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Abstract—In a traditional cellular network the base stations
(BSs) are deployed regularly according to a pre-determined
pattern modeled by hexagons. The deployment of a larger
number of BSs improves the network performance. However, a
dense regular deployment of BSs is prohibitively expensiveand in
most cases not feasible. Alternatively the network can growin an
organic fashion by the deployment of BSs according to the traffic
demand. A high traffic demand in a given locality is reflected
in a higher number of BSs deployed in the area. In this paper,
we propose a practical framework for the resource allocation of
cellular networks with an irregular BS deployment pattern. To
this end, a network clustering technique is proposed which forms
clusters of coordinating BSs. The coordinated resource allocation
among the BSs within each cluster is devised to achieve propor-
tional fairness. The performance of the proposed frameworkis
evaluated with regular as well as irregular deployment of BSs.
The results are compared against standard resource allocation
techniques and show promising results.

Index Terms—Autonomous infrastructure wireless network,
coordinated resource allocation, self-adaptation, base station
clustering.

I. I NTRODUCTION

A CELLULAR network is formed by the deployment of
a set of base stations (BSs) across the network coverage

area. In a typical cellular network, BSs are (more or less)
uniformly deployed based on a hexagonal pattern [1]. In a
typical urban cellular network, each BS covers an area with a
radius in the range of100− 1000 meters. In order to satisfy
the ever-growing demand for higher transmission rates, new
network infrastructures should be considered.

A network with the same regular deployment pattern, how-
ever with a much smaller cell radius, can potentially satisfy
the future requirements. Scaling down the size of each cell
does not substantially affect the signal-to-interference-plus-
noise ratio (SINR) of each link. However, with the reduction
of the cell coverage area, the number of served terminals
per BS drops significantly. Each BS allocates more system
resources to each terminal, which in turn results in a larger
aggregate throughput for the end-user. However, a significant
reduction in the cell size translates into a highly dense regular
deployment of BSs. The deployment of such an infrastructure
will be prohibitively expensive. More importantly, such a
dense deployment will not be feasible due to restrictions on
the locations of the base stations.
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Alternatively, the network can be constructed by a BS
deployment based on local traffic demand. The network will
no longer have a regular deployment pattern. In an autonomous
cellular network, the role of adaptation in efficient resource
allocation becomes increasingly important. Not only does it
improve the performance but more importantly allows the
network to scale in an organic fashion. In this paper, we
propose a practical adaptive resource allocation framework for
these networks. Cellular networks with regular and irregular
BS deployments are referred to astraditional andautonomous
cellular networks respectively.

A. Related work

Bonaldet al. introduce coordination among cells as a new
notion in scheduling of cellular networks [2]. For the first
time, resource allocation is performed in two phases, i.e. two
time scales. The first phase is in charge of coordinating the
activity of interfering BSs in order to maximize transmission
data rates. The second phase is responsible for load balancing
in order to divert traffic from heavily-loaded cells to lightly-
loaded cells. Li and Liu extend the two-level resource alloca-
tion framework to a multi-cell OFDMA system [3]. A radio
network controller assigns the available spectrum to BSs in
a centralized fashion during the first phase. In the second
phase each BS independently assigns the available frequency
channels to the terminals based on the actual traffic conditions
of the active terminals (e.g. terminals buffer sizes). This
paper offers the first — although computationally intensive—
two-level resource allocation framework for OFDMA cellular
networks, based on which several other solutions have been
proposed (e.g. [4]–[9]).

Most of the techniques proposed over the past decade
assume full knowledge of the channel state information (CSI).
Although this simplifies the problem tremendously, it jeopar-
dizes the practicality of the proposed technique. The authors
of [6] emphasize on this aspect. They propose a two-level
framework based on graph theory. In the first level, inter-
cell interference is reduced with no precise knowledge of
out-of-cell interference. The second level allocates the system
resources according to instantaneous channel gains.

Another important aspect in practicality is the degree of
centrality in the proposed technique. Centralized techniques
assume full coordination among all BSs and hence achieve
better performance. This, however, is at the expense of unre-
alistic level of inter-BS communication. In [10], a distributed
resource allocation method is proposed. An interference metric
is defined based on the interference among BSs. Accordingly
for each BSi, two sets of in-neighbor and out-neighbor BSs
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are introduced. An in-neighbor BS is defined as a BS which
creates interference on the terminals served by BSi and
an out-neighbor BS is one whose terminals are affected by
simultaneous transmission from BSi. The proposed technique
is essentially a coordinated power control algorithm, runsonce
every TTI and has multiple iterations. At each iteration, inter-
BS communication is among a limited number of BSs. This
reduces over-head signaling significantly. In particular,at each
BS individual CSI from only the in-neighbor set is required.
Nevertheless, it is assumed that each BS knows fast fading
aggregate interference levels due to simultaneous transmission
of all BSs at each of its serving terminals. Furthermore,
although the proposed technique is distributed, the decision on
terminating the iterative algorithm should be taken at a central
entity (alternatively the algorithm can be performed a pre-
determined number of times). Moreover, the results provided
in the paper are based on re-forming the neighbor sets every
TTI. This in turn potentially increases the over-head signaling
and complexity by a significant amount.

B. Contributions

A scheduling cell is defined as a set of BSs whose resource
allocation is coordinated. The cells adapt to actual traffic
distribution across the network. In regions where high interfer-
ence among BSs call for more coordination (e.g. hot-spots),a
larger cluster of BSs form a scheduling cell. Likewise regions
which serve sparse population of terminals and/or the terrain
obstructs interference among BSs, smaller scheduling cells are
created. A coordinated resource allocation method tailored
to the irregular structure of the adaptive scheduling cellsis
proposed. The corresponding resource allocation optimization
problem was formulated in [11] and a solution was proposed.
This solution is modified according to our assumptions, re-
quirements and objectives. It is important to note that the
resource allocation across the scheduling cells is distributed.
In other words, the resource allocation in each scheduling cell
is performed with no knowledge from the rest of the network.

The paper is organized as follows. Section II introduces
the system model. In Section III the network clustering
problem is defined and the network clustering algorithm is
developed. Section IV discusses the resource allocation frame-
work, presents the coordinated resource allocation method
and elaborates on the different time scales of adaptation. In
Section V the performance evaluation results are discussed.
Section VI concludes the paper and provides possible future
research directions.

Notation: Bold upper case letters (X) denote matrices, lower
case letters (x) are adopted for column vectors and the Latex
Mathcal font (X ) is used for sets.xT , |X |, X̄ denote the
transpose ofx, the cardinality ofX and the complement of
X respectively. The set of real numbers is denoted withR, the
empty set with∅ and anM ×N matrix of zeros with0M×N .

II. SYSTEM MODEL

In order to provide service toK wireless terminals,A BSs
are deployed. Each BSi has a backbone connection to the

wired network and a transmission power budgetPi
1. Each

terminal l is assigned to and communicates with BSa(l)
with the strongest large-scale fading channel gain. Thus BS
i serves the set of terminalsKi = {l|a(l) = i} such that
∑A

i=1 |Ki| = K. Wireless communication between BSs and
terminals is established on the available frequency spectrum,
a set ofN (frequency) resources.

Unless otherwise stated, it is assumed that the BS power
budgetPi is uniformly distributed across the available sub-
carriers. Assuming each frequency resource hasM sub-
carriers, the power budget for transmission on a sub-carrier
at BS i is

pi =
Pi

MN
. (1)

Let us consider a network with one BS andK terminals
and assumeI(t) ∈ {0, 1}K×N to be the frequency channel
allocation matrix for time slott. Iln(t) is equal to one if
frequency channeln is assigned to terminall in time slot
t andIln(t) = 0 otherwise. The data rate of terminall in time
slot t is

rl(t) =

N
∑

n=1

Iln(t)rln(t), (2)

whererln(t) is the supported data rate on frequency channel
n by terminall in time slot t.

Let Ul(t) be the utility function of terminall in time slott.
The resource allocation problem at the beginning of time slot
t can be formulated as follows [12]:

max
I(t)

K
∑

l=1

Ul (rl(t)) (3)

subject to

{

∑K
l=1 Iln(t) = 1 ∀n

Iln(t) ∈ {0, 1} ∀n, l ,

where n and l are the indices for frequency channels and
terminals respectively. The first constraint in (3) guarantees
that each resource is allocated to exactly one transmissionper
time slot. The second constraint dismisses the option of time-
sharing during a time slot. In a cellular network withA BSs,
the scheduling problem can be generalized as follows:

max
{I1(t),··· ,IA(t)}

K
∑

l=1

Ul (rl(t)) (4)

subject to

{ ∑

l∈Ki
Iln(t) ≤ 1 ∀n, i

Iln(t) ∈ {0, 1} ∀n, l ,

whereIi(t) is the frequency channel allocation matrix of BS
i for time slot t.

III. N ETWORK CLUSTERING

The optimal solution to (4) requires full coordination among
all BSs. This degree of coordination in a cellular network,
however, is not practical. Alternatively, the resource allocation

1In this paper, it is assumed that all BSs have the same power budget. The
results, however, are applicable to the more general case where the BSs have
distinct power budgets.
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problem can be broken down into smaller sub-problems and
solved locally. Instead of coordinating the resource allocation
among all BSs, coordination can be among a subset (cluster)
of BSs. At each time slot, the coordinating BSs adjust their
transmission power levels to achieve the best performance.
Inevitably BSs outside each cluster induce interference onall
links in the cluster. Hence larger clusters of BSs would result
in a better performance due to a lower number of potentially
interfering BSs. The improvement in performance comes at
the price of higher complexity for coordination among a larger
number of BSs. This Section develops a framework to form
clusters of coordinating BSs based on the BS locations and
the traffic distribution.

Let us define the network topology by the interference
matrix H = [hli] ∈ R

K×A, wherehli denotes the channel
gain between terminall and BSi. High channel gains between
terminals and BSs result in dense topologies and call for
coordination in resource allocation. On the other hand, a
sparse topology is formed as a result of low channel gains
between terminals and interfering BSs. Naturally, the sizeof
a scheduling cell2 should depend on the network topology.
Although a large scheduling cell implies high coordination
and hence a better system performance, it in turn increases
the implementation cost and complexity. On the other hand,
too small a scheduling cell results in excessive interference
levels among scheduling cells.

DEFINITION 4.1 (Network clustering problem) LetA be
the set of BSs in the network. A partition ofA is defined as
the set of subsetsA(1),A(2), · · · ,A(C) such that

{

⋃C
c=1A(c) = A
A(i) ∩ A(j) = ∅, ∀i 6= j

. (5)

Clustering is the process of finding such a partition subject
to some criteria. The clustering problem imposes boundaries
among scheduling cells. Each boundary delineates the lack of
coordination among certain BSs. This in turn means, unlike
traditional frequency allocation schemes, transmission to ter-
minals at the boundary between two adjacent scheduling cells
will no longer be perfectly orthogonal. The level of interaction
among scheduling cells heavily depends on the network topol-
ogy. An intelligent choice of boundaries among scheduling
cells reduces the inter-cell interference to acceptable levels.
More importantly in a clustered network, practical coordinated
resource allocation methods in autonomous cellular will be
possible.

Let us model the cellular network as a fully connected
weighted graph(V , E). The set of verticesV represents the
set of BSsA. Each edge connects two BSs in the network.
The weight on the edge is defined based on the notion of
interference among BSs. This notion is introduced in Sec-
tion III-A which gives rise to the definition of thesimilarity
index. In Section III-B, a clustering algorithm is proposed
which partitions the BSs into scheduling cells.

2The size of a scheduling cell is defined as the number of BSs in the
scheduling cell.

A. Similarity index

Resource allocation in a cellular network is performed in
a time-slotted fashion. At each time slot, each BS serves a
number of terminals on the available frequency channels. The
SINR of a terminal on a given frequency channel can be
written as

SINR=
PD

PI + η0W
, (6)

wherePD is the received signal from the desired BS at the
desired terminal.PI denotes the interference at the desired
terminal andη0W is the background noise power. The in-
terference is caused by simultaneous transmission (i.e. atthe
same time slot and on the same frequency channel) from all
or a subset of BSs in the network.

In general, the quality of a link improves with higher SINR.
Let us define theperformance level of a terminal by the
corresponding SINR level. Each BS serves a set of terminals
with a unique set of performance levels. Simultaneous trans-
mission from BSj has an impact on the performance levels
of the terminals assigned to BSi. If the impact is significant,
coordination in resource allocation between BSi and BSj is
required.

The performance level of a BS is defined by an increasing
function of the performance levels of the terminals assigned
to it. The performance level of BSi can be defined as the
arithmetic average of the performance levels of its terminals.
This definition has one major problem. The SINR levels of the
terminals assigned to a BS can take a wide range of values. In
some scenarios, due to exceptionally good channel gains (or
unrealistic simulation models or flaws in channel estimations),
a few terminals experience unexpectedly high SINR levels.
The resource allocation decisions, however, should not be
influenced by or be based on the channel gains of these
terminals. Albeit, the arithmetic average SINR level is skewed
toward these high values. The median SINR level, on the other
hand, is defined as the midpoint where half of the SINR levels
are above and half of the SINR levels are below this value.
Essentially, by defining the performance level of a BS as the
median value, the effect of unrealistically high SINR levels is
mitigated.

Based on the interference coming from BSj, the SINR at
terminal l assigned to BSi can be written as

SINRlij =
hlipi

hljpj + η0W
, (7)

wherehli denotes the channel gain between terminall and BS
i, pi is the transmit power of BSi. With no interference from
BS j, the signal-to-noise ratio (SNR) for terminall is

SNRli =
hlipi
η0W

. (8)

Let us form the SINR vectorxij by the SINR levels of
all terminals assigned to BSi with interference from BSj
as calculated in (7). Similarly, letyi be the vector of SNRli
levels of the terminals assigned to BSi as calculated in (8).
The loss in performance due to the effect of interference from
BS j on BS i is quantified by the following index:
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Fig. 1. A cellular network with two BSs and two terminals

cij =
f(yi)

f(xij)
, (9)

where f(yi) is the performance level of BSi without in-
terference from BSj. Similarly, f(xij) is the performance
level of BS i with interference from BSj. Based on the
discussions earlier in this Section, the performance levelof
each BS is defined as the median of the performance levels
of all terminals assigned to the BS.

By exchangingi and j in (7), (8) and (9)cji is defined.
A larger cij and/or cji implies higher levels of interference
between BSsi and j, and in turn translates into a higher
urgency for coordination between the two BSs. The similarity
index between BSi and BSj is defined as

sij =
1

2
(cij + cji) . (10)

As an example let us consider the cellular network in Figure 1.
BS 1 is serving terminal1 and BS2 is serving terminal2.
Based on (9) we have

{

c12 = SNR11

SINR112

= h12p2

η0W
+ 1

c21 = SNR22

SINR221

= h21p1

η0W
+ 1

. (11)

Depending on the values of the channel gainsh12 andh21, the
two indices can be very different. Hence the similarity index
between BS1 and BS2 is defined as

s12 = s21

=
1

2
(c12 + c21) =

h12p2 + h21p1
2η0W

+ 1. (12)

It should also be noted that the similarity index is defined as
a function of large-scale fading channel gains (i.e. path-loss
and shadow fading). As a result it can be easily applied to
multiple antenna systems, since the MIMO channel structure
usually affects only the small-scale fading gains.

The network similarity matrixS = [sij ] ∈ R
A×A is formed

by the similarity indices of all pairs of BSs in the network.
This matrix quantifies the level of interference between any
pair of BSs in the network. In order to form this matrix, the
channel gains between all terminals and BSs are required. This
information is readily available from the BS assignment stage,
where the channel gains of each terminal to the BSs in its
vicinity are compared and the terminal is assigned to the BS
with the strongest channel gain. The estimated channel gains
are reported from each terminal to the corresponding BSs.
The reported channel gains are then communicated from the

BSs to a central control unit where the similarity matrix is
formed. In Section III-B, this matrix is employed to develop
the network clustering algorithm.

B. Clustering

Parallel computing efficiently distributes computation loads
across multiple processors. Firstly, the computations should be
assigned to the processors in such a way that there exists little
or no inter-processor communication. Secondly, the computa-
tion load should be balanced across the processors. The load
distribution can be stated as the problem of finding the com-
putation load assignment which minimizes the inter-processor
communication, while keeping the computation loads assigned
to the processors as equal as possible.

The cellular network clustering problem is analogous to the
load distribution problem in parallel computing. Scheduling
cells take the place of processors and inter-cell interference
takes the place of inter-processor communication. Insteadof
minimizing the inter-processor communication, the interfer-
ence levels among the scheduling cells are to be minimized. A
balanced distribution of the computation load is replaced by a
balanced distribution of the resource allocation load across the
scheduling cells, which in other words, equalizes the resource
allocation complexity across the scheduling cells.

The load distribution problem in parallel computing has
been extensively studied in the context of graph partitioning.
There are several ways to pose partitioning a graph as a math-
ematical problem. The min-cut technique is a straightforward
method which attempts to minimize the inter-dependencies
among clusters. Let(V , E) be a fully connected weighted
graph withN nodes{vi}Ni=1 and weight matrixW ∈ R

N×N .
The connectivity between two setsE ,F ⊂ V is defined as

c(E ,F) =
∑

ve∈E,vf∈F

wef , (13)

wherewef is the element on rowe and columnf of the weight
matrix W. The min-cut technique generates a Q-partition of
the graph{V1, · · · ,VQ} by minimizing the connectivity of
each clusterVq from the rest of the network̄Vq. Mathemati-
cally this problem is expressed as

min
{V1,··· ,VQ}

Q
∑

q=1

c(Vq, V̄q). (14)

The min-cut solution often tends to separate individual vertices
from the graph which disturbs the desirable balance in the size
of the clusters. In order to avoid the generation of too small
clusters, the problem is modified as

min
{V1,··· ,VQ}

Q
∑

q=1

c(Vq, V̄q)
|Vq|

. (15)

By normalizing the connectivityc(Vq, V̄q) by the cardinality
of the corresponding set|Vq|, we are essentially enforcing the
formation of reasonably large clusters.

The solution of problem (15) has been shown to be NP
hard. In what follows, we elaborate on how the problem can be
relaxed into an easy-to-solve standard linear algebra problem.
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This technique is known as the spectral clustering technique
[13].

1) Spectral clustering: Let U = [u1, · · · ,uQ] ∈ R
N×Q be

the indicator matrix such that

uij =

{

1√
|Vj |

, vi ∈ Vj
0 , vi /∈ Vj

(16)

andL be the Laplacian of the weight matrixW as follows:

L = D−W, (17)

whereD = [dij ] ∈ R
N×N is a diagonal matrix withdii =

∑N
j=1 wij . It is easy to show that

uT
q Luq =

c(Vq, V̄q)
|Vq|

. (18)

Hence,

Q
∑

q=1

c(Vq, V̄q)
|Vq|

=

Q
∑

q=1

uT
q Luq = trace(UTLU) (19)

and the partitioning problem can be formally written as

min
{V1,V2,··· ,VQ}

trace(UTLU), (20)

whereU is defined in (16).
By relaxing the constraint onU, the optimization problem

can be written as

min
{V1,V2,··· ,VQ}

trace(UTLU) (21)

subject to U ∈ R
N×Q.

From the Rayleigh-Ritz theorem, it is well-known that the
optimumU is formed by the firstQ eigen-vectors3 of L as
its columns. Hence,U can be written as[u1,u2, · · · ,uQ]
whereu1 is the eigen-vector corresponding to the smallest
eigen-value. For any eigen-vectoruq = [u1q, u2q, · · · , uNq]

T ,
we have

uT
q Luq =

N
∑

n=1

N
∑

m=1

(unq − umq)
2wnm. (22)

Without loss of generality the eigen-vectors are assumed tobe
normalized, i.e.uT

q uq = 1. Hence,

λq =
N
∑

n=1

N
∑

m=1

(unq − umq)
2wnm. (23)

Let us consider two verticesn andm with a highwnm. For
a small eigen-valueλq, the term (unq − umq)

2 should be
small. SinceU is constructed from the eigen-vectors with
the smallestQ eigen-values ofL, the term (unq − umq)

2

should be small for allq = 1, · · · , Q. This in turn translates
into two geometrically close points in aQ-dimensional vector
space. Following this argument, each vertex of the graph is
represented by a point in theQ-dimensional vector space

3Corresponding to theQ smallest eigen-values.

with coordinatesgn ∈ R
Q. In order to form aQ-partition

{V1,V2, · · · ,VQ}, the points {g1,g2, · · · ,gN} in the Q-
dimensional vector space are partitioned based on the K-
clustering technique. The pseudo-code for the spectral clus-
tering is provided in Algorithm 1. The choice of K-clustering
for the last stage of the spectral clustering method is purely
due to the simplicity of this technique as will be discussed in
the following.

Algorithm 1 Spectral clustering
Require: ParameterQ.

1: Compute the Laplacian matrixL = D−W, whereD is
a diagonal degree matrix withdii =

∑N
j=1 wij .

2: Compute the firstQ eigen-vectorsu1, · · · ,uQ of L.
3: Let U ∈ R

N×Q be the matrix containing the vectors
u1, · · · ,uQ as columns.

4: Let gn ∈ R
Q be the vector corresponding to the rown

of matrix U.
5: Cluster the pointsg1, · · · ,gN into V1, · · · ,VQ clusters

with the K-clustering algorithm.
6: Form clusters:Vq = {n|gn ∈ Vq}.

Let us consider a graph ofN vertices with the coordinate
set{g1,g2, · · · ,gN}. Given a Q-partition, each clusterVq can
be represented by a cluster-headmq defined as

mq =
1

|Vq|
∑

v∈Vq

gv. (24)

It should be noted that the cluster-head can be any point in
the vector space and does not necessarily have to be chosen
from the vertices.

Similarly given a set of cluster-heads{m1,m2, · · · ,mQ},
the corresponding Q-partition can be formed by assigning
each vertex of the graph to the cluster-head with the smallest
Euclidean distance.

The K-clustering problem is defined as finding the set of
Q cluster-heads which minimizes the squared distance from
any vertex to its cluster-head. The K-clustering techniqueis an
iterative algorithm to solve this problem: In the initialization
step, the vertices are randomly clustered intoQ clusters
{

V(0)
1 ,V(0)

2 , · · · ,V(0)
Q

}

. The corresponding cluster-head set
{

m
(0)
1 ,m

(0)
2 , · · · ,m(0)

Q

}

is formed according to (24). Given
the set of cluster-heads, vertexv with coordinatesgv is
reassigned to clusterq∗ such that

q∗ = arg min
1≤q≤Q

||gv −mq||2. (25)

Hence, a new set ofQ clusters
{

V(1)
1 ,V(1)

2 , · · · ,V(1)
Q

}

is
formed. In the subsequent iterations the set of cluster-heads is
updated and the vertices are correspondingly reassigned. The
procedure is repeated forW iterations. The pseudo-code of
this technique is provided in Algorithm 2. It should be noted
that

• the solution of the K-clustering algorithm is a partition of
the graph with not exactly but at mostQ clusters. In some
instances, one or more cluster-heads may not have any



6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION

vertex associated to them. In this case, a smaller number
of clusters are formed.

• the K-clustering technique is very sensitive to the ini-
tialization step. In other words, with a different initial
random partition, the technique may result in a very
different solution.

Algorithm 2 K-clustering
Require: ParameterQ,W .

1: Randomly cluster {g1,g2, · · · ,gN} into Q clusters
{

V(0)
1 ,V(0)

2 , · · · ,V(0)
Q

}

.
2: for w = 1 to W do
3: For each clusterV(w−1)

q find the coordinates of the
cluster-headm(w)

q based on (24).
4: Reassign nodegv to clusterq∗ based on (25), and form

the Q-partition
{

V(w)
1 ,V(w)

2 , · · · ,V(w)
Q

}

.
5: end for

2) Network clustering algorithm: In traditional cellular
networks, pre-determined static frequency re-use clusters are
employed to decrease the level of interference among BSs.
In the proposed network clustering approach, the key idea
is essentially the same. Instead of the static frequency re-
use clusters, it is the role of the network clustering algorithm
to adaptively form scheduling cells such that the interference
among clusters are reduced to acceptable levels. By developing
the network clustering algorithm, a new level of adaptationis
introduced into the resource allocation framework of cellular
networks.

In the network graph, each vertex represents a BS. The
vertices are all connected and weighted according to the
similarity matrix introduced in Section III-A. Thus a fully
connected and weighted graph is constructed. The network
clustering algorithm forms a partition of the graph which
translates into the formation of scheduling cells. It should be
noted that the scheduling cells are not completely isolated
from each other. In other words, interference among the
scheduling cells still exits. Nevertheless, as will be seenfrom
the performance evaluation results, an appropriate level of
coordination among the BSs, reduces the level of interference
among the scheduling cells to acceptable levels such that
independent coordination in the scheduling cells becomes
possible.

The proposed network clustering algorithm is based on
the spectral clustering technique. By applying the spec-
tral clustering method on the network graph, a partition
P = {V1,V2, · · · ,VR} is formed with R ≤ Q.
Due to the intrinsic sensitivity of the K-clustering tech-
nique to initialization, the spectral clustering will be per-
formed for L randomly chosen independent initial par-
titions. Thus L independent partitions of the network
{

P(1),P(2), · · · ,P(L)
}

are formed. An association matrix
D = [dij ] ∈ [0, 1]A×A is defined based on theL partitions as
follows:

dij =
# of times BSi and j are in the same cluster

L
. (26)

BSsi andj with an association factordij larger than threshold

T join the same scheduling cell. The network clustering
strategy is provided in Algorithm 3.

Algorithm 3 Forming the scheduling cells
Require: ParametersQ andT .

1: Initialize the association matrix:D← 0A×A.
2: for l = 1 to L do
3: Cluster the BSs based on Algorithm 1 withW = S.
4: if i andj are members of the same clusterthen
5: dij ← dij +

1
L

.
6: end if
7: end for
8: if dij > T then
9: if BS i or j is already part of a SCthen

10: Join the other node to that SC.
11: else
12: Form a new SC with BSsi andj as members.
13: end if
14: end if
15: BSs which are not members of any SC form stand-alone

SCs.

The proposed clustering algorithm has two parametersQ
andT . ParameterQ defines the maximum number of clusters
in the K-clustering problem and hence limits the maximum
number of clusters in each iterationl. A higherQ results in a
lower number of BSs per scheduling cell which translates into
less coordination in resource allocation. ParameterT adjusts
the tendency of BSs to join one cluster. A largerT requires
two BSs to have a larger association factor to join the same
scheduling cell and as a result it also directly impacts the size
of the scheduling cells. With aT of unity, no two BSs will
join the same scheduling cell asdij < 1 for any i 6= j. On
the other hand, aT of zero translates into full coordination
among all BSs. This is due to the fact thatdij > 0 for any
i 6= j. Figure 2 shows the average scheduling cell size as a
function ofQ andT . Regardless ofQ, a smallerT results in
a higher degree of coordination as expected. In a sense, the
level of coordination that is affordable – based on the available
network infrastructure (e.g. back-haul capacity) – is reflected
in an appropriate choice ofT . ParameterQ can then fine tune
the level of BS coordination based on the desired trade-off
between complexity and performance.

IV. RESOURCE ALLOCATION FRAMEWORK

The proposed resource allocation framework is comprised
of two levels of abstraction. In the first level (level A), the
network is clustered into scheduling cells. In the second level
(level B), resource allocation is performed. Resource alloca-
tion is coordinated among the BSs forming each scheduling
cell and is performed independently across scheduling cells. It
is based on a coordinated proportional fair strategy developed
in Section IV-A. Section IV-B discusses the time scales of
adaptation in this framework.

A. Coordinated resource allocation

A scheduling cellc with the BS setA(c) and the terminal
setK(c) is studied. For ease of notation the indexc is dropped
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Fig. 2. The average scheduling cell size as a function of clustering parameters
Q andT : With a fixedQ, a largerT results in smaller scheduling cells. In
a network where higher complexity can be afforded, the system designer can
increaseT to achieve a higher coordination among BSs.

throughout the Section. In time slott the data rate of terminal
l is given by (2). After time slott, the average rate of terminal
l is updated according to

r̄l(t) =
(t− 1)r̄l(t− 1) + rl(t)

t

=

(

1− 1

t

)

r̄l(t− 1) +
1

t
rl(t), (27)

where the average rate at the beginning of the first time slot is
set to zero for all terminals. The resource allocation problem
at the beginning of time slott is formulated as

max
∑

kl∈K

log r̄l(t), (28)

whereK is the set of terminals in the scheduling cell. It
can be shown that assuming1

t−1 ·
rl(t)

r̄l(t−1) ≪ 1 the following
approximation holds:

log r̄l(t) ≈ log

[(

1− 1

t

)

r̄l(t− 1)

]

+
1

t− 1
· rl(t)

r̄l(t− 1)
. (29)

At the beginning of time slott the first term is known
(constant). Hence, the optimization problem (28) can be
approximated by

max
∑

kl∈K

rl(t)

r̄l(t− 1)
. (30)

In a multi-carrier system this problem can be generalized as
follows:

max
∑

kl∈K

N
∑

n=1

Iln(t)rln(t)

r̄l(t− 1)
. (31)

The power budget of the BSs is assumed to be uniformly
distributed across the available frequency channels. In a given
time slot and frequency channel, a BS either transmits with a
fixed transmit power or not transmit at all. With the assumption
of equal power distribution across the available frequency
channels, the optimization problem in (31) is reduced to a
per-frequency channel problem as follows:

max
∑

kl∈K

rln(t)

r̄l(t− 1)
. (32)

In the remainder of this Section, a system with one fre-
quency channel is assumed. Letp(t) = [p1(t), · · · , p|A|(t)]

T

be the transmission power vector of the BSs in time slott.
Each terminal receives a desired signal from the serving BS
and interfering signals from all or a subset of BSs in the
network. With a fixed power vectorp(t), each BS knows the
received signal power levels from all BSs in the scheduling cell
at each of its assigned terminals. Hence, BSi can estimate4 the
supported data rate of the terminals it is serving. Accordingly,
each BS allocates the frequency channel to terminalk∗a(t)
based on the following proportional fairness criterion:

k∗a(t) = arg max
kl∈Ka

rl(t)

r̄l(t− 1)
, ∀a ∈ A (33)

For a given power vectorp(t), the set of the chosen terminals
{k∗a(t)}a∈A forms the co-channel user setK(p, t) in time slot
t. In a scheduling cell withA BSs, there are2A possible
transmission power vectors. At time slott, for each power
vector p(t) ∈ {0, Pmax}2

A×1 the corresponding co-channel
user setK(p, t) = {k∗a(t)}a∈Ais formed according to (33).
The optimal power vector at time slott is then the one which
satisfies

p∗(t) = argmax
p

∑

kl∈K(p,t)

rl(t)

r̄l(t− 1)
(34)

The complexity of this approach increases exponentially with
the number of BSs in a scheduling cell. However, this
complexity is tunable by adjusting the average size of the
scheduling cells as will be discussed in Section V.

B. Time scales of adaptation

The coordinated resource allocation at level B is performed
once every transmission time interval, also known as a sub-
frame (SF) in the LTE terminology. The network clustering at
level A re-forms the scheduling cells at a larger time scale,i.e.
once everyU sub-frames. The system parameterU primarily
depends on the rate of variations in the wireless communica-
tion environment. For a fast time-varying network, a small
U translates into fast re-formation of the scheduling cells.
ParameterU is essentially a design parameter which should be
adjusted according to the environment. As an example, let us
assume that the shadow fading changes with a displacement
in the order of tens of wavelengths. For a system with a

4It should be noted that due to the lack of knowledge of out-of-cell
interference, the actual supported data rate of each terminal is not available.
However, an estimate can be obtained based on the in-cell interference which
is known due to the coordination within each scheduling cell.
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center frequency of2GHz and a terminal velocity of30Kmph,
a terminal travels ten wavelengths in0.18 seconds which is
equivalent to18 frames in the LTE system. Consequently, aU
of a few tens of sub-frames will be a reasonable choice. The
pseudo-code of the framework is presented in Algorithm 4.

Algorithm 4 Proposed framework pseudo-code
Require: ParametersQ,U .

1: loop
2: {LEVEL A}
3: Update the set of active BSsA and active terminalsK.
4: Update the wide-band interference matrixH =

[hli]
K×A.

5: Assign terminal l to BS a(l) such that a(l) =
argmaxai∈A hli.

6: Form the similarity matrixS = [sij ]
A×A, with sij in

(10).
7: Apply the adaptive clustering Algorithm 3 on similarity

matrix S and form the scheduling cells(A(c),K(c)).
8: {LEVEL B}
9: for SUBFRAME= 1 to U do

10: Perform coordinated resource allocation in each
scheduling cell as discussed in Section IV-A.

11: end for
12: end loop

V. NUMERICAL RESULTS

In Section V-A, we study the performance of a traditional
cellular network. Section V-B discusses the performance of
the proposed framework in an autonomous cellular network.

A. Traditional cellular network

The BSs are deployed regularly according to the hexagonal
pattern with an inter-site-distance of500 meters. Channel
gains are modeled based on the ITU recommendations for
urban-macro environments [14]. The simulation parameters
are provided in Table I. For simplicity, a system with one
frequency channel is considered. In order to comply with the
LTE air interface technology, the system bandwidth has been
chosen to be equal to that of a sub-carrier in the standard.
In addition, each time slot has been chosen to be equal to
a sub-frame of1ms. In each time slot14 transmissions (in
time) occur for the scheduled terminal corresponding to the
14 OFDM symbols in a resource block.

The effect of the clustering parameterT is discussed in
section III-B2. In the numerical results a fixedT of 0.7 has
been considered. The choice of this value is simply because it
results in a shorter simulation time due to a lower degree of
coordination among BSs. With a smallerT , better performance
is expected at the expense of higher complexity.

The performance of the proposed framework is compared
with the following classical techniques:

• Universal frequency reuse (UFR): The entire system
spectrum is available to all BSs. At each time slot, each
BS schedules one terminal on the available frequency
channel based on the proportional fairness criterion.

TABLE I
SYSTEM PARAMETERS

System parameter Value

Carrier frequency 2GHz
Bandwidth (W ) 15KHz

Sub-frame size (time slot duration) 1ms
Number of simulated sub-frames (ts) 40

BS power budget (Pmax) 18.22dBm
Noise figure at terminal 7dB
Background noise PSD −174dBm/Hz

Terminal velocity 30Kmph
Number of BSs (M ) 21

Total number of terminals 4, 6, 8, 10 per BS
Traffic model Full buffer

Clustering algorithm threshold (T ) 0.7

• Static cluster size of 3: The cellular network with21 BSs
is clustered into7 scheduling cells of3 BSs. Scheduling
is based on the coordinated approach discussed in Sec-
tion IV-A.

In Figure 3 the average size of clusters is plotted as a
function of the clustering parameterQ. A higher Q results in a
higher number of clusters. EssentiallyQ is a system parameter,
equivalent to the frequency reuse factor of the cellular concept,
which adjusts the level of BS coordination and hence the
complexity in resource allocation.

The system performance is evaluated with Monte-Carlo
simulations. In the ITU report 2135, adrop is defined as an
independent deployment of terminals and BSs [14]. During
the simulation of a drop, the shadow fading and slow fading
channel gains are assumed to be constant. The mobility of
terminals, however, change the channel gains from one sub-
frame to the next according to the Doppler effect. In this paper,
1000 drops have been considered and the performance of each
drop is evaluated over40 sub-frames.

Let η̄l be the average spectral efficiency of terminall defined
as

η̄l =
r̄l(ts)

W
. (35)

The cell spectral efficiency is defined as the sum spectral
efficiency of all terminals in the network normalized by the
number of BSsM .

η̄ =

∑K
l=1 η̄l
M

(36)

Let s = [η̄1, · · · , η̄K ] denote the vector of average spectral
efficiencies of all terminals in the network. The cell edge
spectral efficiency is defined as the5% point of the cumulative
distribution function ofs.

The performance of the proposed technique is evaluated for
two values of4 and8 for Q, corresponding to average cluster
sizes of3.3 and1.7 respectively. The cell spectral efficiency
performance results are provided in Figure 4. With aQ of
4, the cell spectral efficiency is on average10.7% higher than
that of UFR. Compared to a static cluster size of3, the spectral
efficiency has improved by2.4%. With a Q of 8, the spectral
efficiency is5.5% greater than that of UFR. It achieves97.7%
of the cell spectral efficiency with a static cluster size of3. In
other words, by reducing the coordination from3 to 1.7 BSs
(43.4%), the loss in performance is only2.3%.
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Fig. 3. Average cluster size as a function of the clustering parameterQ:
IncreasingQ decreases the average cluster size. This in turn results in alower
level of coordination among BSs.
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Fig. 4. Cell spectral efficiency as a function of the total number of terminals
in the network: UFR achieves the worst performance due to excessive level of
interference among BSs. For aQ of 8 the proposed technique is better than
UFR. With aQ of 4 the coordination is increased to an average of3.3 which
results in a better performance. A proper choice forQ achieves a desirable
balance between complexity and performance.

The cell edge spectral efficiency performance is illustrated
in Figure 5. With aQ of 4 the cell edge spectral efficiency is on
average53.1% higher than that of UFR. Compared to a static
cluster size of3, the cell edge spectral efficiency has improved
by 5.5%. With a Q of 8, the cell edge spectral efficiency is
24% great than that of UFR. It achieves85.5% of the cell
spectral efficiency of static clustering.

B. Autonomous cellular network

Due to the irregularity in the infrastructure of an au-
tonomous cellular network, most of the classical resource
allocation techniques are not applicable. In fact, UFR is the
only classical method which can be considered. Figure 6
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Fig. 5. Cell edge spectral efficiency as a function of the total number of
terminals in the network: Despite the lack of coordination among clusters,
these results show that the cell edge performance is not compromised.

R

4.5R

Fig. 6. Network coverage area for a cellular network with19 BSs: In
the traditional network the BSs are deployed at the center ofthe illustrated
hexagons. In the autonomous cellular network the same number of BSs are
randomly deployed in the network coverage area, modeled with a circle of
radius4.5R.

illustrates the coverage area of a traditional cellular network
with 19 BSs. In the autonomous cellular network, the same
number of BSs is deployed in the same coverage area, modeled
with a circle of radius4.5R. A random two-dimensional
uniform distribution is considered for the deployment of BSs
and terminals. The same system parameters of Section V-A
are adopted with the exception that in this Section the cellular
network is formed by19 BSs (instead of21).

In Figure 7, the average size of a scheduling cell is plotted
as a function of the clustering parameterQ. A Q of 8 results
in an average scheduling cell size of1.7 BSs. With aQ of
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Fig. 7. Average size of the scheduling cells as a function of the clustering
parameterQ: The proposed technique clusters the network regardless ofthe
BS deployment pattern. Similar to the traditional network,increasingQ results
in a lower level of coordination among BSs.
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Fig. 8. Cell spectral efficiency as a function of the clustering parameter
Q: As the number of terminals in the network increases, a higher spectral
efficiency is observed. This can be explained by the larger multi-user diversity
gain. With a fixed number of terminals, a smallerQ improves the performance
due to a higher level of coordination among BSs.

4 the level of coordination increases to among an average of
3.5 BSs.

The cell spectral efficiency is plotted as a function ofQ
in Figure 8. The performance is evaluated for an average of
4, 5 and 6 terminals per BS. Based on Figure 7, decreasing
Q from 10 to 4 is equivalent to increasing the coordination
level by a factor of2.5. For a network with152 active
terminals, this results in a6.4% improvement in the cell
spectral efficiency. The cell edge spectral efficiency improves
by 35.5% as illustrated in Figure 9.

In the rest of this section, the system performance is
evaluated forQ equal to4 and8 corresponding to an average

4 5 6 7 8 9 10
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Q

C
el

l e
dg

e 
sp

ec
tr

al
 e

ffi
ci

en
cy

 (
bp

s/
H

z)

 

 

K = 76
K = 114
K = 152

Fig. 9. Cell edge spectral efficiency as a function of the clustering parameter
Q
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Fig. 10. Cell spectral efficiency as a function of the total number of terminals
in the network: The performance of two network with regular (traditional)
and irregular (autonomous) BS deployment pattern are compared. Based on
the system designer requirements, the technique allows a tunable trade-off
between complexity and performance. DecreasingQ increases coordination
among BSs and consequently improves the performance.

cluster size of3.5 and1.7 BSs respectively. The cell spectral
efficiency is plotted as a function of the total number of termi-
nals in Figure 10. With aQ of 8, the cell spectral efficiency
is on average4% higher than that of UFR. Increasing the
coordination to among an average of3.5 BSs (withQ of 4)
the cell spectral efficiency improvement increases to11%. The
performance results of a traditional cellular network are also
provided as a point of reference. In the traditional network,
UFR is considered for resource allocation and is denoted
by ’Traditional network (UFR)’. The results show that the
autonomous network with no coordination, i.e. UFR, incurs a
penalty of14% for deployment irregularity in the cell spectral
efficiency. With aQ of 8 the penalty is reduced to8% which
is further reduced to3% with a Q of 4.
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Fig. 11. Cell edge spectral efficiency as a function of the total number of
terminals in the network

The cell edge spectral efficiency performance results are
provided in Figure 11. With aQ of 8, the cell edge spectral
efficiency is improved by17% when compared to UFR. With
a Q of 4 an improvement of54% is observed in the cell edge
spectral efficiency. When compared to a traditional network,
a Q of 8 achieves72% of the cell edge spectral efficiency
andQ of 4 achieves94% of the cell edge spectral efficiency.
This is while the autonomous network with no coordination,
i.e. UFR, achieves61% of the cell edge spectral efficiency
of the traditional network. Table II reports the performance
evaluation results as a percentage of the performance in the
traditional network.

VI. SUMMARY AND FUTURE WORK

In this paper we have developed an adaptive framework
for resource allocation in cellular networks with irregularly
deployed BSs. A scheduling cell is defined by a set of
coordinating BSs. A network clustering method is proposed.
Accordingly, the scheduling cells are formed based on the
network infrastructure (i.e. distribution of BSs and terminals).
Scheduling cells adapt to the time variations in the network.
The size of each scheduling cell is a function of the density
of BS and terminal deployment in each locality. The average
size of scheduling cells is tunable in order to achieve a
desirable balance between performance and complexity. A
coordinated resource allocation scheme is developed which
achieves proportional fairness among the terminals in each
scheduling cell.

In section III-A, we have introduced the notion of similarity
between two BSs. The similarity index quantifies the level
of interference among BSs and plays an important role in
the formation of the scheduling cells. It should be noted
that there are many ways to define the similarity index. The
defined index in this paper is dynamically updated based
on the channel gains of the active terminals. One might
consider static indices solely based on the location of the
BSs. Furthermore the proposed clustering technique is based

TABLE II
RESOURCE ALLOCATION PERFORMANCE COMPARISON

Resource allocation Cell spectral Cell edge spectral
method efficiency(%) efficiency (%)

UFR 86 61

Proposed (Q = 8) 92 72

Proposed (Q = 4) 97 94

on the spectral clustering approach. Similar methods, suchas
the page rank algorithm [15], should also be studied.

In an autonomous cellular network, the deployment of extra
BSs would naturally improve the system performance. If we
assume there are a limited number of extra BSs to be deployed,
where is the best location to deploy them? The strategic
positioning of additional BSs given the available network
infrastructure is an interesting problem to pursue. In addition,
we have assumed all terminals have the same quality of service
(QoS) requirements. The volume of traffic is directly translated
into the number of active terminals. The framework can be
extended to cases where multiple classes of terminals with
different QoS requirements are considered.

In this paper, each terminal communicates with only one
BS. Alternatively, each terminal can communicate with more
than one BS in the scheduling cell. Coordinated transmission
from the BSs in a cell to each terminal can potentially improve
the system performance. However, whether the additional
complexity would result in considerable improvements or not
should be carefully examined. Furthermore, we have assumed
that the power budget of each BS is equally distributed across
the available frequency channels. The frequency channels are
then assigned based on a terminal scheduling policy. Although
this is a common practice in OFDMA-based systems, power
control is still an area which should be thoroughly studied in
autonomous cellular networks.
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