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Information-Theoretic Privacy for Smart Metering
Systems with a Rechargeable Battery

Simon Li, Ashish Khisti, and Aditya Mahajan

Abstract—Smart-metering systems report electricity usage of a
user to the utility provider on almost real-time basis. This could
leak private information about the user to the utility provider.
In this work we investigate the use of a rechargeable battery in
order to provide privacy to the user.

We assume that the user load sequence is a first-order Markov
process, the battery satisfies ideal charge conservation, and
that privacy is measured using normalized mutual information
(leakage rate) between the user load and the battery output.
We consider battery charging policies in this setup that satisfy
the feasibility constraints. We propose a series reductions on the
original problem and ultimately recast it as a Markov Decision
Process (MDP) that can be solved using a dynamic program.

In the special case of i.i.d. demand, we explicitly characterize
the optimal policy and show that the associated leakage rate can
be expressed as a single-letter mutual information expression. In
this case we show that the optimal charging policy admits an
intuitive interpretation of preserving a certain invariance prop-
erty of the state. Interestingly an alternative proof of optimality
can be provided that does not rely on the MDP approach, but is
based on purely information theoretic reductions.

I. INTRODUCTION

Smart meters are a critical part of modern power distribution
systems because they provide fine-grained power consumption
measurements to utility providers. These fine-grained measure-
ments improve the efficiency of the power grid by enabling
services such as time-of-use pricing and demand response [1].
However, this promise of improved efficiency is accompanied
by a risk of privacy loss. It is possible for the utility provider—
or an eavesdropper—to infer private information including
load taxonomy from the fine-grained measurements provided
by smart meters [2]–[4]. Such private information could be
exploited by third parties for the purpose of targeted adver-
tisement or surveillance. Traditional techniques in which an
intermediary anonymizes the data [5] are also prone privacy
loss to an eavesdropper. One possible solution is to partially
obscure the load profile by using a rechargeable battery [6]. As
the cost of rechargeable batteries decreases (for example, due
to proliferation of electric vehicles), using them for improving
privacy is becoming economically viable.

In a smart metering system with a rechargeable battery, the
energy consumed from the power grid may either be less than
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the user’s demand—the rest being supplied by the battery; or
may be more than the user’s demand—the excess being stored
in the battery. A rechargeable battery provides privacy because
the power consumed from the grid (rather than the user’s
demand) gets reported to the electricity utility (and potentially
observed by an eavesdropper). In this paper, we focus on
the mutual information between the user’s demand and con-
sumption (i.e., the information leakage) as the privacy metric.
Mutual Information is a widely used metric in the literature
on information theoretic security, as it is often analytically
tractable and provides a fundamental bound on the probability
of detecting the true load sequence from the observation [7].
Our objective is to identify a battery management policy
(which determine how much energy to store or discharge from
the battery) to minimize the information leakage rate.

We briefly review the relevant literature. The use of a
rechargeable battery for providing user privacy has been
studied in several recent works, e.g., [6], [8]–[11]. Most of the
existing literature has focused on evaluating the information
leakage rate of specific battery management policies. These
include the “best-effort” policy [6], which tries to maintain a
constant consumption level, whenever possible; and battery
conditioned stochastic charging policies [8], in which the
conditional distribution on the current consumption depends
only on the current battery state (or on the current battery state
and the current demand). In [6], the information leakage rate
was estimated using Monte-Carlo simulations; in [8], it was
calculated using the BCJR algorithm [12]. The methodology
of [8] was extended by [9] to include models with energy
harvesting and allowing for a certain amount of energy waste.
Bounds on the performance of the best-effort policy and hide-
and-store policy for models with energy harvesting and infinite
battery capacity were obtained in [10]. The performance of
the best effort algorithm for an individual privacy metric was
considered in [11]. None of these papers address the question
of choosing the optimal battery management policy.

Rate-distortion type approaches have also been used to study
privacy-utility trade-off [13]–[15]. These models allow the user
to report a distorted version of the load to the utility provider,
subject to a certain average distortion constraint. Our setup
differs from these works as we impose a constraint on the
instantaneous energy stored in the battery due to its limited
capacity. Both our techniques and the qualitative nature of the
results are different from these papers.

Our contributions are two-fold. First, when the demand is
Markov, we show that the minimum information leakage rate
and optimal battery management policies can be obtained by
solving an appropriate dynamic program. These results are
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similar in spirit to the dynamic programs obtained to compute
capacity of channels with memory [16]–[18]; however, the
specific details are different due to the constraint on the battery
state. Second, when the demand is i.i.d., we obtain a single
letter characterization of the minimum information leakage
rate; this expression also gives the optimal battery management
policy. We prove the single letter expression in two steps. On
the achievability side we propose a class of policies with a
specific structure that enables a considerable simplification of
the leakage-rate expression. We find a policy that minimizes
the leakage-rate within this restricted class. On the converse
side, we obtain lower bounds on the minimal leakage rate and
show that these lower bound match the performance of the best
structured policy. We provide two proofs. One is based on the
dynamic program and the other is based purely on information
theoretic arguments.

After the present work was completed, we became aware
of [21], where a similar dynamic programming framework is
presented for the infinite horizon case. However, no explicit
solutions of the dynamic program are derived in [21]. To the
best of our knowledge, the present paper is the first work that
provides an explicit characterization of the optimal leakage
rate and the associated policy for i.i.d. demand.

A. Notation

Random variables are denoted by uppercase letters (X , Y ,
etc.), their realization by corresponding lowercase letters (x,
y, etc.), and their state space by corresponding script letters
(X , Y , etc.). PX denotes the space of probability distributions
on X ; PX|Y denotes the space of stochastic kernels from Y to
X . Xb

a is a short hand for (Xa, Xa+1, . . . , Xb) and Xb = Xb
1 .

For a set A, 1A(x) denotes the indicator function of the set
that equals 1 if x ∈ A and zero otherwise. If A is a singleton
set {a}, we use 1a(x) instead of 1{a}(x).

Given random variables (X,Y ) with joint distribution
PX,Y (x, y) = PX(x)q(y|x), H(X) and H(PX) denote the
entropy of X , H(Y |X) and H(q|PX) denote conditional
entropy of Y given X and I(X;Y ) and I(q;PX) denote the
mutual information between X and Y .

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Model and problem formulation

Consider a smart metering system as shown in Fig. 1. At
each time, the energy consumed from the power grid must
equal the user’s demand plus the additional energy that is
either stored in or drawn from the battery. Let {Xt}t≥1,
Xt ∈ X , denote the user’s demand; {Yt}t≥1, Yt ∈ Y , denote
the energy drawn from the grid; and {St}t≥1, St ∈ S ,
denote the energy stored in the battery. All alphabets are
finite. For convenience, we assume X := {0, 1, . . . ,mx},
Y := {0, 1, . . . ,my}, and S = {0, 1, . . . ,ms}. We note that
such a restriction is for simplicity of presentation; the results
generalize even when X and Y are not necessarily contiguous
intervals or integer valued. To guarantee that user’s demand is
always satisfied, we assume mx ≤ my or that X ⊆ Y holds
more generally.

Home
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Fig. 1: A smart metering system.

The demand {Xt}t≥1 is a first-order time-homogeneous
Markov chain1 with transition probability Q. We assume
that Q is irreducible and aperiodic. The initial state X1 is
distributed according to probability mass function PX1

. The
initial charge S1 of the battery is independent of {Xt}t≥1 and
distributed according to probability mass function PS1 .

The battery is assumed to be ideal and has no conversion
losses or other inefficiencies. Therefore, the following conser-
vation equation must be satisfied at all times:

St+1 = St + Yt −Xt. (1)

Given the history of demand, battery charge, and consump-
tion, a randomized battery charging policy q = (q1, q2, . . . )
determines the energy consumed from the grid. In particular,
given the histories (xt, st, yt−1) of demand, battery charge,
and consumption at time t, the probability that current con-
sumption Yt equals y is qt(y | xt, st, yt−1). For a randomized
charging policy to be feasible, it must satisfy the conservation
equation (1). So, given the current power demand and battery
charge (xt, st), the feasible values of grid consumption are
defined by

Y◦(st − xt) = {y ∈ Y : st − xt + y ∈ S}. (2)

Thus, we require that

qt(Y◦(st − xt) | xt, st, yt−1) :=
∑

y∈Y◦(st−xt)

qt(y | xt, st, yt−1) = 1.

The set of all such feasible policies is denoted by QA2. Note
that while the charging policy qt(·) can be a function of the
entire history, the support of qt(·) only depends on the present
value of xt and st through the difference st − xt. This is
emphasized in the definition in (2).

The quality of a charging policy depends on the amount
of information leaked under that policy. There are different
notions of privacy; in this paper, we use mutual information
as a measure of privacy. Intuitively speaking, given random
variables (Y,Z), the mutual information I(Y ;Z) measures
the decrease in the uncertainty about Y given by Z (or vice-
versa). Therefore, given a policy q, the information about
(XT , S1) leaked to the utility provider or eavesdropper is

1In practice, the energy demand is periodic rather than time homogeneous.
We are assuming that the total consumption may be split into a periodic
predictable component and a time-homogeneous stochastic component. In this
paper, we ignore the predictable component because it does not affect privacy.

2With a slight abuse of notation, we use QA to denote the battery policy
for both the infinite and finite-horizon problems
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captured by Iq(XT , S1;Y T ), where the mutual information
is evaluated according to the joint probability distribution on
(XT , ST , Y T ) induced by the distribution q as follows:

Pq(ST = sT , XT = xT , Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏
t=2

[
1st{st−1−xt−1+yt−1}

×Q(xt|xt−1)qt(yt | xt, st, yt−1)

]
.

We use information leakage rate as a measure of the
quality of a charging policy. For a finite planning horizon, the
information leakage rate of a policy q = (q1, . . . , qT ) ∈ QA
is given by

LT (q) :=
1

T
Iq(XT , S1;Y T ), (3)

while for an infinite horizon, the worst-case information leak-
age rate of a policy q = (q1, q2, . . . ) ∈ QA is given by

L∞(q) := lim sup
T→∞

LT (q). (4)

We are interested in the following optimization problems:

Problem A. Given the alphabet X of the demand, the initial
distribution PX1

and the transistion matrix Q of the demand
process, the alphabet S of the battery, the initial distribution
PS1

of the battery state, and the alphabet Y of the consump-
tion:

1) For a finite planning horizon T , find a battery charging
policy q = (q1, . . . , qT ) ∈ QA that minimizes the leakage
rate LT (q) given by (3).

2) For an infinite planning horizon, find a battery charging
policy q = (q1, q2, . . . ) ∈ QA that minimizes the leakage
rate L∞(q) given by (4).

The above optimization problem is difficult because we
have to optimize a multi-letter mutual information expression
over the class of history dependent probability distributions.
In the spirit of results for feedback capacity of channels
with memory [16]–[18], we show that the above optimization
problem can be reformulated as a Markov decision process
where the state and action spaces are conditional probability
distributions. Thus, the optimal policy and the optimal leakage
rate can be computed by solving an appropriate dynamic
program. We then provide an explicit solution of the dynamic
program for the case of i.i.d. demand.

B. Example: Binary Model

We illustrate the special case when X = Y = S = {0, 1}
in Fig. 2. The input, output, as well as the state, are all
binary valued. When the battery is in state st = 0, there
are three possible transitions. If the input xt = 1 then we
must select yt = 1 and the state changes to st+1 = 0. If
instead xt = 0, then there are two possibilities. We can select
yt = 0 and have st+1 = 0 or we can select yt = 1 and
have st+1 = 1. In a similar fashion there are three possible
transitions from the state st = 1 as shown in Fig. 2. We will

𝑠 = 0 𝑠 = 1

𝑥 = 0/𝑦 = 0

𝑥 = 1/𝑦 = 1

𝑥 = 0/𝑦 = 1
𝑥 = 0/𝑦 = 0

𝑥 = 1/𝑦 = 1
𝑥 = 1/𝑦 = 0

Fig. 2: Binary System model. The battery can be either in
s = 0 or s = 1. The set of feasible transitions from each state
are shown in the figure.

assume that the demand (input) sequence is sampled i.i.d. from
an equiprobable distribution.

Consider a simple policy that sets yt = xt and ignores the
battery state. It is clear that such a policy will lead to maximum
leakage LT = 1. Another feasible policy is to set yt = s̄t.
Thus whenever st = 0, we will set yt = 1 regardless of the
value of xt, and likewise st = 1 will result in yt = 0. It turns
out that the leakage rate for this policy also approaches 1. To
see this note that the eavesdropper having access to yT also
in turn knows sT . Using the battery update equation (1) the
sequence xT−1

1 is thus revealed to the eavesdropper, resulting
in a leakage rate of at least 1− 1/T .

In reference [8] a probabilistic battery charging policy is
introduced that only depends on the current state and input i.e.,
qt(yt|xt, st)

∆
= qt(yt|xt, st). Furthermore the policy makes

equiprobable decisions between the feasible transitions i.e.,

qt(yt = 0|xt, st) = q(yt = 1|xt, st) = 1/2, xt = st (5)

and qt(yt|xt, st) = 1xt(yt) otherwise. The leakage rage for
this policy was numerically evaluated in [8] using the BCJR
algorithm and it was shown numerically that L∞ = 0.5. Such
numerical techniques seem necessary in general even for the
class of memoryless policies and i.i.d. inputs, as the presence
of the battery adds memory into the system.

As a consequence of our main result it follows that the
above policy admits a single-letter expression for the leakage
rate3 L∞ = I(S∗ − X;X), thus circumventing the need for
numerical techniques. Furthermore it also follows that this
leakage rate is indeed the minimum possible one among the
class of all feasible policies. Thus it is not necessary for the
battery system to use more complex policies that take into
account the entire history. We note that a similar result was
shown in [30] for the case of finite horizon policies. However
the proof in [30] is specific to the binary model. In the present
paper we provide a complete single-letter solution to the case
of general i.i.d. demand, and a dynamic programming method
for the case of first-order Markovian demands, as discussed
next.

C. Main results for Markovian demand

We identify two structional simplifications for the battery
charging policies. First, we show (see Proposition 1 in Sec-

3The random variable S∗ is an equiprobable binary valued random variable,
independent of X .
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tion III-A) that there is no loss of optimality in restricting
attention to charging strategies of the form

qt(yt|xt, st, yt−1). (6)

The intuition is that under such a policy, observing yt gives
partial information only about (xt, st) rather than about the
whole history (xt, st).

Next, we identify a sufficient statistic for yt−1 is the
charging strategies of the form (6). For that matter, given a
policy q and any realization yt−1 of Y t−1, define the belief
state πt ∈ PX,S as follows:

πt(x, s) = Pq(Xt = x, St = s|Y t−1 = yt−1) (7)

Then, we show (see Theorem 1 below) that there is no loss
of optimality in restricting attention to charging strategies of
the form

qt(yt|xt, st, πt). (8)

Such a charging policy is Markovian in the belief state πt
and the optimal policies of such form can be searched using
a dynamic program.

To describe such a dynamic program, we assume that there
is a decision maker that observes yt−1 (or equivalently πt) and
chooses “actions” at = qt(·|·, ·, πt) using some decision rule
at = ft(πt). We then identify a dynamic program to choose
the optimal decision rules.

Note that the actions at take vales in a subset A of PY |X,S
given by

A =
{
a ∈ PY |X,S : a(Y◦(s− x) | x, s) = 1,

∀(x, s) ∈ X × S
}
. (9)

To succiently write the dynamic program, for any a ∈ A, we
define the Bellman operator Ba : [PX,S → R]→ [PX,S → R]
as follows: for all π ∈ PX,S ,

[BaV ](π) = I(a;π)

+
∑

x∈X ,s∈S,
y∈Y

π(x, s)a(y | x, s)V (ϕ(π, y, a)) (10)

where the function ϕ is a non-linear filtering equation defined
in Sec. III-C.

Our main result is the following:

Theorem 1. In Problem A there is no loss of optimality to
restrict attention to charging policies of the form (8).

1) For the finite horizon T , we can identify the optimal
policy q∗ = (q∗1 , . . . , q

∗
T ) of the form (8) by iteratively

defining value functions Vt : PX,S → R as follows. For
any π ∈ PX,S , VT+1(π) = 0, and for t ∈ {T−1, . . . , 1},

Vt(π) = min
a∈A

[BaVt+1](π), ∀π ∈ PX,S . (11)

Let f∗t (π) denote the arg min of the right hand side
of (11). Then, optimal policy q∗ = (q∗1 , . . . , q

∗
T ) is given

by

q∗t (yt | xt, st, πt) = at(yt | xt, st), where at = f∗t (πt).

Moreover, the optimal (finite horizon) leakage rate is
given by V1(π1)/T , where π1(x, s) = PX1(x)PS1(s).

2) For the infinite horizon, the optimal charging policy of
the form (8) is time-homogeneous and is given by the
following fixed point equation

J + v(π) = min
a∈A

[Bav](π), ∀π ∈ PX,S , (12)

where J ∈ R is a constant and v : PX,S → R. Let f∗(π)
denote the arg min of the right hand side of (12). Then,
the time-homogenous optimal policy q∗ = (q∗, q∗, . . . )
given by

q∗(yt | xt, st, πt) = at(yt | xt, st), where at = f∗(πt)

is optimal. Moreover, the optimal (infinite horizon) leak-
age rate is given by J .

See Section III for proof.
The dynamic program above resembles the dynamic pro-

gram for partially observable Markov decision processes
(POMDP) with hidden state (Xt, St), observation Yt, and
action At. However, in contrast to POMDPs, the expected
per-step cost I(a;π) is not linear in π. Nonetheless, one could
use computational techniques from POMDPs to approximately
solve the dynamic programs of Theorem 1. See Section III for
a brief discussion.

D. Main result for i.i.d. demand

Assume the following:
(A) The demand {Xt}t≥1 is i.i.d. with probability distribu-

tion PX .
We provide an explicit characterization of optimal policy and
optimal leakage rate for this case.

Define an auxiliary state variable Wt = St −Xt that takes
values in W = {s − x : s ∈ S, x ∈ X}. For any w ∈ W ,
define:

D(w) = {(x, s) ∈ X × S : s− x = w}. (13)

Then, we have the following.

Theorem 2. Define

J∗ = min
θ∈PS

I(S −X;X) (14)

where X and S are independent with X ∼ PX and S ∼
θ. Let θ∗ denote the arg min in (14). Define ξ∗(w) =∑

(x,s)∈D(w) PX(x)θ∗(s). Then, under (A)
1) J∗ is the optimal (infinite horizon) leakage rate.
2) Define b∗ ∈ PY |W as follows:

b∗(y|w) =

{
PX(y) θ

∗(y+w)
ξ∗(w) if y ∈ X ∩ Y◦(w)

0 otherwise .
(15)

Then, the memoryless charging policy q∗ = (q∗1 , q
∗
2 , . . . )

given by

q∗t (y | xt, st, πt) = b∗(y | st − xt) (16)

is optimal and achieves the optimal (infinite horizon)
leakage rate.
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Note that the optimal charging policy is memoryless, i.e.,
the distribution on Yt does not depend on πt (and, therefore
on yt−1).

The proof, which is presented in Section IV, is based
on the standard arguments of showing achievability and a
converse. On the achievability side we show that the policy
in (15) belongs to a class of policies that satisfies a certain
invariance property. Using this property the multi-letter mutual
information expression can be reduced into a single-letter
expression. For the converse we provide two proofs. The
first is based on a simplification of the dynamic program of
Theorem 1. The second is based on purely probabilistic and
information theoretic arguments.

E. Salient features of the result for i.i.d. demand

Theorem 2 shows that even if consumption could take
larger values than the demand, i.e., Y ⊃ X , under policy Yt
takes values only in X . This agrees with the intuition that a
consumption larger that mx reveals that the battery has low
charge and that the power demand is high. In extreme cases,
a large consumption may completely reveal the battery and
power usage thereby increasing the information leakage.

We now show some other properties of the optimal policy.

Property 1. The mutual information I(S−X;X) is equal to
H(S −X)−H(S).

Proof. This follows from the following simplifications:

I(S −X;X) = H(S −X)−H(S −X|X)

= H(S −X)−H(S|X)

= H(S −X)−H(S)

Property 2. The mutual information I(S −X;X) is strictly
convex in the distribution θ and, therefore, θ∗ ∈ int(PS).

See Appendix A for proof.
As a consequence, the optimal θ∗ in (14) may be obtained

using the Blahut-Arimoto algorithm [19], [20].

Property 3. Under the battery charging policy specified in
Theorem 2, the power consumption {Yt}t≥1 is i.i.d. with
marginal distribution PX . Thus, {Yt}t≥1 is statistically indis-
tinguishable from {Xt}t≥1.

See Remarks 1 and 3 in Section IV-B for proof.

Property 4. If the power demand has a symmetric PMF, i.e.,
for any x ∈ X , PX(x) = PX(mx − x), then the optimal θ∗

in Theorem 2 is also symmetric, i.e., for any s ∈ S , θ∗(s) =
θ∗(ms − s).

Proof. For θ ∈ PS , define θ̄(s) = θ(ms − s). Let X ∼ PX ,
S ∼ θ and S̄ ∼ θ̄. Then, by symmetry

I(S −X;X) = I(S̄ −X;X). (17)

For any λ ∈ (0, 1), let θλ(s) = λθ(s)+(1−λ)θ̄(s) denote the
convex combination of θ and θ̄. Let Sλ ∼ θλ. By Property 2,
if θ 6= θ̄, then

I(Sλ −X;X) < λI(S −X;X) + (1− λ)I(S −X;X)

= I(S −X;X),

where the last equation uses (17).
Thus, if θ 6= θ̄, we can strictly decrease the mutual

information by using θλ. Hence, the optimal distribution must
have the property that θ∗(s) = θ∗(ms − s).

Given a distribution µ on some alphabetM, we say that the
distribution is almost symmetric and unimodal around m∗ ∈
M if

µm∗ ≥ µm∗+1 ≥ µm∗−1 ≥ µm∗+2 ≥ µm∗−2 ≥ . . .

where we use the interpretation that for m 6∈ M, µm = 0.
Similarly, we say that the distribution is symmetric and uni-
modal around m∗ ∈M if

µm∗ ≥ µm∗+1 = µm∗−1 ≥ µm∗+2 = µm∗−2 ≥ . . .

Note that a distribution can be symmetric and unimodal only
if its support is odd.

Property 5. If the power demand is symmetric and unimodal
around bmx/2c, then the optimal θ∗ in Theorem 2 is almost
symmetric and unimodal with around bms/2c. In particular,
if ms is even, then

θ∗m∗ ≥ θ∗m∗+1 = θ∗m∗−1 ≥ θ∗m∗+2 = θ∗m∗−2 ≥ . . .

and if ms is odd then

θ∗m∗ = θ∗m∗+1 ≥ θ∗m∗−1 = θ∗m∗+2 ≥ θ∗m∗−2 = . . .

where m∗ = bms/2c.

Proof. Let X̄ = −X . Then, I(S − X;S) = H(S − X) −
H(S) = H(S + X̄)−H(S). Note that PX̄ is also symmetric
and unimodal around bmx/2c.

Let S◦ and X̄◦ denote the random variables S − bms/2c
and X̄ − bmx/2c. Then X̄◦ is also symmetric and unimodal
around origin and

I(S −X;X) = H(S◦ + X̄◦)−H(S◦).

Now given any distribution θ◦ of S◦, let θ+ be a permu-
tation of θ◦ that is almost symmetric and unimodal with a
positive bias around origin. Then by [22, Corollary III.2],
H(PX ∗ θ◦) ≥ H(PX ∗ θ+). Thus, the optimal distribution
must have the property that θ◦ = θ+ or, equivalently, θ is
almost unimodal and symmetric around bms/2c.

Combining this with the result of property 4 gives the char-
acterization of the distribution when ms is even or odd.

F. Numerical Example: i.i.d. demand

Suppose there are n identical devices in the house and each
is on with probability p. Thus, X ∼ Binomial(n, p). We derive
the optimal policy and optimal leakage rate for this scenario
under the assumption that Y = X . We consider two specific
examples, where we numerically solve (14).

Suppose n = 6 and p = 0.5.
1) Consider S = [0:5]. Then, by numerically solving (14),

we get that the optimal leakage rate J∗ is is 0.4616 and
the optimal battery charge distribution θ∗ is

{0.1032, 0.1747, 0.2221, 0.2221, 0.1747, 0.1032}.
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Fig. 3: A comparison of the performance of qeq ∈ QB as defined
in (18) with the optimal leakage rate for i.i.d. Binomial distributed
demand Binomial(mx, 0.5) for mx = {5, 10, 20}.

2) Consider S = [0:6]. Then, by numerically solving (14),
we get that the optimal leakage rate J∗ is is 0.3774 and
the optimal battery charge distribution θ∗ is

{0.0773, 0.1364, 0.1847, 0.2031, 0.1847, 0.1364, 0.0773}.

Note that both results are consistent with Properties 4 and 5.
We next compare the performance with the following time-

homogeneous benchmark policy qeq ∈ QB : for all y ∈ Y, w ∈
W ,

qt(yt|wt) =
1Y◦(wt){yt}
|Y◦(wt)|

. (18)

This benchmark policy chooses all feasible values of Yt with
equal probability. For that reason we call it equi-probably
policy and denote its performance by Jeq .

In Fig. 3, we compare the performance of q∗ and qeq as a
function of battery sizes for different demand alphabets.

Under qeq , the MDP converges to a belief state that is
approximately uniform. Hence, in the low battery size regime,
Jeq is close to optimal but its performance gradually worsens
with increasing battery size.

III. PROOF OF THEOREM 1

One of the difficulties in obtaining a dynamic programming
decomposition for Problem A is that the objective function
is not of the form

∑T
t=1 cost(statet, actiont). We show that

there is no loss of optimality to restrict attention to a class of
policies QB and for any policy in QB , the mutual information
may be written in an additive form.

A. Simplification of optimal charging policies

Let QB ⊂ QA denote the set of charging policies that
choose consumption based only on the consumption history,
current demand, and battery state. Thus, for q ∈ QB , at any
time t, given history (xt, st, yt−1), the consumption Yt is y

with probability qt(y | xt, st, yt−1). Then the joint distribution
on (XT , ST , Y T ) induced by q ∈ QB is given by

Pq(ST = sT , XT = xT , Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏
t=2

[
1st{st−1−xt−1+yt−1}

×Q(xt|xt−1)qt(yt | xt, st, yt−1)

]
.

Proposition 1. In Problem A, there is no loss of optimality in
restricting attention to charging policies in QB . Moreover, for
any q ∈ QB , the objective function takes an additive form:

LT (q) =
1

T

T∑
t=1

Iq(Xt, St;Yt | Y t−1)

where

Iq(Xt, St;Yt | Y t−1)

=
∑

xt∈X ,st∈S
yt∈Yt

Pq(Xt = xt, St = st, Y
t = yt)

× log
qt(yt | xt, st, yt−1)

Pq(Yt = yt | Y t−1 = yt−1)
.

See Appendix B for proof. The intuition behind why poli-
cies in QB are better than those in QA is as follows. For
a policy QA, observing the realization yt of Y t gives partial
information about the history (xt, st) while for a policyQB , yt
gives partial information only about the current state (xt, st).
The dependence on (xt, st) cannot be removed because of the
conservation constraint (1).

Proposition 1 shows that the total cost may be written in an
additive form. Next we use an approach inspired by [16]–[18]
and formulate an equivalent sequential optimization problem.

B. An equivalent sequential optimization problem

Consider a system with state process {Xt, St}t≥1 where
{Xt}t≥1 is an exogenous Markov process as before and
{St}t≥1 is a controlled Markov process as specified below.
At time t, a decision maker observes Y t−1 and chooses a
distribution valued action At ∈ A, where A is given by (9),
as follows:

At = ft(Y
t−1) (19)

where f = (f1, f2, . . . ) is called the decision policy.
Based on this action, an auxiliary variable Yt ∈ Y is chosen

according to the conditional probability at(· | xt, st) and the
state St+1 evolves according to (1).

At each stage, the system incurs a per-step cost given by

ct(xt, st, at, y
t; f) := log

at(yt | xt, st)
Pf (Yt = yt | Y t−1 = yt−1)

. (20)

The objective is to choose a policy f = (f1, . . . , fT ) to
minimize the total finite horizon cost given by

L̃T (f) :=
1

T
Ef

[
T∑
t=1

ct(xt, st, at, y
t; f)

]
(21)

where the expectation is evaluated with respect to the proba-
bility distribution Pf induced by the decision policy f .
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Proposition 2. The sequential decision problem described
above is equivalent to Problem A. In particular,

1) Given q = (q1, . . . , qT ) ∈ QB , let f = (f1, . . . , fT ) be

ft(y
t−1) = qt(· | ·, ·, yt−1).

Then L̃T (f) = LT (q).
2) Given f = (f1, . . . , fT ), let q = (q1, . . . , qT ) ∈ QB be

qt(yt | xt, st, yt−1) = at(yt | xt, st), where at = ft(y
t−1).

Then LT (q) = L̃T (f).

Proof. For any history (xt, st, yt−1), at ∈ A, and st+1 ∈ S,

P(St+1 = st+1 | Xt = xt, St = st, Y t = yt, At = at)

=
∑
yt∈Y

1st+1 {st + yt − xt} at(yt | xt, st)

= P(St+1 = st+1 | Xt = xt, St = st, At = at). (22)

Thus, the probability distribution on (XT , ST , Y T ) induced
by a decision policy f = (f1, . . . , fT ) is given by

Pf (ST = sT , XT = xT , Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏
t=2

[
1st{st−1−xt−1+yt−1}

×Q(xt|xt−1)at(yt|xt, st)
]
.

where at = ft(y
t−1). Under the transformations described

in the Proposition, Pf and Pq are identical probabil-
ity distributions. Consequently, Ef [ct(Xt, St, At, Y

t; f)] =
Iq(St, Xt;Yt | Y t−1). Hence, LT (q) and L̃T (f) are equiv-
alent.

Eq. (22) implies that {Xt, St}t≥1 is a controlled Markov
process with control action {At}t≥1. In the next section,
we obtain a dynamic programming decomposition for this
problem. For the purpose of writing the dynamic program,
it is more convenient to write the policy (19) as

At = ft(Y
t−1, At−1). (23)

Note that these two representations are equivalent. Any policy
of the form (19) is also a policy of the form (23) (that simply
ignores At−1); any policy of the form (23) can be written
as a policy of the form (19) by recursively substituting At in
terms of Y t−1. Since the two forms are equivalent, in the next
section we assume that the policy is of the form (23).

C. A dynamic programming decomposition

The model described in Section III-B above is similar to a
POMDP (partially observable Markov decision process): the
system state (Xt, St) is partially observed by a decision maker
who chooses action At. However, in contrast to the standard
cost model used in POMDPs, the per-step cost depends on
the observation history and past policy. Nonetheless, if we
consider the belief state as the information state, the problem
can be formulated as a standard MDP.

For that matter, for any realization yt−1 of past observations
and any choice at−1 of past actions, define the belief state
πt ∈ PX,S as follows: For s ∈ S and x ∈ X ,

πt(x, s) = Pf (Xt = x, St = s|Y t−1 = yt−1, At−1 = at−1).

If Y t−1 and At−1 are random variables, then the belief state
is a PX,S-valued random variable.

The belief state evolves in a state-like manner as follows.

Lemma 1. For any realization yt of Yt and at of At, πt+1 is
given by

πt+1 = ϕ(πt, yt, at) (24)

where ϕ is given by

ϕ(π, y, a)(x′, s′)

=

∑
x∈X Q(x′|x)a(y|x, s′ − x+ y)π(x, s′ − x+ y)∑

(x,s)∈X×S a(y|x, s)π(x, s)
.

Proof. For ease of notation, we use P(xt, st|yt−1, at−1) to
denote P(Xt = xt, St = st|Y t−1 = yt−1, At−1 = at−1).
Similar interpretations hold for other expressions as well.
Consider

πt+1(xt+1, yt+1) = P(xt+1, st+1|yt, at)

=
P(xt+1, st+1, yt, at|yt−1, at−1)

P(yt, at|yt−1, at−1)
(25)

Now, consider the numerator of the right hand side.

P(xt+1, st+1, yt, at|yt−1, at−1)

= P(xt+1, st+1, yt, at|yt−1, at−1, πt)

=
∑

(xt,st)∈X×S

P(xt+1|xt)1st+1
(st + xt − yt)

× at(yt|xt, st)1at(ft(πt))πt(xt, st) (26)

Substituting (26) in (25) (and observing that the denomi-
nator of the right hand side of (25) is the marginal of the
numerator over (xt+1, st+1)), we get that πt+1 can be written
in terms of πt, yt and at. Note that if the term 1at(ft(πt))
is 1, it cancels from both the numerator and the denominator;
if it is 0, we are conditioning on a null event in (25), so we can
assign any valid distribution to the conditional probability.

Note that an immediate implication of the above result is
that πt depends only on (yt−1, at−1) and not on the policy f .
This is the main reason that we are working with a policy of
the form (23) rather than (19).

Lemma 2. The cost L̃T (f) in (21) can be written as

L̃T (f) =
1

T
E

[ T∑
t=1

I(at;πt)

]
where I(at;πt) does not depend on the policy f and is
computed according to the standard formula

I(at;πt) =
∑

x∈X ,s∈S,
y∈Y

πt(x, s)at(y | x, s)

× log
at(y|x, s)∑

(x̃,s̃)∈X×S

πt(x̃, s̃)at(y | x̃, s̃)
.
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Proof. By the law of iterated expectations, we have

L̃T (f) =
1

T

[ T∑
t=1

E[ct(Xt, St, At, Y
t; f)|Y t−1, At−1]

]
Now, from (20), each summand may be written as

Ef [ct(Xt, St, At, Y
t; f) | Y t−1 = yt−1, At = at]

=
∑

x∈X ,s∈S,
y∈Y

πt(x, s)at(y | x, s)

× log
at(y|x, s)∑

(x̃,s̃)∈X×S

πt(x̃, s̃)at(y | x̃, s̃)

= I(at;πt).

Proof of Theorem 1. Lemma 1 implies that {πt}t≥1 is a con-
trolled Markov process with control action at. In addition,
Lemma 2 implies that the objective function can be expressed
in terms of the state πt and the action At. Consequently, in
the equivalent optimization problem described in Section III-B,
there is no loss of optimality to restrict attention to Markovian
policies of the form at = ft(πt); an optimal policy of this
form is given by the dynamic programs of Theorem 1 [24].
Proposition 2 implies that this dynamic program also solves
Problem A.

Note that the Markov chain {Xt}t≥1 is irreducible and
aperiodic and the per-step cost I(at;πt) is bounded. Therefore,
the existence of the solution of the infinite horizon dynamic
program can be shown by following the proof argument
of [26].

D. Remarks about numerical solution

The dynamic program of Theorem 1, both state and action
spaces are distribution valued (and, therefore, subsets of Eu-
clidean space). Although, an exact solution of the dynamic
program is not possible, there are two approaches to obtain
an approximate solution. The first is to treat it as a dynamic
program of an MDP with continuous state and action spaces
and use approximate dynamic programming [23], [24]. The
second is to treat it as a dynamic program for a PODMP and
use point-based methods [25]. The point-based methods rely
on concavity of the value function, which we establish below.

Proposition 3. The value functions {Vt}Tt=1 defined in Theo-
rem 1 are concave.

See Appendix C for proof.

IV. PROOF OF THEOREM 2
A. Simplification of the dynamic program

Under (A), the belief state πt can be decomposed into
product form πt(x, s) = PX(x)θt(s), where

θt(s) = Pf (St = s | Y t−1 = yt−1, At−1 = at−1).

Thus, in principle, we can simplify the dynamic program of
Theorem 1 by using θt as an information state. However, for
reasons that will become apparent, we provide an alternative
simplification that uses an information state ξt ∈ PW .

Recall that Wt = St − Xt which takes values in W =
{s − x : s ∈ S, x ∈ X}. For any realization (yt−1, at−1) of
past observations and actions, define ξt ∈ PW as follows: for
any w ∈ W ,

ξt(w) = Pf (Wt = w | Y t−1 = yt−1, At−1 = at−1).

If Y t−1 and At−1 are random variables, then ξt is a PW -
valued random variable. As was the case for πt, it can be
shown that ξt does not depend on the choice of the policy f .

Lemma 3. Under (A), θt and ξt are related as follows:

1) ξt(w) =
∑

(x,s)∈D(w) PX(x)θt(s).
2) θt = PX ∗ ξt.

Proof. For part 1):

ξt(w) = Pf (Wt = w | Y t−1 = yt−1, At−1 = at−1)

= Pf (St −Xt = w | Y t−1 = yt−1, At−1 = at−1)

=
∑

(x,s)∈D(w)

PX(x)θt(s).

For part 2):

θt(s) = Pf (St = st|Y t−1 = yt−1, At−1 = at−1)

= P (Wt +Xt = st|yt−1, at−1)

= (PX ∗ ξt)(st).

Since πt(x, s) = PX(x)θt(s), Lemma 3 suggests that one
could simplify the dynamic program of Theorem 1 by using ξt
as the information state instead of πt. For such a simplification
to work, we would have to use charging policies of the form
qt(yt|wt, yt−1). We establish that restricting attention to such
policies is without loss of optimality. For that matter, define
B as follows:

B =
{
b ∈ PY |W : b(Y◦(w) | w) = 1, ∀w ∈ W

}
. (27)

Lemma 4. Given a ∈ A and π ∈ PX,S , define the following:

• ξ ∈ PW as ξ(w) =
∑

(x,s)∈D(w) π(x, s)

• b ∈ B as follows: for all y ∈ Y, w ∈ W

b(y | w) =

∑
(x,s)∈D(w) a(y | x, s)π(x, s)

ξ(w)
;

• ã ∈ A as follows: for all y ∈ Y, x ∈ X , s ∈ S

ã(y|x, s) = b(y|s− x).

Then under (A), we have

1) Invariant Transitions: for any y ∈ Y , ϕ(π, y, a) =
ϕ(π, y, ã).

2) Lower Cost: I(a;π) ≥ I(ã;π) = I(b; ξ).

Therefore, in the sequential problem of Sec. III-B, there is no
loss of optimality in restricting attention to actions b ∈ B.

Proof. 1) Suppose (X,S) ∼ π and W = S − X , S+ =
W + Y , X+ ∼ PX . We will compare P(S+|Y ) when
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Y ∼ a(·|X,S) with when Y ∼ ã(·|X,S). Given w ∈ W
and y ∈ Y ,

Pa(W = w, Y = y) =
∑

(x,s)∈D(w)

a(y|x, s)π(x, s)

=
∑

(x,s)∈D(w)

b(y|w)π(x, s)

(a)
=

∑
(x,s)∈D(w)

ã(y|x, s)π(x, s)

= Pã(W = w, Y = y) (28)

where (a) uses that for all (x, s) ∈ D(w), s − x = w.
Marginalizing (28) over W , we get that Pa(Y = y) =
Pã(Y = y). Since S+ = W + Y , Eq. (28) also implies
Pa(S+ = s, Y = y) = Pã(S+ = s, Y = y). Therefore,
Pa(S+ = s|Y = y) = Pã(S+ = s|Y = y).

2) Let (X,S) ∼ π and W = S − X . Then W ∼ ξ.
Therefore, we have

I(a;π) = Ia(X,S;Y ) ≥ Ia(W ;Y ).

where the last inequality is the data-processing inequality.
Under ã, (X,S)−W − Y , therefore,

I(ã;π) = I ã(X,S;Y ) = I ã(W ;Y ).

Now, by construction, the joint distribution of (W,Y ) is
the same under a, ã, and b. Thus,

Ia(W ;Y ) = I ã(W ;Y ) = Ib(W ;Y ).

Note that Ib(W ;Y ) can also be written as I(b; ξ). The
result follows by combining all the above relations.

Once attention is restricted to actions b ∈ B, the update of
ξt may be expressed in terms of b ∈ B as follows:

Lemma 5. For any realization yt of Yt and bt of Bt, ξt+1 is
given by

ξt+1 = ϕ̃(ξt, yt, at) (29)

where ϕ̃ is given by

ϕ̃(ξ, y, b)(w+)

=

∑
x∈X ,w∈W PX(x)1w+

{y + w − x}b(y | w)ξ(w)∑
w∈W b(y | w)ξ(w)

.

Proof. The proof is similar to the proof of Lemma 5.

For any b ∈ B and ξ ∈ PW , let us define the Bellman
operator B̃b : [PW → R]→ [PW → R] as follows:

[B̃bV ](ξ) = I(b; ξ) +
∑

y∈Y,w∈W
ξ(w)b(y | w)V

(
ϕ̃(ξ, y, b)

)
.

Theorem 3. Under assumption (A), there is no loss of opti-
mality in restricting attention to optimal policies of the form
qt(yt|wt, ξt) in Problem A.

1) For the finite horizon case, we can identify the optimal
policy q∗ = (q∗1 , . . . , q

∗
T ) by iteratively defining value

functions Ṽt : PW → R. For any ξ ∈ PW , ṼT+1(ξ) = 0,
and for t = T, T − 1, . . . , 1,

Ṽt(ξ) = min
b∈B

[B̃bṼt+1](ξ). (30)

Let f◦t (ξ) denote the arg min of the right hand side
of (30). Then, the optimal policy q∗ = (q∗1 , . . . , q

∗
T ) is

given by

q∗t (yt|wt, ξt) = bt(yt|wt), where bt = f◦t (ξt).

Moreover, the optimal (finite horizon) leakage
rate is given by Ṽ1(ξ1)/T , where ξ1(w) =∑

(x,s)∈D(w) PX(x)PS1
(s).

2) For the infinite horizon, the optimal charging policy is
time-homogeneous and is given by the solution of the
following fixed point equation:

J̃ + ṽ(ξ) = min
b∈B

[B̃bṽ](ξ), ∀ξ ∈ PS . (31)

where J̃ ∈ R is a constant and ṽ : PS → R. Let f◦(ξ)
denote the arg min of the right hand side of (31). Then,
the time-homogeneous policy q∗ = (q∗, q∗, . . . ) given by

q∗(yt|wt, ξt) = bt(yt|wt), where bt = f◦(ξt)

is optimal. Moreover, the optimal (infinite horizon) leak-
age rate is given by J̃ .

Proof. Lemma 5 implies that {ξt}t≥1 is a controlled Markov
process with control action bt. Lemma 4, part 2), implies that
the per-step cost can be written as

1

T
E

[ T∑
t=1

I(b; ξ)

]
.

Thus, by standard results in Markov decision theorem [24], the
optimal solution is given by the dynamic program described
above.

B. Weak achievability

To simplify the analysis, we assume that we are free to
choose the initial distribution of the state of the battery, which
could be done by, for example, initially charging the battery
to a random value according to that distribution. In principle,
such an assumption could lead to a lower achievable leakage
rate. For this reason, we call it weak achievability. In the next
section, we will show achievability starting from an arbitrary
initial distribution, which we call strong achievability.

Definition 1. Any θ ∈ PS and ξ ∈ PW are said to equivalent
to each other if they satisfy the transformation in Lemma 3.

Definition 2 (Constant-distribution policy). A time-
homogeneous policy f◦ = (f◦, f◦, . . . ) is a called a
constant-distribution policy if for all ξ ∈ PW , f◦(ξ) is a
constant. If f◦(ξ) = b◦, then with a slight abuse of notation,
we refer to b◦ = (b◦, b◦, . . . ) as a constant-distribution
policy.

Recall that under a constant-distribution policy b ∈ B, for
any realization yt of Y t, θt and ξt are given as follows:

θt(s) = P(St = s | Y t = yt, Bt−1 = bt−1)

ξt(w) = P(Wt = w | Y t = yt, Bt−1 = bt−1).
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1) Invariant Policies: We next impose an invariance prop-
erty on the class of policies. Under this restriction the leakage
rate expression will simplify substantially. Subsequently we
will show that the optimal policy belong to this restricted class.

Definition 3 (Invariance Property). For a given distribution θ1

of the initial battery state, a constant-distribution policy b ∈ B
is called a invariant policy if for all t, θt = θ1 and ξt = ξ1,
where ξ1 is equivalent to θ1.

Remark 1. An immediate implication of the above defini-
tion is that under any invariant policy b, the conditional
distribution Pb(Xt, St, Yt|Y t−1) is the same as the joint
distribution Pb(X1, S1, Y1). Marginalizing over (X,S) we get
that {Yt}t≥1 is an i.i.d. sequence.

Lemma 6. If the system starts with an initial distribution θ of
the battery state, and ξ is equivalent to θ, then an invariant
policy b = (b, b, . . . ) corresponding to (θ, ξ) achieves a
leakage rate

LT (b) = I(W1;Y1) = I(b; ξ)

for any horizon T .

Proof. The proof is a simple corollary of the invariance prop-
erty in Definition 3. Recall from the dynamic program of The-
orem 3, that the performance of any policy b = (b1, b2, . . . )
such that bt ∈ B, is given by

LT (b) =
1

T
E

[ T∑
t=1

I(bt; ξt)

]
.

Now, we start with an initial distribution ξ1 = ξ and follow
the constant-distribution structured policy b = (b, b, . . . ).
Therefore, by Lemma 6, ξt = ξ for all t. Hence, the leakage
rate under policy b is

LT (b) = I(b; ξ).

Remark 2. Note that Lemma 6 can be easily derived inde-
pendently of Theorem 3. From Proposition 1, we have that:

LT (b) =
1

T

T∑
t=1

Ib(St, Xt;Yt|Y t−1). (32)

From Remark 1, we have that Ib(St, Xt;Yt|Y t−1) =
Ib(S1, X1;Y1) = Ib(W1;Y1), which immediately results in
Lemma 6.

For invariant policies we can further express the leakage
rate in the following fashion, which is useful in the proof of
optimality.

Lemma 7. For any invariant policy b,

Ib(W1;Y1) = Ib(W1;X1).

Proof. Consider the following sequence of simplifications:

Ib(W1;Y1) = Hb(W1)−Hb(W1|Y1)

= Hb(W1)−Hb(W1 + Y1|Y1)
(a)
= Hb(W1)−Hb(S2|Y1)
(b)
= Hb(W1)−Hb(S1)
(c)
= Hb(W1)−Hb(S1|X1)
(d)
= Hb(W1)−Hb(W1|X1)

= Ib(W1;X1).

where (a) is due to the battery update equation (1); (b) is
because b is an invariant ; (c) is because S1 and X1 are
independent; and (d) is because S1 = W1 +X1.

2) Structured Policy: We now introduce a class of policies
that satisfy the invariance property in Def. 3. This will be then
used in the proof of Theorem 2.

Definition 4 (Structured Policy). Given θ ∈ PS and ξ ∈ PW ,
a constant-distribution policy b = (b, b, . . . ) is called a
structured policy with respect to (θ, ξ) if:

b(y|w) =

{
PX(y) θ(y+w)

ξ(w) , y ∈ X ∩ Y◦(w)

0, otherwise.

Note that it is easy to verify that the distribution b defined
above is a valid conditional probability distribution.

Lemma 8. For any θ ∈ PS and ξ ∈ PW , the structured policy
b = (b, b, . . . ) given in Def. 4 is an invariant policy.

Proof. Since (θt, ξt) are related according to Lemma 3, in
order to check whether a policy is invariant it is sufficient
to check that either θt = θ1 for all t or ξt = ξ1 for all t.
Furthermore, to check if a time-homogeneous policy is an
invariant policy, it is sufficient to check that either θ2 = θ1 or
ξ2 = ξ1. We will prove that θ2 = θ1.

Let the initial distributions (θ1, ξ1) = (θ, ξ) and the system
variables be defined as usual. Now consider a realization s2 of
S2 and y1 of Y1. This means that W1 = s2 − y1. Since Y1 is
chosen according to ξ(·|w1), it must be that y1 ∈ X ∩Y◦(w1).
Therefore,

Pb(S2 = s2, Y1 = y1) = Pb(S2 = s2, Y1 = y1,W1 = s2 − y1)

= ξ1(s2 − y1)b(y1|s2 − y1)

= PX(y1)θ1(s2), (33)

where in the last equality we use the fact that y1 ∈ X ∩
Y◦(s2−y1). Note that if y1 6∈ X ∩Y◦(s2−y1), then Pb(S2 =
s2, Y1 = y1) = 0. Marginalizing over s2, we get Pb(Y1 =
y1) = PX(y1).

Consequently, θ2(s2) = Pb(S2 = s2|Y1 = y1) = θ1(s2).
Hence, b is invariant as required.

Remark 3. As argued in Remark 1, under any invariant policy,
{Yt}t≥1 is an i.i.d. sequence. As argued in the proof of
Lemma 8, for a structured policy the marginal distribution of
Yt is PX . Thus, an eavesdropper cannot statistically distinguish
between {Xt}t≥1 and {Yt}t≥1.
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Proposition 4. Let θ∗, ξ∗, and b∗ be as defined in Theorem 2.
Then,

1) (θ∗, ξ∗) is an equivalent pair;
2) b∗ is a structured policy with respect to (θ∗, ξ∗).
3) If the system starts in the initial battery state θ∗ and fol-

lows the constant-distribution policy b∗ = (b∗, b∗, . . . ),
the leakage rate is given by J∗.

Thus, the performance J∗ is achievable.

Proof. The proofs of parts 1) and 2) follows from the defini-
tions. The proof of part 3) follows from Lemmas 6 and 7.

This completes the proof of the achievability of Theorem 2.

C. Binary Model (Revisited)

We revisit the binary model in Section II-B. Recall that the
policy suggested in [8] is as follows:

qt(yt = 0|xt, st) = q(yt = 1|xt, st) = 1/2, xt = st (34)

and qt(yt|xt, st) = 1xt(yt) otherwise. It can be easily verified
that this policy is a structured policy in Def. 4, where the initial
state is taken as θ(s1 = 0) = θ(s1 = 1) = 1/2. Thus using
Lemma 6 and Lemma 7 it follows that the leakage rate equals
I(W1;X1) = 0.5. This yields an analytical proof of the result
in [8].

D. Strong achievability

Lemma 9. Assume that for any x ∈ X , PX(x) > 0. Let
(θ◦, ξ◦) an equivalent pair and b◦ = (b◦, b◦, . . . ) be the
corresponding structured policy.

Assume that θ◦ ∈ int(PS) or equivalently, for any w ∈ W
and y ∈ X ∩ Y◦(w), b◦(y|w) > 0. Suppose the system starts
in the initial state (θ1, ξ1) and follows policy b◦. Then:

1) the process {θt}≥1 converges weakly to θ◦;
2) the process {ξt}≥1 converges weakly to ξ◦;
3) for any continuous function c : PW → R,

lim
T→∞

1

T

T∑
t=1

E[c(ξt)] = c(ξ◦). (35)

4) Consequently, the infinite horizon leakage rate under
b◦ is

L∞(b◦) = I(b◦, ξ◦).

Proof. The proof of parts 1) and 2) is presented in Ap-
pendix D. From 2), limt→∞E[c(ξt)] = c(ξ◦), which im-
plies (35). Part 4) follows from part 3) by setting c(ξt) =
I(b◦, ξt).

Lemma 2 implies that θ∗ defined in Theorem 2 lies in
int(PS). Then, by Lemma 9, the constant-distribution policy
b∗ = (b∗, b∗, . . . ) (where b∗ is given by Theorem 2), achieves
the leakage rate I(b∗, ξ∗). By Lemma 7, I(b∗, ξ∗) is same as
J∗ defined in Theorem 2. Thus, J∗ is achievable starting from
any initial state (θ1, ξ1).

E. Dynamic programming converse

We provide two converses. One is based on the dynamic
program of Theorem 3, which is presented in this section;
the other is based purely on information theoretic arguments,
which is presented in the next section.

In the dynamic programming converse, we show that for J∗

given in Theorem 2, v∗(ξ) = H(ξ), and any b ∈ B,

J∗ + v∗(ξ) ≤ [B̃bv
∗](ξ), ∀ξ ∈ PW , (36)

Thus, J∗ is a lower bound of the optimal leakage rate (see [27],
[28]).

To prove (36), pick any ξ ∈ PW and b ∈ B. Suppose W1 ∼
ξ, Y1 ∼ b(·|W1), S2 = Y1 + W1, X2 is independent of W1

and X2 ∼ PX and W2 = S2 −X2. Then,

[B̃bv
∗](ξ) = I(b; ξ) +

∑
(w1,y1)∈W×Y

ξ(w1)b(y1|w1)v∗(ϕ̂(ξ, y1, b))

= I(W1;Y1) +H(W2|Y1) (37)

where the second equality is due to the definition of condi-
tional entropy. Consequently,

[B̃bv
∗](ξ)− v∗(ξ) = H(W2|Y1)−H(W1|Y1)

= H(W2|Y1)−H(W1 + Y1|Y1)
(a)
= H(S2 −X2|Y1)−H(S2|Y1)
(b)
≥ min

θ2∈PS

[
H(S̃2 −X2)−H(S̃2)

]
, S̃2 ∼ θ2

= J∗ (38)

where (a) uses S2 = Y1 + W1 and W2 = S2 −X2; (b) uses
the fact that H(A1|B)−H(A1−A2|B) ≥ minPA1

[
H(A1)−

H(A1 −A2)
]

for any joint distribution on (A1, A2, B).
The equality in (38) occurs when b is an invariant policy

and θ2 is same as θ∗ defined in Theorem 2. For ξ that are not
equivalent to θ∗, the inequality in (38) is strict.

We have shown that Eq. (36) is true. Consequently, J∗ is a
lower bound on the optimal leakage rate J̃ .

F. Information theoretic converse

Consider the following inequalities: for any admissible
policy q ∈ QB , we have

I(S1, X
T ;Y T ) =

T∑
t=1

I(St, Xt;Yt|Y t−1)

(a)
≥

T∑
t=1

I(Wt;Yt|Y t−1) (39)

where (a) follows from the data processing inequality.
Now consider

I(Wt;Yt|Y t−1) = H(Wt|Y t−1)−H(Wt|Y t)
= H(Wt|Y t−1)−H(Wt + Yt|Y t)
(b)
= H(Wt|Y t−1)−H(St+1|Y t)
(c)
= H(Wt|Y t−1)−H(St+1|Y t, Xt+1)

= H(Wt|Y t−1)−H(St+1 −Xt+1|Y t, Xt+1)
(d)
= H(Wt|Y t−1)−H(Wt+1|Y t, Xt+1) (40)
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where (b) follows from (1); (c) follows because of assump-
tion (A); and (d) also follows from (1).

Substituting (40) in (39) (but expanding the last term as
H(WT |Y T−1)−H(WT |Y T )), we get

I(S1, X
T ;Y T ) ≥

T∑
t=1

[
H(Wt|Y t−1 −H(Wt+1|Y t, Xt+1)

]
= H(W1) +

T−1∑
t=1

[
−H(Wt|Y t−1, Xt) +H(Wt|Y t−1)

]
−H(WT |Y T )

= H(W1) +

T∑
t=2

I(Wt;Xt|Y t−1)−H(WT |Y T ). (41)

Now, we take the limit T →∞ to obtain a lower bound to
the leakage rate:

L∞(q) = lim sup
T→∞

1

T
I(S1, X

T ;Y T )

≥ lim sup
T→∞

1

T

[
H(W1) +

T∑
t=2

I(Wt;Xt|Y t−1)−H(WT |Y T )

]
(a)
= lim
T→∞

1

T

[
T∑
t=2

I(Wt;Xt|Y t−1)

]
(b)
≥ min

PS∈PS
I(S −X;X) = J∗

where (a) is because the entropy of any discrete random
variable is bounded and (b) follows from the observation
that every term in the summation is only a function of the
posterior P (St|Y t−1). Therefore, minimizing each term over
a PS ∈ PS results in a lower bound. This shows that J∗ is a
lower bound to the minimum (infinite horizon) leakage rate.

V. CONCLUSIONS AND DISCUSSION

In this paper, we study a smart metering system that uses
a rechargeable battery to partially obscure the user’s power
demand. Through a series of reductions, we show that the
problem of finding the best battery charging strategy can be
recast as a Markov decision process. Consequently, the optimal
charging strategies and the minimum information leakage rate
are given by the solution of an appropriate dynamic program.

For the case of i.i.d. demand, we provide an explicit
characterization of the optimal battery policy and the leakage
rate. In this special case it suffices to choose a memoryless
strategy where the distribution of Yt depends only on Wt. Our
achievability results rely on restricting attention to a class of
invariant policies. Under an invariant policy, the consumption
{Yt}t≥1 is i.i.d. and the leakage rate is characterized by a
single-letter mutual information expression. We then further
restrict attention to what we call structured policies under
which the marginal distribution of {Yt}t≥1 is PX . Thus, under
the structured policies, an eavesdropper cannot statistically
distinguish between {Xt}t≥1 and {Yt}t≥1. We provide two
converses; one is based on the dynamic programming argu-
ment while the other is based on a purely information theoretic
argument. It is worth highlighting that the weak achievability

and both converses extend to continuous alphabets under mild
technical conditions; see [31] for details. It is only the strong
achievability result that relies on the finiteness of the alphabets.

Extending of our MDP formulation to incorporate an
additive cost, such as the price of consumption, is rather
immediate. However, the approach presented in this work
for explicitly characterizing the optimal leakage rate in the
i.i.d. case may not immediately extend to such general cost
functions. The study of such problems remains an interesting
further direction.

APPENDIX A
PROOF OF PROPERTY 2

For any θ ∈ int(PS) and δ(s) : S → R such that∑
s∈S δ(s) = 0. Let θα(s) := θ(s) + αδ(s). Then for small

enough α, θα ∈ PS . Given such a θα, let PW,X(w, x) =
PW |X(w|x)PX(x) = θα(w + x)PX(x). Then to show that
I(W ;X) is strictly convex on PS we require d2I(W ;X)

dα2 > 0.
From Property 1, I(W ;X) = H(W )−H(S). Therefore,

dI(W ;X)

dα
=
d [−H(S) +H(W )]

dα

=
∑
s̃

δ(s̃) ln θα(s̃)−
∑

w∈W,s∈S
PX(s− w)δ(s) lnPW (w)

d2I(W ;X)

dα2
=
∑
s

δ(s)2

θα(s)
−
∑
w∈W

(∑
s̃∈S PX(s̃− w)δ(s̃)

)2
PW (w)

.

Let aw(s) = δ(s)
√

PX(s−w)
θα(s) and bw(s) =

√
θα(s)PX(s− w).

Using the Cauchy-Schwarz inequality, we can show that

d2I(W ;X)

dα2
=
∑
s

δ(s)2

θα(s)
−
∑
w∈W

(∑
s̃∈S aw(s̃)bw(s̃)

)2
PW (w)

>
∑
s

δ(s)2

θα(s)
−
∑
w∈W

(∑
s̃∈S aw(s̃)2

) (∑
ŝ∈S bw(ŝ)2

)
PW (w)

=
∑
s

δ(s)2

θα(s)
−
∑
w∈W

(∑
s̃∈S

aw(s̃)2

)
= 0.

The strict inequality is because a and b cannot be linearly
dependent. To see this, observe that a(s)

b(s) = δ(s)
θ(s)+αδ(s) cannot

be equal to a constant for all s ∈ S since δ must contain
negative as well as positive elements.

APPENDIX B
PROOF OF PROPOSITION 1

The proof of Proposition 1 relies on the following interme-
diate results (which are proved later):

Lemma B.1. For any q ∈ QA,

Iq(S1, X
T ;Y T ) ≥

T∑
t=1

Iq(Xt, St;Yt|Y t−1)

with equality if and only if q ∈ QB .

Lemma B.2. For any qa ∈ QA, there exists a qb ∈ QB , such
that

T∑
t=1

Iqa(Xt, St;Yt|Y t−1) =

T∑
t=1

Iqb(Xt, St;Yt|Y t−1).
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Combining Lemmas B.1 and B.2, we get that for any qa ∈
QA, there exists a qb ∈ QB such that

Iqa(S1, X
T ;Y T ) ≥ Iqb(S1, X

T ;Y T ).

Therefore there is no loss of optimality in restricting attention
to charging policies in QB . Furthermore, Lemma B.1 shows
that for any q ∈ QB , LT (q) takes the additive form as given
in the statement of the proposition.

Proof of Lemma B.1. For any q ∈ QA, we have

Iq(S1, X
n;Y n)

(a)
=

n∑
t=1

Iq(S1, X
t;Yt|Y t−1)

(b)
=

n∑
t=1

Iq(Xt, St;Yt|Y t−1)

(c)
≥

n∑
t=1

Iq(Xt, St;Yt|Y t−1)

where (a) uses the chain rule of mutual information and the
fact that (Zt−2, Y t−1)→ Xt−1 → Xt;4 (b) uses the fact that
the battery process St is a deterministic function of S1, Xt,
and Y t given by (1); and (c) uses the fact that removing terms
lowers the mutual information.

Proof of Lemma B.2. For any qa = (qa1 , q
a
2 , . . . , q

a
T ) ∈ QA,

construct a qb = (qb1, q
b
2, . . . , q

b
T ) ∈ QB as follows: for any t

and realization (xt, st, yt) of (Xt, St, Y t) let

qbt (yt|xt, st, yt−1) = P
qa
Yt|Xt,St,Y t−1(yt|xt, st, yt−1). (42)

To prove the Lemma, we show that for any t,

P
qa
Xt,St,Y t

= P
qb
Xt,St,Y t

. (43)

By definition of qb given by (42), to prove (43), it is sufficient
to show that

P
qa
Xt,St,Y t−1 = P

qb
Xt,St,Y t−1 . (44)

We do so using induction.
For t = 1, Pqa

X1,S1
(x, s) = PX1(x)PS1(s) = P

qb
X1,S1

(x, s).
This forms the basis of induction. Now assume that (44) hold
for t.

In the rest of the proof, for ease of notation, we denote
P

qa
Xt+1,St+1,Y t

(xt+1, st+1, y
t) simply by Pqa(xt+1, st+1, y

t).
For t+ 1, we have

Pqa(xt+1, st+1, y
t) =

∑
(xt,st)∈X×S

Pqa(xt+1, xt, st+1, st, y
t)

=
∑

(xt,st)∈X×S

Q(xt+1|xt)1st+1{st − xt + yt}qa(yt|xt, st, yt−1)

× Pqa(xt, st, y
t−1)

(a)
=
∑

(xt,st)∈X×S

Q(xt+1|xt)1st+1
{st − xt + yt}qb(yt|xt, st, yt−1)

× Pqb(xt, st, y
t−1)

= Pqb(xt+1, st+1, y
t)

4The notation A → B → C is used to indicate that A is conditionally
independent of C given B.

where (a) uses (42) and the induction hypothesis. Thus, (44)
holds for t + 1 and, by the principle of induction, holds for
all t. Hence (43) holds and, therefore, Iqa(Xt, St;Yt|Y t−1) =
Iqb(Xt, St;Yt|Y t−1). The statement in the Lemma follows by
adding over t.

APPENDIX C
PROOF OF PROPOSITION 3

To prove the result, we show the following:

Lemma C.1. For any action a ∈ A, if V : PX,S → R is
concave, then BaV is concave.

The proof of Proposition 3 follows from backward in-
duction. VT+1 is a constant and, therefore, also concave.
Lemma C.1 implies that VT , VT−1, . . . , V1 are concave.

Proof of Lemma C.1. The first term I(a;π) of [BaV ](π) is
a concave function of π. We show the same for the second
term.

Note that if a function V is concave, then it’s per-
spective g(u, t) := tV (u/t) is concave in the domain
{(u, t) : u/t ∈ Dom(V ), t > 0}. The second term in the defi-
nition of the Bellman operator (10)∑

y∈Y

[ ∑
(x,s)∈X×S

a(y|x, s)π(x, s)

]
V (ϕ(π, y, a))

has this form because the numerator of ϕ(π, y, a) is linear in π
and the denominator is

∑
x,s a(y|x, s)π(x, s) (and corresponds

to t in the definition of perspective). Thus, for each y, the
summand is concave in π, and the sum of concave functions
is concave. Hence, the second term of the Bellman operator
is concave in π. Thus we conclude that concavity is preserved
under Ba.

APPENDIX D
PROOF OF LEMMA 9

The proof of the convergence of {ξt}t≥1 relies on a result
on the convergence of partially observed Markov chains due
to Kaijser [29] that we restate below.

Definition 5. A square matrix D is called subrectangular if for
every pair of indices (i1, j1) and (i2, j2) such that Di1,j1 6= 0
and Di2,j2 6= 0, we have that Di2,j1 6= 0 and Di1,j2 6= 0.

Theorem 4 (Kaijser [29]). Let {Ut}t≥1, Ut ∈ U , be a finite
state Markov chain with transition matrix Pu. The initial state
U1 is distributed according to probability mass function PU1

.
Given a finite set Z and an observation function g : U → Z ,
define the following:
• The process {Zt}t≥1, Zt ∈ Z , given by

Zt = g(Ut).

• The process {ψt}t≥1, ψt ∈ PU , given by

ψt(u) = P(Ut = u | Zt).

• A square matrix M(z), z ∈ Z , given by

[M(z)]i,j =

{
Puij if g(j) = z

0 otherwise
i, j ∈ U .
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If there exists a finite sequence zm1 such that
∏m
t=1M(zt)

is subrectangular, then {ψt}t≥1 converges in distribution to a
limit that is independent of the initial distribution PU1 .

We will use the above theorem to prove that under policy
b◦, {ξt}t≥1 converges to a limit. For that matter, let U =
S × Y , Z = Y , Ut = (St, Yt−1) and g(St, Yt−1) = Yt−1.

First, we show that {Ut}t≥1 is a Markov chain. In particular,
for any realization (st+1, yt) of (St+1, Y t), we have that

Pb◦(Ut+1 = (st+1, yt) | U t = (st, yt−1))

=
∑
x̃t∈X

P (Ut+1 = (st+1, yt), Xt = x̃t | U t = (st, yt−1))

=
∑
x̃t∈X

1st+1{yt + st − x̃t}b∗(yt|st − x̃t)PX(x̃t)

= Pb◦(Ut+1 = (st+1, yt) | Ut = (st, yt−1)).

Next, let m = 2ms and consider

zm = 111 · · · 1︸ ︷︷ ︸
ms times

000 · · · 0︸ ︷︷ ︸
ms times

.

We will show that this zm satisfies the subrectangularity
condition of Theorem 4. The basic idea is the following.
Consider any initial state u1 = (s, y) and any final state
um = (s′, 0). We will show that

P(Sms = ms | U1 = (s, y), Zms = (111 . . . 1)) > 0,
(45)

and

P(S2ms = s′ | Ums = (sm, 1), Zmsms+1 = (000 . . . 0)) > 0.
(46)

Eqs. (45) and (46) show that given the observation sequence
zm, for any initial state (s, y) there is a positive probabil-
ity of observing any final state (s′, 0).5 Hence, the matrix∏m
t=1M(z) is subrectangular. Consequently, by Theorem 4,

the process {ψt}t≥1 converges in distribution to a limit that
is independent of the initial distribution PU1 .

Now observe that θt(s) =
∑
y∈Y ψt(s, y) and (θt, ξt)

are related according to Lemma 3. Since {ψt}t≥1 converges
weakly independent of the initial condition, so do {θt}t≥1 and
{ξt}t≥1.

Let θ̄ and ξ̄ denote the limit of {θt}t≥1 and {ξt}t≥1.
Suppose the initial condition is (θ◦, ξ◦). Since b◦ is an
invariant policy, (θt, ξt) = (θ◦, ξ◦) for all t. Therefore, the
limits (θ̄, ξ̄) = (θ◦, ξ◦).

Proof of Eq. (45). Given the initial state (s, y), define s̄ =
ms − s, and consider the sequence

xms = 000 · · · 0︸ ︷︷ ︸
s̄ times

111 · · · 1︸ ︷︷ ︸
s times

.

Under this sequence of demands, consider the sequence of
consumption yms−1 = (11 . . . 1), which is feasible because
the state of the battery increases by 1 for the first s̄ steps (at

5Note that given the observation sequence zm, the final state must be of
the form (s′, 0).

which time it reaches ms) and then remains constant for the
remaining s steps. Therefore,

P(Sms = ms | U1 = (s, y),

Y ms−1 = (111 . . . 1), Xms = xms) > 0.

Since the sequnce of demands xm has a positive probability,

P(Sms = ms, X
ms = xms | U1 = (s, y),

Y ms−1 = (111 . . . 1)) > 0.

Therefore,

P(Sms = ms | U1 = (s, y), Y ms−1 = (111 . . . 1)) > 0

which completes the proof.

Proof of Eq. (46). The proof is similar to the Proof of (45).
Given the final state (s′, 0), define s̄′ = ms − s′ and consider
the sequence

x2ms
ms+1 = 111 · · · 1︸ ︷︷ ︸

s̄′ times

000 · · · 0︸ ︷︷ ︸
s′ times

.

Under this sequnce of demains and the sequence of consump-
tion given by y2ms−1

ms = (00 . . . 0), the state of the battery
decreases by 1 for the first s̄′ steps (at which time it reaches
s′) and then remains constant for the remaining s′ steps. Since
x2ms
ms+1 has positive probability, we can complete the proof by

following an argument similar to that in the proof of (45).
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