ + 2δ)) (183)

= exp2(−n(I(x ; y )− δ)) (184)

where (182) follows from the fact the eventJ0 is due to the atypical channel behaviour
and is independent of the random partitioning eventJ col

j , (183) follows from the fact that
since both the codebooksCWZ andCSK are obtained by partitioning the setT after a random
permutation, we have for anytN1 , t

N
2 ∈ T

Pr
(

ΦWZ(t
N
1 ) = ΦWZ(t

N
2 )|ΦSK(t

N
1 ) = ΦSK(t

N
2 )

)

= Pr
(

ΦWZ(t
N
1 ) = ΦWZ(t

N
2 )

)

=
1

NWZ
(185)

and NWZ = exp2{n(βRWZ + 2δ)} and (184) follows via relation (26). The second term
reduces to an event thatxn ∈ Cch, sampled independent ofxn

j0
satisfies(xn, zn) ∈ T n

x ,z ,ε.
Hence we have

Pr(Jj|J
c
0 ∩ J col,c

j ) ≤ exp2(−n(I(x ; z)− 3ε)). (186)

Combining (184) and (186) we have

Pr(Jj|J
c
0 ) ≤ exp2(−n(I(x ; z)− 3ε)) + exp2(−n(I(x ; y )− δ))

≤ exp2(−n(I(x ; z)− 4ε)), n ≥ n0, (187)

where we use the fact thatI(x ; y ) ≥ I(x ; z) from (24) in the last step so that the required
n0 exists. Finally using relation (27c) forMSK, we have that

MSK
∑

j=1,j 6=j0

Pr(Jj) ≤ exp2(−n(δ − 4ε)) + oη(1), (188)

which vanishes withn, whenever the decoding function selectsε < δ/4. Thus we have that
Pr(E4) → 0 asn→ ∞.

APPENDIX C
CARDINALITY BOUNDS ON t IN THEOREM 1

Let the alphabet ofu be denoted by{1, . . . , |U|} and letpu|t(·|t) be a probability mass
function indexed byt. Define the following functions of thepu|t(·|t):

gj(pu|t(·|t)) =











pu|t(j|t), j = 1, . . . , |U| − 1

H(u|t = t), j = |U|

H(v |t = t) j = |U|+ 1

(189)

The first |U| − 1 functions are conditional probabilitiesp{u = j|t = t}, each of which is a
continuous function of the conditional pmfp(u|t). The functionH(u|t = t) is also continuous
in p(u|t) by virtue of the continuity of the entropy function. Finallythe functionH(v |t = t)
is a continuous function ofp(u|t) due to the linear relationp(v|t) =

∑

u p(v|u)p(u|t). Hence
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by the Caratheodry theorem (see e.g., [13, Appendix C]) there exists another random variable
t ′ taking no more than|U|+ 1 values such that

H(u|t) = H(u|t ′) (190)

H(v |t) = H(v |t ′), (191)

Et [p(u|t)] = p(u) = Et′ [p(u|t
′)], u ∈ {1, . . . , |U| − 1} (192)

(193)

Since the sum of the probability mass functions is1 the last relation also holds foru = |U|.
It is thus easy to see that any point that can be achieved in Theorem 1 can also be achieved
by restrictingt to have cardinality no more than|U|+ 1. This completes the argument.
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[9] I. Csiszár and P. Narayan, “Common randomness and secret key generation with a helper,”IEEE Trans. Inform. Theory,

vol. 46, Mar. 2000.
[10] ——, “Secrecy capacities for multiple terminals,”IEEE Trans. Inform. Theory, vol. 50, pp. 3047–3061, 2004.
[11] E. Ekrem and S. Ulukus, “The secrecy capacity region of the gaussian mimo multi-receiver wiretap channel,”IEEE

Trans. Inform. Theory, submitted. [Online]. Available: http://arxiv.org/abs/0903.3096
[12] A. A. El Gamal, “Capacity of the product and sum of two un-matched broadcast channels,”Probl. Information

Transmission, pp. 3–23, Jan-March 1980.
[13] A. A. El Gamal and Y. H. Kim, “Lecture notes on network information theory,” CoRR abs/1001.3404, (2010).
[14] A. Gohari and V. Anantharam, “Information-theoretic key agreement of multiple terminals - Part I,”IEEE Trans.

Inform. Theory, vol. 56, pp. 3973–3996, Jun. 2010.
[15] D. Gunduz, E. Erkip, and H. V. Poor, “Lossless compression with security constraints,” inProc. Int. Symp. Inform.

Theory, Toronto, Jul. 2008.
[16] X. He and A. Yener, “Secure degrees of freedom for Gaussian channels with interference: Structured codes outperform

Gaussian signaling,”IEEE Trans. Inform. Theory, submitted. [Online]. Available: http://arxiv.org/abs/0907.5388
[17] A. Khisti, “Secret key generation using correlated sources and noisy channels,” inPresentation at the Information

Theory and its Applications (ITA) Workshop, San Diego, Jan. 2008.
[18] A. Khisti, S. N. Diggavi, and G. W. Wornell, “Secret key generation using correlated sources and noisy channels,” in

Proc. Int. Symp. Inform. Theory, Toronto, Jun. 2008.
[19] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure Broadcasting over fading channels,”IEEE Trans. Inform.

Theory, Special Issue on Information Theoretic Security, vol. 54, pp. 2453–2469, Jun. 2008.
[20] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas: The MIMOME wiretap channel,”IEEE

Trans. Inform. Theory, vol. 56, pp. 5515–5532, Nov. 2010.
[21] ——, “Secure transmission with multiple antennas: The MISOME wiretap channel,”IEEE Trans. Inform. Theory,

vol. 56, pp. 3088–3104, Jul. 2010.
[22] O. O. Koyluoglu, H. E. Gamal, L. Lai, and H. V. Poor, “Interference alignment for secrecy,”IEEE Trans. Inform.

Theory. [Online]. Available: http://arxiv.org/abs/0810.1187
[23] L. Lai and H. E. Gamal, “The Relay Eavesdropper channel:Cooperation for Secrecy,”IEEE Trans. Inform. Theory,

vol. 54, pp. 4005–4019, Sep. 2008.



36

[24] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap channel,”IEEE Trans. Inform.
Theory, vol. 55, pp. 2547–2553, Jun. 2009.

[25] U. Maurer and S. Wolf, “Information-theoretic key agreement: From weak to strong secrecy for free,” inEUROCRYPT
2000, Lecture Notes in Computer Science, Springer-Verlag,vol. 1807, 2000, pp. 351–368.

[26] U. M. Maurer, “Secret key agreement by public discussion from common information,”IEEE Trans. Inform. Theory,
vol. 39, pp. 733–742, Mar. 1993.

[27] N. Merhav, “Shannon’s secrecy system with informed receivers an its application to systematic coding for wiretapped
channels,”IEEE Trans. Inform. Theory, vol. 54, pp. 2723–2734, 2008.

[28] V. Prabhakaran, K. Eswaran, and K. Ramchandran, “Secrecy via sources and channels – a secret key - secret message
rate trade-off region,”Online (07/07/08) http://arxiv.org/abs/0708.4219.

[29] V. Prabhakaran and K. Ramachandran, “A separation result for secure communication,” intalk presented at the 45th
Allerton Conf. Commun., Contr., Computing, Oct. 2007.

[30] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and
cooperative Jamming,”IEEE Trans. Inform. Theory, vol. 54, pp. 2735–2751, Jun. 2008.

[31] A. D. Wyner, “The wiretap channel,”Bell Syst. Tech. J., vol. 54, pp. 1355–87, 1975.
[32] H. Yamamoto, “Rate distortion theory for the shannon cipher system,”IEEE Trans. Inform. Theory, vol. 43, May 1997.

Ashish Khisti Ashish Khisti is an assistant professor in the Electrical and Computer Engineering (ECE) department at the
University of Toronto, Toronto, Ontario Canada. He received his BASc degree in Engineering Sciences from University of
Toronto and his S.M and Ph.D. Degrees from the MassachusettsInstitute of Technology (MIT), Cambridge, MA, USA.
His research interests span the areas of information theory, wireless physical layer security and streaming in multimedia
communication systems. At the University of Toronto, he heads the signals, multimedia and security laboratory. For his
graduate studies he was a recipient of the NSERC postgraduate fellowship, HP/MIT alliance fellowship, Harold H. Hazen
Teaching award and the Morris Joseph Levin Masterworks award.

Suhas N. Diggavi Suhas N. Diggavi (M99) received the B.Tech. degree in electrical engineering from the Indian Institute
of Technology, Delhi, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, in 1998. After
completing the Ph.D. degree, he was a Principal Member Technical Staff in the Information Sciences Center,AT&T Shannon
Laboratories, Florham Park, NJ. After that, he was on the faculty at the School of Computer and Communication Sciences,
Ecole Polytechnique Fdrale de Lausanne (EPFL), Lausanne, Switzerland, where he directed the Laboratory for Information
and Communication Systems (LICOS). He is currently a Professor in the Department of Electrical Engineering, University
of California, Los Angeles. His research interests includewireless communications networks, information theory, network
data compression and network algorithms. He has 8 issued patents. Dr. Diggavi is a recipient of the 2006 IEEE Donald Fink
prize paper award, 2005 IEEE Vehicular Technology Conference Best Paper Award, and the Okawa Foundation Research
Award. He is currently an editor for ACM/IEEE TRANSACTIONS ON NETWORKING and the IEEE TRANSACTIONS
ON INFORMATION THEORY.

Gregory W. Wornell Gregory W. Wornell received the B.A.Sc. degree (with honors) from the University of British Columbia,
Canada, and the S.M. and Ph.D. degrees from the Massachusetts Institute of Technology, all in Electrical Engineering and
Computer Science, in 1985, 1987 and 1991, respectively. Since 1991 he has been on the faculty at MIT, where he is Professor
of Electrical Engineering and Computer Science. At MIT he leads the Signals, Information, and Algorithms Laboratory within
the Research Laboratory of Electronics, and co-directs theMIT Center for Wireless Networking. He is also chair of Graduate
Area I (Systems, Communication, Control, and Signal Processing) within the EECS department’s doctoral program, and a
member of the MIT Computational and Systems Biology Initiative. He has held visiting appointments at the Department of
Electrical Engineering and Computer Science at the University of California, Berkeley, CA, in 1999-2000, at Hewlett-Packard
Laboratories, Palo Alto, CA, in 1999, and at AT&T Bell Laboratories, Murray Hill, NJ, in 1992-3. His research interests
and publications span the areas of signal processing, digital communication, and information theory, and include algorithms
and architectures for wireless and sensor networks, broadband systems, and multimedia environments. He has been involved
in the Signal Processing and Information Theory societies of the IEEE in a variety of capacities, and maintains a number
of close industrial relationships and activities. He has won a number of awards for both his research and teaching, and isa
Fellow of the IEEE.


