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Abstract—A rechargeable battery may alleviate the issue of
privacy loss in a smart metering system by distorting a house-
hold’s load profile. However, existing studies involve a single
rechargeable battery, whereas in a network scenario, there could
be multiple batteries connected together. In this letter, we study
the extension where a user’s electricity load is input into a
network of two rechargeable batteries, connected in series, and
operating individually. This battery network attempts to mask
the user load from the utility provider. We focus on the case
of i.i.d. load profile and a system of ideal batteries with no
conversion loss, and use normalized mutual information (leakage
rate) as the privacy metric. We derive upper and lower bounds
on the leakage rate in terms of (single-letter) mutual information
expressions. On the achievability side, our information theoretic
upper bound captures the novel tension between minimizing the
leakage across each individual battery and the effect of their
joint interaction. For the lower bound, we show that a system
with a single battery, whose storage capacity is the sum of the
two individual batteries, can achieve a leakage rate at least as
small as our proposed setup. Furthermore, we use simulations to
compare achievable leakage of our proposed scheme with several
baseline schemes. The achievable leakage rates obtained in this
study could help us to elucidate the privacy performance of a
network of batteries.

I. INTRODUCTION

Smart meters are essential in the modern electrical grids
[?]. They deliver power usage data to the utility companies for
energy management. However, this leads to the possibility of
privacy loss from the customers’ point of view [?]. One way
to alleviate the issue of privacy loss is the implementation
of a rechargeable battery [?]. Using a rechargeable battery,
the load profile of the household users can be distorted by
charging and discharging the battery. In reference [?] the
authors assume a battery model with discrete storage state
and i.i.d. load profile, and introduce mutual information as the
privacy metric. A characterization of optimal battery policies
for such system has been obtained in [?], [?]. It is shown that
the optimal charging policy satisfies an invariance property
that makes the analysis of the leakage rate tractable. The
authors in [?] consider a variant involving an energy harvesting
device coupled with the rechargeable battery. A rate distortion
framework to capture the tension between utility and privacy
has been introduced in [?] however that framework does not
incorporate instantaneous battery constraints. Other methods
for load obfuscation have been proposed in the literature, e.g.,
use of water heater [?].

In this letter, we focus on the privacy protection by imple-
menting rechargeable batteries. While previous studies have
focused on the case of a single battery, we consider two

batteries connected in series. The user load is input into the
first battery, whose output in turn is fed into the second battery,
which is connected to the external grid. Both the batteries
operate independently and satisfy the ideal conservation rule.
The charging policy for each battery can be selected by the
user to minimize information leakage to the utility company.
The joint interaction between the two batteries makes this
problem a non-trivial extension of the single battery case.
We show that a policy that minimizes the leakage across
each individual battery is sub-optimal and derive information
theoretic upper and lower bounds on the leakage rate.

II. PROBLEM FORMULATION

A. System and Variable Definitions

1) Notation: The probability that the random variable X
takes on the value of x is denoted by PX(x). We use subscript
t to denote the time index. Thus Xt denotes the random
variable X sampled at time t and likewise SA,t denotes the
random variable SA at time t. We denote Xn

m as a shorthand
for (Xm, Xm+1, · · · , Xn) and XT = XT

1 . Here T denotes
the time-horizon of interest.

2) The C-C System: Consider a smart-metering system of
two batteries as shown in Fig. 1a, which will be referred to as
the C-C system, since the system could be interpreted as two
batteries connected in series and with capacity C each. The C-
C system is placed between the user and the utility company
in order to distort the load profile. The arrows indicate the
direction of power demand. The input to the C-C system,
x ∈ {0, 1, ...,mx}, is the i.i.d. power demand sent from the
user. The first battery sends the intermediate power demand,
w ∈ {0, 1, ...,mw}, to the second battery in cascade. The
output demand of the C-C system, y ∈ {0, 1, ...,my}, is
sent to the utility company. We assume that the user demand
can always be satisfied, and hence mx ≤ mw ≤ my . For
simplicity, we let mx = mw = my and let the two batteries
have the same capacity, C. We then let sA ∈ {0, 1, ..., C} be
the energy stored in the first battery in cascade, which will be
referred to as the state of battery A; likewise sB ∈ {0, 1, ..., C}
for the second battery in cascade. We assume that there
are no cooperation between the two batteries such that the
output of each battery depends only on the history of the
input, output and state of the same battery. Following this
assumption, we let qAWt|Xt,St

A,W t−1 and qBYt|W t,St
B ,Y t−1 be the

conditional probability distributions that dictate the charging
policies of battery A and battery B at time t, respectively,
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Fig. 1: The Two Battery Systems

and let qA := {qAWt|Xt,St
A,W t−1 : t = 1, 2, · · · } and qB :=

{qBYt|Wt,SB,t
: t = 1, 2, · · · }.

3) The 2C System: Fig. 1b shows a system of one recharge-
able battery with capacity 2C equal to the sum of the indi-
vidual battery capacities in the C-C system, which we will
be referring to as the 2C system. Since we will be comparing
between the privacy performance of the C-C system and the 2C
system, we apply the same input distribution to both systems
to keep the comparison fair. Therefore, x′ ∈ {0, 1, ...,mx} is
the i.i.d. input demand to the 2C system, and PX = PX′ . The
output demand of the 2C system, y′ ∈ {0, 1, ...,my}, is sent to
the utility company. We let sJ ∈ {0, 1, ..., 2C} be the energy
stored in the battery. We let qJY ′t |X′t,St

J ,Y
′t−1 be the conditional

probability distribution that dictates the charging policy of the
single battery at time t and let qJ := {qJY ′t |X′t,St

J ,Y
′t−1 : t =

1, 2, · · · }.
4) Battery State Update Equations: Given the definition of

the input, output and state for the two systems above, let us
discuss the underlying constraints that govern those variables.
We assume that we have control over the distribution of initial
battery state, since setting the initial battery state is a part
of the startup operation for the metering system. Also, the
distribution PX is given by nature. For simplicity, we assume
that the batteries are ideal such that there are no conversion
losses or other inefficiencies. Hence, the state transition of
the battery A and battery B for the C-C system, as shown
in Fig. 1a, are governed by the following battery update
equations:

SA,t+1 = SA,t −Xt +Wt (1)
SB,t+1 = SB,t −Wt + Yt. (2)

Definition 1 (Feasible Charging Policies). A charging policy
is qA := {qAWt|Xt,St

A,W t−1 : t = 1, 2, · · · } is feasible for
battery A if for each time t the battery state SA,t satisfying (1)
is contained in {0, 1, . . . , C}. Let QA denote the set of all
feasible charging policies for battery A. The set QB for battery
B is defined in a similar fashion.

For the 2C system, the state update equations take the form:
SJ,t+1 = SJ,t −X ′t + Y ′t , (3)

and the set of feasible charging policies can be defined in an
analogous fashion.

B. The Objective Function

We wish to hide XT given that the utility company has
access to Y T by adjusting the charging policies for each of the

two aforementioned systems, while adhering to the constraint
imposed by the battery update equation. The privacy metric
that we are using is the mutual information (MI), I(XT ;Y T ),
which captures the total amount of information in XT leaked
through Y T . Leakage rate is the information leaked per unit
time, and we define the leakage rate for the C-C system as
follows:

LC−C := lim sup
T→∞

1

T
IC−C(SA,1, SB,1, X

T ;Y T ). (4)

The unit for MI is bits if the logarithm is base 2 so the unit
of Leakage rate is bits/sec. The reason why the initial battery
states are in the expression is because that they do not affect
the asymptotic leakage rate while simplifying the analysis, as
explained in [?]. Also, we focus on the case of an infinite time
horizon, and hence we set T →∞. We define the leakage rate
for the 2C system as follows:

L2C := lim sup
T→∞

1

T
I2C(SJ,1, X

′T ;Y ′T ). (5)

Lower leakage rate indicates better privacy performance of the
system. From the definition of MI in [?], the leakage rates in
(4) and (5) can be calculated by marginalizing the following
two joint distributions induced for the C-C system and 2C
system, respectively:

PST
A,1,X

T ,WT ,ST
B,1,Y

T

= PSA,1
PX1

qAW1|X1,SA,1
PSB,1

qBY1|W1,SB,1

·
T∏

t=2

1(SA,t=SA,t−1−Xt−1+Wt−1)PXt
qAWt|Xt,St

A,W t−1

·
T∏

t=2

1(SB,t=SB,t−1−Wt−1+Yt−1)q
B
Yt|W t,St

B ,Y t−1 , (6)

PST
J ,X′T ,Y ′T = PSJ,1

PX′1q
J
Y ′1 |X′1,SJ,1

·
T∏

t=2

1(SJ,t=SJ,t−1−X′t−1+Y ′t−1)
PX′tq

J
Y ′t |X′t,St

J ,Y
′t−1 ,(7)

where PXt = PX since we are assuming i.i.d. input distribu-
tions, and 1U=V for the two random variables U and V is
evaluated to 1 when U = V , 0 otherwise.

In the following, we formally give the problem statement.

Problem 1. We wish to characterize the minimum leakage rate
L∗ := infqA,qB ,PSA,1

,PSB,1
LC−C of the C-C system. Here the

infimum over qA and qB is over the set of feasible charging
policies stated in Definition 1. The distributions PSA,1

and
PSB,1

can be arbitrary over the support of {0, 1, . . . , C}. As
our main result we will establish an upper bound and a lower
bound for L∗.

III. BOUNDS ON THE MINIMUM INFORMATION LEAKAGE

A. Class of Invariant Policies

In this subsection, we define a class Pinv of policies and
initial battery distributions which is used in the derivation
of an upper bound. In this class, the policies are stationary
and memoryless, where the battery output depends only on
the current battery state and battery input (i.e. for all time
t, qAWt|Xt,SA,t

= qAW |X,SA
for battery A and qBYt|Wt,SB,t

=



qBY |W,SB
for battery B. In addition, in this class, the following

conditions are satisfied:
PSA,2|W1

(sA,2|w1) = PSA,1
(sA,2),∀sA,2, w1 (8)

PSB,2|Y1
(sB,2|y1) = PSB,1

(sB,2),∀sB,2, y1. (9)
The above invariance conditions imply that PSA,t,Wt,Xt|W t−1

= PSA,1,W1,X1 and in particular the sequence WT is an
i.i.d sequence, which can be proved by following simi-
lar steps in [?]. This allows [?, Lemma III.1] to hold,
which reduces 1

T I(SA,1, X
T ,WT ) to I(SA,1, X1,W1) and

1
T I(SB,1,W

T , Y T ) to I(SB,1,W1, Y1). These reductions are
used in the derivation of an upper bound in the next subsection.

B. Upper Bound

Now, we propose an upper-bound for the optimal leakage
rate of the C-C system in the following theorem.

Theorem 1. The minimum leakage rate for C-C system can
be upper-bounded by the following single-letter expression:

L∗ ≤
{
I(SA,1, X1;W1) + I(SB,1,W1;Y1)

− I(SA,1, SB,1, X1, Y1;W1)

}
,

∀
{
qA, qB , PSA,1

, PSB,1

}
∈ Pinv. (10)

Proof. Assuming
{
qA, qB , PSA,1

, PSB,1

}
∈ Pinv:

I(SA,1, SB,1, X
T ;Y T )

(a)
= I(SA,1, X

T ;WT ) + I(SB,1,W
T ;Y T )

− I(SA,1, SB,1, X
T , Y T ;WT )

(b)
= T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

− I(SA,1, SB,1, X
T , Y T ;WT )

= T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

−
T∑

t=1

I(SA,1, SB,1, X
T , Y T ;Wt|W t−1)

(c)
= T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

−
T∑

t=1

I(St
A, S

t
B , X

T , Y T ;Wt|W t−1)

(d)

≤ T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

−
T∑

t=1

I(SA,t, SB,t, Xt, Yt;Wt|W t−1)

(e)

≤ T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

−
T∑

t=1

I(SA,t, SB,t, Xt, Yt;Wt)

(f)
= T · I(SA,1, X1;W1) + T · I(SB,1,W1;Y1)

− T · I(SA,1, SB,1, X1, Y1;W1), (11)
where (a) holds due to a chain of manipulations of mutual
information terms and the fact that XT → WT → Y T

form a Markov chain; (b) and (f) hold due to Lemma
III.1 in [?] by assuming

{
qA, qB , PSA,1

, PSB,1

}
∈ Pinv;

(c) holds due to the fact that (St
A, S

t
B) is a determin-

istic function of (SA,1, SB,1, X
t−1,W t−1, Y t−1) given by

equations (1) and (2); (d) holds because the addition
of letter increases MI; (e) is due to (Xt, SA,t,Wt) ⊥
W t−1 from the invariance property, and hence W t−1 ⊥
Wt holds, which implies I(SA,t, SB,t, Xt, Yt;Wt) ≤
I(SA,t, SB,t, Xt, Yt;Wt|W t−1).

C. Lower Bound

In the following theorem, we derive a lower-bound on the
optimal leakage rate of the C-C system. binary input case

Theorem 2. The minimum information leakage of the C-C
system is lower-bounded by that of the 2C system, i.e.,

L∗
(a)

≥ inf
qJ ,PSJ,1

L2C

(b)
= min

PSJ,1

I2C(SJ,1 −X1;X1). (12)

Proof. Step (b) is due to Lemma III.3 in [?]. We will prove
(a) by proving the following claim.

Claim 1. Given initial state distributions PSA,1
and PSB,1

and a set of policies {qAWt|Xt,St
A,W t−1 , q

B
Yt|W t,St

B ,Y t−1 : t =

1, 2, · · · } for the C-C system, there exist initial state distri-
bution PSJ,1

and a set of policies {qJY ′t |X′t,St
J ,Y

′t−1 : t =

1, 2, · · · } for the 2C system such that
PSN

A +SN
B ,XN ,Y N = PSN

J ,X′N ,Y ′N ,∀N ∈ N. (13)

Note that this claim completes the proof since

L∗ =
1

T
IC−C(SA,1, SB,1, X

T ;Y T ) (14)

=
1

T
IC−C(SA,1, SB,1, SA,1 + SB,1, X

T ;Y T ) (15)

≥ 1

T
IC−C(SA,1 + SB,1, X

T ;Y T ) (16)

=
1

T
I2C(SJ,1, X

′T ;Y ′T ) (17)

≥ inf
qJ ,PSJ,1

1

T
I2C(SJ,1, X

′T ;Y ′T ) (18)

= inf
qJ ,PSJ,1

L2C , (19)

where the RHS of (14)-(16) are evaluated under optimal
initial distributions and set of policies for the C-C system
that minimize the information leakage and the RHS of (17) is
evaluated under the initial distribution and the set of policies
for the 2C system that satisfy (13).

We prove Claim 1 by using induction. Let us assume
arbitrary initial state distributions PSA,1

and PSB,1
and a set

of policies {qAWt|Xt,St
A,W t−1 , q

B
Yt|W t,St

B ,Y t−1 : t = 1, 2, · · · }
for the C-C system.

Note that from (6), we have
PSA,1,X1,W1,SB,1,Y1

= PSA,1
PX1

qAW1|X1,SA,1
PSB,1

qBY1|W1,SB,1
. (20)

From (20), we can derive
PSA,1+SB,1,X1,Y1

= PSA,1+SB,1
PX1

PY1|X1,SA,1+SB,1
(21)



because SA,1, SB,1, and X1 are mutually independent. Now,
we choose PSJ,1

and qJY ′1 |X′1,SJ,1
for the 2C system as

PSJ,1
= PSA,1+SB,1

, (22)

qJY ′1 |X′1,SJ,1
= PY1|X1,SA,1+SB,1

. (23)
Then, we have

PSJ,1,X′1,Y
′
1
= PSJ,1

PX′1q
J
Y ′1 |X′1,SJ,1

(24)

= PSA,1+SB,1
PX1PY1|X1,SA,1+SB,1

(25)

= PSA,1+SB,1,X1,Y1
(26)

since PX1
= PX′1 according to our model. Thus, (13) holds

for N = 1.
Now, to use induction, for k ∈ N, let us assume that

there exist initial state distribution PSJ,1
and a set of policies

{qJY ′t |X′t,St
J ,Y

′t−1 : t = 1, 2, · · · , k} for the 2C system such
that (13) holds for N = k. For the C-C case, the joint
distribution PSk+1

A +Sk+1
B ,Xk+1,Y k+1 can be written as follows:

PSk+1
A +Sk+1

B ,Xk+1,Y k+1

(a)
= PSk

A+Sk
B ,Xk,Y k · PXk+1

· 1SA,k+1+SB,k+1=SA,k+SB,k+Yk−Xk

· PYk+1|Xk+1,Sk+1
A +Sk+1

B ,Y k . (27)

Note (a) comes from (1) and (2). Now, we choose the policy
for time (k + 1) for the 2C system as follows:

qJ
Y ′k+1|X′k+1,S′k+1

J ,Y ′k
= PYk+1|Xk+1,Sk+1

A +Sk+1
B ,Y k . (28)

Then,
PSk+1

J ,X′k+1,Y ′k+1 = PSk
J ,X

′k,Y ′k · PX′k+1

· 1SJ,k+1=SJ,k+Y ′k−X
′
k
· qJ

Y ′k+1|X′k+1,S′k+1
J ,Y ′k

. (29)
Now, by comparing (27) and (29) and noting that
PSk

A+Sk
B ,Xk,Y k = PSk

J ,X
′k,Y ′k by the induction assumption,

PXk+1
= PX′k+1

from our model, and (28) due to our choice,
we conclude that (13) holds for N = k + 1.

By induction, Claim 1 is proved.

IV. SIMULATION RESULTS

In Fig. 2, the following five expressions are plotted and
compared across various total battery size for the binary input
case x ∈ {0, 1} and the ternary input case x ∈ {0, 1, 2}:

1) Lower bound in Theorem 2
2) Minimum of the upper bound in Theorem 1
3) Upper bound in Theorem 1 computed for policies and

initial state distributions that minimize the leakage rate
for each battery individually

4) L2C evaluated using the well known best effort algo-
rithm (BEA) in [?] as the charging policy.

5) L2C evaluated by applying the algorithm proposed by
Yang et al. in [?], which minimizes the output variance
by holding the output to a constant as much as possible.

According to Theorems 1 and 2, the optimal leakage rate of
the C-C system should lie somewhere between 1) and the 2).

Expressions 1), 2) and 3) are evaluated using fmincon()
in MATLAB, where 0.5e− 6 is selected as the step size and
interior − point is selected as the algorithm. Expression 1)
is optimized over PSJ,1

. Expression 2) and 3) are optimized
over joint

{
qA, qB , PSA,1

, PSB,1

}
∈ Pinv. In addition, the

4 6 8 10 12 14 16 18 20

Total Battery Size

10-2

10-1

100

L
e

a
k
a

g
e

 R
a

te

Leakage Rates for Various Expressions

Binary Case, Expression 1)

Binary Case, Expression 2)

Binary Case, Expression 3)

Binary Case, Expression 4)

Binary Case, Expression 5)

Ternary Case, Expression 1)

Ternary Case, Expression 2)

Ternary Case, Expression 3)

Ternary Case, Expression 4)

Ternary Case, Expression 5)

Fig. 2: Leakage Rate v.s. Total Battery Size for Binary Input

invariance condition is a linear constraint when the initial state
distribution is fixed, as mentioned in [?] and [?]. However,
since both the initial state distribution and policy are treated as
variables, this constraint becomes nonlinear. Hence, we use the
nonlcon setting in fmincon() to constrain the optimization
to
{
qA, qB , PSA,1

, PSB,1

}
∈ Pinv, i.e. (8) and (9) are set as

constraints. Also for simplicity, we assume that both batteries
in the C −C system use the same charging policy for 2) and
3). Expression 4) is evaluated by the simulation technique
described in [?] with the simulation length set to T = 106.
Expression 5) is obtained by setting the cost to 0, since this
letter focuses on the minimization of the privacy loss.

In Fig. 2 we show the achievable leakage rate for binary
and ternary valued inputs as a function of the battery size.
The binary input is taken to be equiprobable and the ternary
input is taken to be binomial with parameter 0.5. Interestingly
the C-C system achieves a lower leakage rate than the two
existing algorithms being compared: the algorithm in [?] as
well as BEA. This is shown as 4) and 5) both lie above 2).
In addition, Fig. 2 shows that the policy yielding the optimal
leakage rate for a single battery does not necessarily lead to
the minimum upper bound of the leakage rate for the C-C
system, since 3) is above 2) for both input cases.

V. CONCLUSION

In this paper, we studied the privacy performance of a
smart metering system with cascaded rechargeable batteries
using MI as the privacy metric. We showed that the proposed
system achieves better privacy performance than BEA and the
algorithm proposed by Yang et al. However, we found that the
uncooperative cascaded system may potentially achieve higher
information leakage rate compare to the optimal leakage rate
achieved by the single battery system. Future work could
involve the extension to a smart metering system with three
or more rechargeable batteries in series.
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