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Abstract—We study a non-multicast secure network coding
problem with two receivers. First we study a linear-deterministic
channel model with two receivers and a collection of eaves-
droppers, which generalizes the Ozarow-Wyner wiretap channel
II. The secrecy capacity region for independent and common
messages is characterized and is achieved by concatenating a
coset-coding scheme based on maximum rank distance codes with
a repetition code. By applying our coding scheme at the source
node of a network that uses an underlying generic network code
we also establish the secrecy capacity region of a network coding
problem with two sinks and one sender node.

I. INTRODUCTION

The wiretap channel, introduced by Wyner [10], charac-
terizes the maximum rate of reliable information transfer
under a secrecy constraint. Ozarow and Wyner [4] develop
a coset coding approach for the erasure wiretap channel and
characterize its secrecy capacity under a stronger model for the
eavesdropper. More recently connections between the Ozarow-
Wyner model and secure network coding [1] have been identi-
fied [6]. In [9] the authors observe that a linear maximum-rank-
distance (MRD) code in the coset coding scheme is universal.
Its construction neither imposes any constraints nor requires
any knowledge of the underlying network code. Thus the
problem of secure network coding can be reduced to that of
communicating over linear and deterministic channels.
The present paper studies the problem of broadcasting infor-

mation to two receivers over linear and deterministic channels.
The eavesdropper’s channel transfer matrix can be arbitrary but
satisfies a rank constraint. We characterize the secrecy capacity
region for transmitting independent and common messages to
the two users. Our coding scheme involves (a) enlarging the
dimension of common subspace between the two receivers
by repeating a certain number of symbols in their orthogonal
subspace and (b) applying coset coding based on a block
diagonal parity check matrix of a MRD code of suitable
dimension.
Applying our coding scheme to a network with one sender

node and two sink nodes we characterize the secrecy capacity
region for the one sender two sink multi source secure network
coding problem. To the best of our knowledge this result
appears to be new and compliments an analogous result
without the secrecy constraint (see e.g., [5] and references
therein).

II. PROBLEM STATEMENT AND MAIN RESULT

A. Channel Model

The channels of the two legitimate receivers are linear and
deterministic i.e.,

y1(t) = A1x(t), y2(t) = A2x(t) (1)

where the rank of transfer matrices Ai ∈ F
ri×n
q is ri and t =

1, 2, . . . denotes the discrete time index. The channel matrices
remain constant throughout the duration of transmission and
are known to all terminals. Define

r12 = rank

[
A1

A2

]
, Δ = r1 + r2 − r12 (2)

where Δ denotes the dimension of the common row-space
between A1 and A2.
In addition to the two receivers we also consider a class

of eavesdroppers whose channels are linear and deterministic
and whose channel transfer matrices have a rank that does not
exceed μ,

Z =

{
z(t) = B · x(t)

∣∣∣∣ B ∈ F
μ×n
q , rank(B) ≤ μ

}
. (3)

B. Secure-Broadcast Code

The message pair (m0,mi) needs to be delivered to receiver
i for i ∈ {1, 2}. A length L, rate (R0, R1, R2) secure
broadcast code for this channel consists of

1) Information sets Ik =
{
1, 2, . . . , 2LRk·log2 |Fq |

}
, for k =

0, 1, 2, and the message mk is uniformly distributed over
Ik. We will further assume that the pair (R0, R1, R2) is
an integer tuple1.

2) A set of possibly stochastic encoding functions Ft :
I0 × I1 × I2 → (Fq)

n for t = 1, 2, . . . L that map
the given messages (m0,m1,m2) into channel input
symbols x(1), . . . ,x(L).

3) A pair of decoding functions Gi : F
n×L
q → I0 ×

Ii that produce a message estimate (m̂0, m̂i) =
Gi(yi(1), . . . ,yi(L)), for i = 1, 2.

1As will be evident, the corner points in our capacity region are integer
tuples. Hence all the remaining points can be obtained by time-sharing
between these corner points.
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A rate tuple (R0, R1, R2) is achievable if there exists
a sequence of length L secure broadcast codes such that
Pr((m̂0, m̂1, m̂2) �= (m0,m1,m2)) → 0 as L → ∞ and
the secrecy constraint I(m0,m1,m2; z(1), . . . , z(L)) → 0 is
satisfied. The set of all achievable rate pairs constitutes the
secure broadcast capacity region.

C. Channel Matrix Reduction

One useful property that we use throughout this paper is that
without loss of generality, A1 and A2 can have the following
cannonical structure:

A1 =

[ r1−Δ r2−Δ Δ n−r12

r1−Δ I 0 0 0
Δ 0 0 I 0

]

A2 =

[ r1−Δ r2−Δ Δ n−r12

r2−Δ 0 I 0 0
Δ 0 0 I 0

]
(4)

where recall that Δ = r1 + r2 − r12, and let I and 0 denote
identity-matrix and zero-matrix of appropriate dimensions.
This equivalence can be established through a series of linear
invertible transformations at the sender and the receivers (see
e.g., [7]).
Without loss of generality we assume that n = r12 i.e.,

the dimension of null space common to A1 and A2 is zero.
Clearly neither receiver sees any information transmitted in
this subspace. Also any eavesdropper whose channel has
dimensions in this subspace can be replaced with another
channel that has a smaller rank and no dimensions in this
subspace.
With this choice of matrices, we can partition the input

vector

x =

⎡
⎣r1−Δ x1

r2−Δ x2

Δ xΔ

⎤
⎦

and assume that the receivers’ observe

y1 =

[
x1

xΔ

]
, y2 =

[
x2

xΔ

]
(5)

respectively. We will focus on the model (5) in the remainder
of this paper.

D. Main Result

The following result characterizes the secrecy capacity
region.
Theorem 1: The secrecy capacity region with common

message is the union of all rate tuples (R0, R1, R2) that satisfy
Ri ≥ 0 for i = 0, 1, 2 and

R0 ≤ min (r1 − μ, r2 − μ) (6)

R0 +R1 ≤ r1 − μ (7)

R0 +R2 ≤ r2 − μ (8)

R0 +R1 +R2 ≤ n− μ. (9)

Fig. 1. Capacity region for secure broadcasting to two receivers . The common
message rate is fixed to R0 and the tradeoff between (R1, R2) is illustrated.
The left hand plot corresponds to the case μ ≤ Δ and R0 ≤ Δ − μ. The
right hand plot corresponds to the case when μ ≤ Δ and Δ − μ ≤ R0 ≤

min(r1, r2) − Δ and also when μ ≥ Δ and 0 ≤ R0 ≤ min(r1, r2) − μ.
Note that in these two cases the sum-rate constraint in the capacity region is
not active.

1) Structure of Capacity Region: To interpret the capacity
region in Theorem 1 we fix R0 and study the tradeoff between
the independent message rate pair (R1, R2). As illustrated in
Fig. 1 the capacity region takes one of two forms depending
on whether the sum rate is active or not. When μ ≤ Δ and
R0 ≤ Δ−μ i.e., when μ+R0 ≤ Δ the dominant boundary of
the capacity region is the set of points that lie on the sum-rate
constraint (9) and beyond the corner points i.e.,

Ds = {(R1, R2) ≥ 0 | R1+R2 = n−μ−R0, Ri ≥ ri−Δ}
(10)

whereas when μ+ R0 ≥ Δ the dominant boundary region is
a single point

Db = {(R1, R2)| R1 = r1−μ−R0, R2 = r2−μ−R0}. (11)

Our coding scheme exploits the following alternative char-
acterization of the dominant boundary region.
Proposition 1: Let α = max{μ+R0−Δ, 0}, let ñ = n−α

and Δ̃ = Δ+α. The set of rate pairs on the dominant boundary
of the capacity region are characterized by
1) R0 +R1 +R2 = ñ− μ; and
2) Ri ≥ ri − Δ̃, i = 1, 2.
Proof: Consider first the case Δ ≥ μ + R0. In this case

α = 0 and hence ñ = n and Δ̃ = Δ. The two constraints then
define Ds in (10).
When Δ ≤ μ + R0 the rate pair in Db is given by Ri =

ri−μ−R0, i = 1, 2. This implies that Ri = ri− Δ̃, i = 1, 2,
since α = μ + R0 − Δ. Moreover, R0 + R1 + R2 = r1 −
μ + r2 − Δ̃ = ñ − μ. Thus, there is no loss of generality in
assuming the conditions above.
Remark 1: The choice of α in Prop. 1 has a physical

interpretation in the code construction. As illustrated in Fig. 2
α characterizes the number of symbols that get repeated in
the orthogonal subspace of the two users. This increases the
dimension of the common subspace from Δ to Δ̃ = Δ + α

while reducing the dimension of each orthogonal subspace by
α units. The length of independent symbols in a codeword
reduces from n to ñ = n− α.
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Fig. 2. Effect of repeating α symbols in each of the orthogonal subspaces of
the two users. The dimension of the common subspace increases by α units
whereas the dimension of each of the orthogonal subspaces decreases by α

units. In the coding scheme we use α = max(μ+ R0 −Δ, 0).

III. CONVERSE FOR THEOREM 1

We establish an upper bound in two steps. First we consider
one possible eavesdropper and use standard information theo-
retic arguments to show that the capacity region lies inside a
particular polyhedron. Then we show that the intersection of
all such polyhedra contains the region stated in Theorem 1.
Proposition 2: Let Px denote the set of all possible input

distributions and let zi = Bi · x denote one particular
eavesdropper channel among the collection. Further, let R(px)
denote the region consisting of rate pairs (R0, R1, R2) that
satisfy

R0 ≤ min(H(y1|zi), H(y2|zi))

R0 +R1 ≤ H(y1|zi)

R0 +R2 ≤ H(y2|zi)

R0 +R1 +R2 ≤ H(y1,y2|zi)

(12)

with the entropy expressions evaluated for the joint distribu-
tion px,y1,y2,zi(·) = px(·)py1,y2,zi|x(·). The secrecy capacity
region is contained in

⋃
px∈Px

R(px).
Note that the first constraint is a constraint on multicasting
common message to the two receivers, the next two constraint
in (12) above are single-user secrecy constraints with respect
to eavesdropper zi, whereas the last constraint is a result of
allowing both the receivers to cooperate. We omit a formal
proof.
In what follows we use Prop. 2 to deduce the converse

in Theorem 1. Recall that the constraint (6) on the common
message rate follows from the capacity of single message
multicast (e.g., [8]). To obtain the remaining constraints we
separately consider the case when μ ≤ Δ and μ > Δ.
First consider the case when μ ≤ Δ. Select an eavesdropper

whose observations align with any μ symbols of xΔ i.e.,
say zi(t) = [xΔ,1(t), . . . ,xΔ,μ(t)], where xΔ,j(t) denotes
the j−th symbol of the vector xΔ(t). Consequently for each
px ∈ Px ,

R0 +R1 ≤ H(y1|zi) ≤ r1 − μ

R0 +R2 ≤ H(y2|zi) ≤ r2 − μ

R0 +R1 +R2 ≤ H(y1,y2|zi) ≤ n− μ.

This establishes that any pair (R0, R1, R2) in the capacity
region satisfies the constraints in Theorem 1.

When μ > Δ consider an eavesdropper who observes all
the Δ symbols of xΔ and μ−Δ additional symbols from x1.
For such an eavesdropper we have that for each px ∈ Px ,

R0+R1 ≤ H(y1|zi) ≤ r1−μ, R0+R2 ≤ H(y2|zi) ≤ r2−Δ.

Likewise if we consider another eavesdropper who observes
Δ symbols from xΔ and μ − Δ symbols of x2 we get that
for each px ∈ Px ,

R0+R1 ≤ H(y1|zi) ≤ r1−Δ, R0+R2 ≤ H(y2|zi) ≤ r2−μ.

An intersection of these two constraints givesR0+Ri ≤ ri−μ.
Finally as noted in section II-D1 the sum rate constraint (9)
is not active in this case.

IV. ACHIEVABILITY FOR THEOREM 1

We simplify the description of the coding scheme by using
an extension field approach. Let Fn×L

q denote the set of all
n×L matrices over Fq. Let the finite field FqL be a degree-L
extension of Fq. Since FqL is a vector space over Fq , there is
a vector space isomorphism φ : F1×L

q ↔ FqL . For all n, let
φn : Fn×L

q ↔ F
n
qL
be the vector space isomorphism defined

by applying φ(·) row-wise. We will omit the subscript from
φn when the dimensions of the argument are clear from the
context.
Let X = φ([x(1) · · · x(L)]) ∈ F

n
qL

and Yi =
φ([yi(1) · · · yi(L)]) ∈ F

ri
qL
, i = 1, 2. Note that, since

φ is an Fq-linear transformation, we have

Yi = AiX =

[
Xi

XΔ

]
i = 1, 2

where Xi = φ([xi(1) · · · xi(L)]), i = 1, 2,Δ. Similarly,
we have

Z = BX

where Z = φ([z(1) · · · z(L)]) ∈ F
μ

qL
.

Now, assume that R0, R1, R2 are integers, and consider a
length L, rate (R0, R1, R2) secure broadcast code. Without
loss of generality, assume that mi ∈ F

Ri

qL
, i = 0, 1, 2, and let

m =

⎡
⎣m1

m2

m0

⎤
⎦. Then, we can view the code as consisting of a

stochastic encoding that maps m to X and two decoders that
map each Yi to an estimate (m̂0, m̂i) of (m0,mi), i = 1, 2.

A. Coding Scheme

Our coding scheme is a specific form of Ozarow-Wyner
coset coding (over the extension field FqL ) for the combined
message m. Let

H =

⎡
⎣

r1−Δ̃ r2−Δ̃ Δ̃

R1 H11 0 H1Δ

R2 0 H22 H2Δ

R0 0 0 H0Δ

⎤
⎦ (13)

be a full-rank (R0 + R1 + R2) × ñ matrix over FqL . En-
coding is performed by first selecting X̃ ∈ F

ñ
qL

uniformly

at random such that m = HX̃ . In other words, if C is the
[ñ, ñ − R0 − R1 − R2] linear code defined by the parity-
check matrix H , then the combined messagem can be viewed
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as a syndrome determining a coset of C, and X̃ is selected
uniformly at random among the elements of that coset.
Then, the transmitted word is computed asX = V X̃ , where

V =

⎡
⎢⎢⎢⎢⎣

Ir1−Δ̃ 0 0 0
0 0 Iα 0
0 Ir2−Δ̃ 0 0
0 0 Iα 0
0 0 0 IΔ

⎤
⎥⎥⎥⎥⎦ .

The transformation produced by V may be seen as a form of
repetition coding and is therefore reversible. Writing

X̃ =

⎡
⎣r1−Δ̃ X̃1

r2−Δ̃ X̃2

Δ̃ X̃Δ

⎤
⎦

we have that

[
X̃i

X̃Δ

]
=

[
Xi

XΔ

]
, i = 1, 2.

As illustrated in Fig. 2, the transformation X = V X̃

is intended to increase the amount of common information
transmitted, from Δ to Δ̃ units. This is done by repeating the
extra symbols (α units) into both X1 and X2. As a result, we
can guarantee that Δ̃ ≥ μ+R0 in all cases. Thus, we can use
X̃Δ to transport both the common message (R0 units) and the
randomness to confuse the wiretapper (μ units).
Now, let Hi =

[
Hii HiΔ

]
, i = 1, 2. Since

⎡
⎣m1

m2

m0

⎤
⎦ =

⎡
⎣H11 0 H1Δ

0 H22 H2Δ

0 0 H0Δ

⎤
⎦
⎡
⎣ X̃1

X̃2

X̃Δ

⎤
⎦ (14)

it is clear that decoding can be performed by computing[
m̂i

m̂0

]
= HiYi =

[
Hi1 HiΔ

0 H0Δ

] [
X̃i

X̃Δ

]
=

[
mi

m0

]
.

Note that the probability of error is precisely zero.

B. Secrecy Analysis

We show with a suitable choice of H , the following condi-
tion is satisfied:

I(m;Z) = 0 for all B ∈ F
μ×n
q . (15)

Note that Z = BX = BV X̃ . As B runs through all matrices
in F

μ×n
q , also BV runs through all matrices in F

μ×ñ
q . Thus,

we need to guarantee that

I(m; B̃X̃) = 0 for all B̃ ∈ F
μ×ñ
q . (16)

It is shown in [9] that (16) is satisfied if

rank

[
H

B̃

]
= R0 +R1 +R2 + μ for all full-rank B̃. (17)

Our task is to construct H satisfying (13) and (17). For this
purpose we rely on the properties of rank-metric codes, which
are reviewed in Appendix A for the convenience of the reader.
Let H0 ∈ F

(ñ−μ)×ñ

qL
be a parity-check matrix of an [ñ, μ]

linear MRD code over FqL . By converting H0 to systematic

form and permuting rows, we can obtain a matrix H ∈

F
(ñ−μ)×ñ

qL
of the form

H =

⎡
⎢⎢⎢⎢⎣

r1−Δ̃ r2−Δ̃ R1−r1+Δ̃ R2−r2+Δ̃ μ+R0

r1−Δ̃ I 0 0 0 P1

R1−r1+Δ̃ 0 0 I 0 P2

r2−Δ̃ 0 I 0 0 P3

R2−r2+Δ̃ 0 0 0 I P4

R0 0 0 0 0 P5

⎤
⎥⎥⎥⎥⎦

such that H0 and H are parity-check matrices of the same
code. It is easy to check that H is of the form (13). Moreover,
by Theorem 3 in the appendix, we have that (17) is satisfied.
Thus, the proof is complete.

V. APPLICATION TO NETWORK CODING

Consider a communication network represented by a di-
rected multigraph with unit capacity edges. Each edge is
assumed to be a noiseless channel. Suppose that the network
contains one source node S and two destination nodes T1

and T2. The source node produces messages m0, m1 and m2

such that Ti is interested in receiving (m0,mi), i = 1, 2.
Additionally, suppose that there is an eavesdropper that can
observe the transmissions on μ arbitrarily chosen links. We
allow coding at all nodes in the network provided that causality
is respected, i.e., the symbols transmitted by a node must be
a function of the previously received symbols at the same
node. We wish to characterize the capacity region for secret
and reliable communication over the network (the precise
definitions are similar to Section II-B).
For the achievability part, our approach will be to con-

vert the network into the linear deterministic channel of
section II-A by employing a suitable linear network code;
then, Theorem 1 can be used. We start by reviewing a few
definitions.
For any nodes A,B, let mincut(A,B) denote the minimum

number of edges that must be removed in order to make
B unreachable from A. Similarly, for a set of nodes B, let
mincut(A,B) denote the minimum number of edges that
must be removed in order to make each B ∈ B unreachable
from A. Let Ci = mincut(S, Ti), i = 1, 2, and C12 =
mincut(S, {T1, T2}).

Lemma 1: There exists a linear network code over a suf-
ficiently large field such that rank Ai = Ci, i = 1, 2, and

rank

[
A1

A2

]
= C12, where A1 and A2 are the transfer matrices

from S to T1 and T2, respectively.
Proof: Consider an extended network obtained by adding

a new node T3 and a number of edges from Ti to T3

corresponding to the number of edges entering Ti, i = 1, 2. It
is easy to see that mincut(S, T3) = mincut(S, {T1, T2}). By
applying the generic linear network code construction of [3]
over a sufficiently large field, we can obtain a linear network
code such that rank Ai = mincut(S, Ti), where Ai is the
transfer matrix seen by node Ti, i = 1, 2, 3. On the other
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hand, by construction, we have that

rank A3 ≤ rank

[
A1

A2

]
≤ mincut(S, {T1, T2}).

It follows that rank

[
A1

A2

]
= mincut(S, {T1, T2}), completing

the proof.

Note that, when a linear network code is used, the eaves-
dropper’s observation can be characterized by a transfer matrix
B with μ rows. Thus, the overall wiretap channel produced
by Lemma 1 falls exactly into the linear-deterministic channel
of section II-A. We can thus obtain the following result.

Theorem 2: For a network with one source and two desti-
nations, the capacity region for communicating messages m0,
m1, m2 at rates R0, R1, R2, respectively, while guaranteeing
secrecy from an eavesdropper that observes any subset of μ
links, is the union of all non-negative rate tuples (R0, R1, R2)
that satisfy

R0 +R1 ≤ C1 − μ, R0 +R2 ≤ C2 − μ

R0 +R1 + R2 ≤ C12 − μ, R0 ≤ min(C1, C2)− μ.

Proof: Achievability follows from Lemma 1 together with
Theorem 1. The converse follows by applying the single user
secure multicast coding [1] to each individual receiver and to
the two cooperating receivers.
Remark 2: When μ = 0 i.e., in absence of a secrecy

constraint, the result in Theorem 2 shows that the cut-set bound
is tight for the case of broadcasting independent and common
messages from one sender to two sinks over a network. This
recovers an earlier result (see e.g., [5] and references therein).

VI. CONCLUSION

This paper characterizes the secrecy-capacity region of
transmitting independent and common messages to two legiti-
mate receivers in the presence of a collection of eavesdroppers.
All channels are linear and deterministic and the channel
transfer matrices of the eavesdroppers have a bounded rank.
The coding scheme combines syndrome coding based on the
parity check of a rank metric code with a suitable repetition
code. Using this coding scheme and a generic network code
we also characterize the secrecy-capacity region for the one
sender two sink secure network coding problem.
As it is already known that linear network coding is in-

sufficient for the general multiuser case (without the secrecy
constraint), we expect the a complete multiuser generalization
of our results to be difficult. Nevertheless our results on the
two receiver channel shed some interesting insights arising
due to the secrecy constraints. Note that the capacity region
behaves differently depending on the rank of the eavesdrop-
per’s channel. Hence a fruitful direction could be to pursue
the extension to more than two receivers when the rank of
the eavesdropper’s channel is either above or below certain
thresholds.

APPENDIX A
REVIEW OF RANK-METRIC CODES

A rank-metric code is a block code over an extension field
(or, alternatively, a matrix code) that uses the rank distance as
a metric. The rank distance between matrices X,Y ∈ F

n×L
q

is defined as dR(X,Y ) � rank(Y −X). Similarly, using the
isomorphism φn : Fn×L

q ↔ F
n
qL
, the rank distance between

vectors X,Y ∈ F
n
qL
is defined as

dR(X,Y ) � rank φ−1
n (Y −X).

The minimum rank distance of a code C ⊆ F
n
qL
, denoted

dR(C), is the minimum rank distance among all pairs of
distinct codewords of C. The size of a code C ⊆ F

n
qL
with

dR(C) = d is bounded by the Singleton bound for the rank
metric, which is given by

|C| ≤ qmax{n,L}(min{n,L}−d+1).

Codes that achieve this bound are called maximum-rank-
distance (MRD) codes.
It is useful to consider MRD codes that are linear [n, k]

codes over FqL . In the case that L ≥ n, the minimum rank
distance of the code is given by d = n − k + 1. Such codes
have a very useful property, which is given in the following
theorem.

Theorem 3 ([8], [9]): Let H ∈ F
(n−μ)×n

qL
be a parity-

check matrix of an [n, μ] linear MRD code over FqL , where
L ≥ n. Then, for every full-rank matrix B ∈ F

μ×n
q , we have

rank

[
H

B

]
= n.

Note that linear MRD codes with L ≥ n can be constructed
very easily using a construction by Gabidulin [2].
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