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ABSTRACT

A rechargeable battery may be used to partially protect the privacy
of information contained in a household’s electrical load profile. We
represent the system as a finite state model to make tractable the
computation of the rate of information leakage. Specifically, we use
a trellis algorithm to estimate the mutual information rate between
the battery’s input and output loads. We show that stochastic battery
policies can leak 26% less information than a so-called best-effort
algorithm (that holds the output load constant whenever possible).
We finally describe the extension of the technique to more realistic
models of the battery system.

Index Terms— information security, data privacy, smart grids,
energy storage, batteries

1. INTRODUCTION

Deployments of smart electricity meters to residential homes con-
tinue unabated around the world. These devices enable utility com-
panies to read their customers’ power loads remotely and automati-
cally every few minutes or even more frequently. In contrast, tra-
ditional electromechanical meters are typically read just monthly
during physical visits by a utility company employee. Smart me-
tering is a critical part of the smart grid vision: the modernization of
the electricity infrastructure for improved reliability and energy effi-
ciency [1]. Consider, for example, the expected growth in adoption
of plug-in electric vehicles. It is anticipated that their rechargeable
batteries (when plugged in at home) could also function collectively
as distributed energy storage. These batteries would help smooth
out peaks and troughs in the required power supply and, thereby,
improve the efficiency of the available generation resources. Smart
meters are essential to coordinate the desired charging and discharg-
ing of the batteries in real time.

Despite the promise of smart metering, there are risks. A con-
cern, from the customer point-of-view, is loss of privacy [2, 3]. The
utility company could employ data mining algorithms to analyze a
household’s load data and, thus, discover the appliances and usage
patterns of the inhabitants [4, 5, 6]. This information could poten-
tially be sold to advertisers or be used for surveillance. One approach
to preserving privacy involves anonymization of the data by an inter-
mediary [7], but this merely transfers doubts about trustworthiness
from one party to another.

A new (complementary) idea suggests that the household itself
partially obscure its load profile using a rechargeable battery (such
as the one in a plugged-in electric vehicle) [8]. The setup in Fig. 1
shows the flow of information left-to-right. The battery’s input load
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Fig. 1. Charging and discharging the battery with power flows can
partially decouple the information flows X and Y.

X is the aggregate load of the appliances. Its output load Y is
the combined load of the appliances and the battery, as reported by
the smart meter to the utility company. Power, on the other hand,
flows right-to-left from the utility company through the battery to
the household’s appliances. At any time, the battery may perform
a combination of the following actions (or none of them) subject to
its capacity: relay power directly from the utility to the appliances;
store energy from the utility company for future use; deliver pre-
viously stored energy to the appliances. In this way, charging and
discharging the battery can manipulate the output load Y, obscuring
some of the information contained in the input load X.

In [8], a so-called best-effort algorithm is proposed for charging
and discharging the battery. Whenever possible, it holds the output
load to its most recent value. This deterministic policy is evaluated
with respect to three ad hoc metrics of privacy, none of which quan-
tify the amount of information leaked. Moreover, all three metrics
measure the privacy of the differential information only, relying on
an assumption that the utility’s data mining algorithms ignore low
frequencies of the load profile. This is not necessarily so, as demon-
strated in recent work [9].

In this paper, we take a more principled approach. Section 2
simplifies the battery system as a finite state model and formulates
different types of stochastic battery policies. In Section 3, we de-
fine the rate of information leakage as the mutual information rate
I(X;Y) and describe a method to compute it tractably. Section 4
shows experimentally that stochastic policies are superior to the best-
effort policy of [8] in minimizing the rate of information leakage. In
Section 5, we discuss extensions of this technique to more realistic
models of loads and batteries.

2. BATTERY SYSTEM MODEL

Our approach is to model the battery system as simply as possible,
so that we can compute the rate of information leakage tractably
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Fig. 2. Finite state model depicting the transitions in the binary-load
binary-battery model.

and make revealing insights into minimizing it. We discuss extend-
ing the technique presented in this paper to more realistic models in
Section 5.

2.1. Binary Loads and Binary Battery

Consider the input load X to be a binary i.i.d. (independent and
identically distributed) sequence {z1,x2,x3,...}. That is, the ap-
pliances consume either O or 1 units of power at any discrete time.
Let go be the probability that x; is O for any time ¢t. We also re-
quire the output load Y to be a binary sequence {y1,y2,¥s, ...}, SO
the utility provides either O or 1 units of power at any time. The
rechargeable battery of capacity 1 unit has two states: 0 (discharged)
or 1 (charged). Let the binary sequence {bo, b1, bz, bs, . ..} represent
the state of the battery over time, with initial state by = 0.

At time ¢, if the battery is in the discharged state (b, = 0), then
there are three possible events for time ¢ + 1. If the appliances con-
sume 1 unit (z¢4+1 = 1), then the battery must remain discharged and
the utility provides 1 unit to the appliances (bi+1 = 0,541 = 1).
Otherwise, the appliances consume 0 units (z¢4+1 = 0) and there is
a choice: either the battery remains discharged and the utility pro-
vides 0 units (b++1 = 0,y++1 = 0), or the battery charges up and
the utility provides this 1 charging unit (bs+1 = 1, y++1 = 1). Like-
wise, if the battery is in the charged state at time ¢ (by = 1), there
are three other possible events for time ¢ + 1. If the appliances con-
sume 0 units (x+4+1 = 0), then the battery must remain charged and
the utility provides O units (bs+1 = 1,y:+1 = 0). Otherwise, the
appliances consume 1 unit (x:+1 = 1) and there is a choice: either
the battery remains charged and the utility provides 1 unit to the ap-
pliances (bs+1 = 1, y++1 = 1), or the battery discharges its power to
the appliances and the utility provides O units (bs+1 = 0, yt+1 = 0).

All six events are shown as transitions between the two battery
states in the finite state model in Fig. 2. For some of the combina-
tions of battery state b, and input x+1, there is choice about what
happens next and, therefore, the battery system requires a policy.

2.2. Stochastic Battery Policies

The battery policies are stochastic; that is, every choice is made with
a certain probability. We consider two types: battery-conditioned
policies 7y, which depend only on the current battery state b;, and
battery/output-conditioned policies 7, which depend on the cur-
rent battery state b; and the current output ;.

The policies 7, (po, p1) can be represented by labeling each of
the transitions in Fig. 2 with probabilities, as shown in Fig. 3. Re-
call that qo is the probability of x4 being 0. Thus, po and p; are
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Fig. 3. Finite state model depicting battery-conditioned policy
ﬂ-b(p(hpl)'

the probabilities of switching battery state b, given that there is
a choice to do so. The special case po = p1 = 0 produces a pol-
icy that never charges nor discharges the battery, whereas setting
po = p1 = 1 forces the battery to charge and discharge whenever
possible.

The policies 7oy (Poo, Po1, P10, p11) cannot be specified on the
graph of Fig. 2. Instead, we augment the state space to represent
combinations (b, y) of the battery state and output, and label the tran-
sitions with probabilities, as shown in Fig. 4. Here, the poo, po1, p1o
and p11 are the probabilities of switching output value y;41 given
that there is choice to do so. Setting poo = po1 = pio = p11 = 0
forces the battery to keep the output at the same value whenever pos-
sible. This special case is, thus, the best-effort algorithm of [8] for
our binary-load binary-battery model.

3. RATE OF INFORMATION LEAKAGE

We define the rate of information leakage as the mutual information
rate I(X;Y). Unlike the three metrics proposed in [8], this defi-
nition does not assume that data mining algorithms look for high-
frequency signatures. Indeed, this is a principled definition because
we make no assumptions about the algorithmic goals or capabilities
of the data mining agent at the utility.

Observe that the battery system together with a given policy acts
like a communication channel with memory, taking input X and pro-
ducing output Y. Thus, the mutual information rate 7(X;Y") can be
estimated accurately using a simulation-based technique described
in [10]. We briefly summarize the application of the method to our
model:

1. Specify the policy 7 and denote the states of the finite state

model with an index s. For policies m;, and 7y, s is equal to
b and (b, y), respectively.

2. Sample sequences {x1,...zn} and {y1, ..
large, from the finite state model.

.Yn}, where n is

3. Compute p(y1,...yn) and p(z1,...Tn,Y1,...Yyn) as de-
scribed below.
4. Estimate the mutual information rate as
[(X;Y) = H(X) + H(Y) - H(X,Y)
1
~ H(X) — —logp(ys,- .. yn)
1
+ - logp(z1,.. - TnyY1,---Yn)-
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Fig. 4. Finite state model depicting battery/output-conditioned pol-
icy 7oy (Poo, Po1, P10, P11)-

We marginalize the probabilities in Step 3 by converting the fi-
nite state model into a trellis with state sequence {so, . ..sn} and
running the forward pass of the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [11]. Define the state metrics

Mt(st) - P(Suyl, v 7yt)

l/t(St) :p(5t7$17 ey Tty Y1y e 7yt)'

Then recursively compute

pt1(8e41) = Z Zﬂt(st)p($t+1,yt+178t+1|5t)

Tiy1 St

Vi+1(St41) = Z v (80)p(Tet1, Y1, Ser1]se).
st

For policies mp and 7sy, the nonzero p(x¢41, Ye+1, St+1|5¢) are the
transition probabilities labeled on Fig. 3 and 4, respectively. Finally,
obtain

p(ylv e 'ay’ﬂ) = ZN‘"(S”)

(X1, Ty Y1y e e vy Yn) = Zyn(sn).

4. INFORMATION LEAKAGE RESULTS

For different types of input load X, we vary the battery policy prob-
abilities by increments of 0.1 and minimize the rate of information
leakage I(X;Y’). In the computations described in Section 3, we
use n = 10° as recommended by [10].

Po

Fig. 5. Information leakage rate I(X;Y") of equiprobable input load
X under battery-conditioned policies 7 (po, p1).

4.1. Equiprobable Input Load

When the input load is equiprobable (go = 0.5), its entropy rate
H(X) = 1 bit/symbol.

Fig. 5 plots I(X;Y") for different battery-conditioned policies
76 (po, p1). The minimum leakage I(X;Y") of 0.50 bit/symbol, half
of H(X), is achieved when pg = p1 = 0.5. When po = p1 = 0,
I(X;Y) = 1 bit/symbol; that is, all the information about X is
leaked. Since this policy never charges nor discharges the battery,
Yt+1 = T¢y1. More interesting is that po = p1 = 1, for which
the battery is charged or discharged whenever possible, also leaks
I(X;Y) = 1bit/symbol. Inspection of Fig. 2 reveals that ys 11 = ¢
in this case.

Fig. 6 plots I(X;Y) for battery/output-conditioned policies
by (Poo, Po1, P10, P11) for which poo = p11 and po1 = p1o. These
policies are symmetric with respect to the symbols 0 and 1. The
minimum leakage I(X;Y") of 0.50 bit/symbol is achieved when
pPoo = pi1 = po1 = pio = 0.5. This policy is the same as
mb(po, p1) with po = p1 = 0.5 because the transitions from states
(b =10,y =0)and (b = 0,y = 1) are identical and so are those
from (b = 1,y = 0) and (b = 1,y = 1). The so-called best-
effort policy, for which poo = pi11 = po1 = p1o = 0, has leakage
I(X;Y) of 0.68 bit/symbol. Thus, the optimal stochastic policy
that does not depend on the output value leaks 26% less information
than the best-effort policy that keeps the output equal to its previous
value whenever possible.

4.2. Biased Input Load

When go = 0.11, the input load is biased to value 1 and its entropy
rate H(X) = 0.50 bit/symbol.

Fig. 7 plots I(X;Y") for different battery-conditioned policies
76 (po, p1). The minimum leakage I(X;Y") of 0.23 bit/symbol, less
than half of H(X), is achieved when pg = 0.8 and p; = 0.2. We
did not find any policies appreciably better among battery/output-
conditioned policies 7y (poo, Po1, P10, p11). Indeed, the best-effort
policy, for which pog = po1 = p10 = p11 = 0, has leakage I(X;Y)
of 0.31 bit/symbol. So, once again, the optimal stochastic policy
leaks 26% less information than the best-effort policy.
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Fig. 6. Information leakage rate I(X;Y") of equiprobable input load
X under battery/output-conditioned policies sy (P00, Po1, P10, P11)
for which Poo = P11 and Po1 = pPio-

5. EXTENSIONS

We have, so far, limited our investigation to a simple binary-load
binary-battery model. We can extend the information leakage rate
computation to multilevel loads and batteries by adding more transi-
tions and states, respectively, to the finite state model. Battery poli-
cies of greater complexity can be studied by augmenting the state
space beyond that shown in Fig. 4. Moreover, including prior input
values in the augmented state spaces lets us model Markov (rather
than just memoryless) input loads. Time-varying policies and in-
put load statistics are tractable because they can be represented by
time-varying trellises, though not finite state models. For continu-
ous loads and batteries, upper and lower bounds on the information
leakage rate can be obtained [10].

In addition to data privacy, other properties of battery policies
can be considered. We may wish to limit the frequency of charges
and discharges to prolong battery life or, if the battery is in an electric
vehicle, we may require it to be fully charged at certain times.

6. CONCLUSIONS

In this paper, we formulate a rechargeable battery system that par-
tially protects the privacy of a household’s electricity load profile as a
binary-load binary-battery model. We find that this finite state model
makes tractable the computation of the rate of information leakage
for different kinds of stochastic battery policies. Specifically, we use
a trellis algorithm to estimate the mutual information rate between
the battery’s input and output loads. Our experimental results show
that stochastic battery policies can leak 26% less information than
a so-called best-effort policy [8] for both equiprobable and biased
input loads. More importantly, our technique for calculating rates
of information leakage can be extended to more realistic models, in
particular, ones that represent continuous loads and batteries.
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Fig. 7. Information leakage rate I(X;Y") of biased (o = 0.11)
input load X under battery-conditioned policies 7y (po, p1)-
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