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Abstract—In a traditional cellular network the base stations
(BSs) are deployed regularly according to a pre-determined
pattern modeled by hexagons. The deployment of a larger
number of BSs improves the network performance. However, a
dense regular deployment of BSs is prohibitively expensivand in
most cases not feasible. Alternatively the network can grown an
organic fashion by the deployment of BSs according to the tiffic
demand. A high traffic demand in a given locality is reflected
in a higher number of BSs deployed in the area. In this paper,
we propose a practical framework for the resource allocatio of
cellular networks with an irregular BS deployment pattern. To
this end, a network clustering technique is proposed whichdrms
clusters of coordinating BSs. The coordinated resource atation
among the BSs within each cluster is devised to achieve propo
tional fairness. The performance of the proposed frameworkis
evaluated with regular as well as irregular deployment of BS.
The results are compared against standard resource allociain
techniques and show promising results.

Index Terms—Autonomous infrastructure wireless network,
coordinated resource allocation, self-adaptation, base tation
clustering.

I. INTRODUCTION

Alternatively, the network can be constructed by a BS
deployment based on local traffic demand. The network will
no longer have a regular deployment pattern. In an autonemou
cellular network, the role of adaptation in efficient resmur
allocation becomes increasingly important. Not only ddes i
improve the performance but more importantly allows the
network to scale in an organic fashion. In this paper, we
propose a practical adaptive resource allocation framievasr
these networks. Cellular networks with regular and irragul
BS deployments are referred totaaditional andautonomous
cellular networks respectively.

A. Related work

Bonald et al. introduce coordination among cells as a new
notion in scheduling of cellular networks [2]. For the first
time, resource allocation is performed in two phases, we. t
time scales. The first phase is in charge of coordinating the
activity of interfering BSs in order to maximize transmasi
data rates. The second phase is responsible for load badanci
in order to divert traffic from heavily-loaded cells to ligj

CELLULAR network is formed by the deployment ofloaded cells. Li and Liu extend the two-level resource alloc
a set of base stations (BSs) across the network coversiga framework to a multi-cell OFDMA system [3]. A radio

area. In a typical cellular network, BSs are (more or lessgtwork controller assigns the available spectrum to BSs in
uniformly deployed based on a hexagonal pattern [1]. Ina centralized fashion during the first phase. In the second
typical urban cellular network, each BS covers an area withphase each BS independently assigns the available freguenc
radius in the range of00 — 1000 meters. In order to satisfy channels to the terminals based on the actual traffic comditi

the ever-growing demand for higher transmission rates, n@i the active terminals (e.g. terminals buffer sizes). This

network infrastructures should be considered.

paper offers the first — although computationally intensive

A network with the same regular deployment pattern, howwo-level resource allocation framework for OFDMA cellula
ever with a much smaller cell radius, can potentially sptishetworks, based on which several other solutions have been

the future requirements. Scaling down the size of each cplioposed (e.g. [4]-[9]).

does not substantially affect the signal-to-interfereplues-

Most of the techniques proposed over the past decade

noise ratio (SINR) of each link. However, with the reductio@ssume full knowledge of the channel state information JCSI
of the cell coverage area, the number of served termindihough this simplifies the problem tremendously, it jeepa
per BS drops significantly. Each BS allocates more systatizes the practicality of the proposed technique. The astho
resources to each terminal, which in turn results in a largef [6] emphasize on this aspect. They propose a two-level
aggregate throughput for the end-user. However, a signtficéramework based on graph theory. In the first level, inter-

reduction in the cell size translates into a highly denselerg

cell interference is reduced with no precise knowledge of

deployment of BSs. The deployment of such an infrastructueet-of-cell interference. The second level allocates fstesn
will be prohibitively expensive. More importantly, such aesources according to instantaneous channel gains.
dense deployment will not be feasible due to restrictions onAnother important aspect in practicality is the degree of

the locations of the base stations.
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centrality in the proposed technique. Centralized tealsq
assume full coordination among all BSs and hence achieve
better performance. This, however, is at the expense of unre
alistic level of inter-BS communication. In [10], a distiied
resource allocation method is proposed. An interferendeiene

is defined based on the interference among BSs. Accordingly
for each BSi, two sets of in-neighbor and out-neighbor BSs
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are introduced. An in-neighbor BS is defined as a BS whiahired network and a transmission power buddgt. Each
creates interference on the terminals served by iB&d terminall is assigned to and communicates with BS)

an out-neighbor BS is one whose terminals are affected Wjth the strongest large-scale fading channel gain. Thus BS
simultaneous transmission from BSThe proposed techniquei serves the set of terminals; = {l|a(l) =i} such that

is essentially a coordinated power control algorithm, romse Zle |K;| = K. Wireless communication between BSs and
every TTIl and has multiple iterations. At each iteratioriein terminals is established on the available frequency spectr
BS communication is among a limited number of BSs. Thi set of N (frequency) resources.

reduces over-head signaling significantly. In particldaeach  Unless otherwise stated, it is assumed that the BS power
BS individual CSI from only the in-neighbor set is requirecbudget P; is uniformly distributed across the available sub-
Nevertheless, it is assumed that each BS knows fast fadiggriers. Assuming each frequency resource Hds sub-
aggregate interference levels due to simultaneous trasgmi carriers, the power budget for transmission on a sub-carrie
of all BSs at each of its serving terminals. Furthermoret BS: is

although the proposed technique is distributed, the decisn

terminating the iterative algorithm should be taken at areén pi = b ) 1)
entity (alternatively the algorithm can be performed a pre- MN

determined number of times). Moreover, the results pralide Let us consider a network with one BS aid terminals

in the paper are based on re-forming the neighbor sets evend assumd(t) € {0, 1}KXN to be the frequency channel
TTI. This in turn potentially increases the over-head shigiga  allocation matrix for time slott. I;,(¢) is equal to one if

and complexity by a significant amount. frequency channekh is assigned to terminal in time slot
t andI;, (t) = 0 otherwise. The data rate of termirah time
slot¢ is

B. Contributions N
r(t) =Y In(t)rin(t), )
n=1

A scheduling cell is defined as a set of BSs whose resource

a!loqathn is coordinated. The cells. adapt to a(_:tual traﬁWhererln(t) is the supported data rate on frequency channel
distribution across the network. In regions where highriete n by terminall in time slot¢

ence among BSs call for more coordination (e.9. hot-spats), | g U,(t) be the utility function of terminal in time slott.

Iarger cluster of BSs form a_scheduling_ cell. Likewise ra_zgio The resource allocation problem at the beginning of timé slo
which serve sparse population of terminals and/or the|terr% can be formulated as follows [12]:

obstructs interference among BSs, smaller scheduling asl
created. A coordinated resource allocation method tallore

. . . . K
to the irregular structure of the adaptive scheduling cislis
proposed. The corresponding resource allocation optiroiza Iﬁ?f; Ui (ru(t)) (3)
problem was formulated in [11] and a solution was proposed. B K
This solution is modified according to our assumptions, re- subject t 2=y Im(t) =1 Vn ,
quirements and objectives. It is important to note that the Iin(t) € {01} Vn,l

resource allocation across the scheduling cells is digegth wheren and ! are the indices for frequency channels and

In other words, the resource allocation in each schedulitig cterminals respectively. The first constraint in (3) guaeast

is performed with no knowledge from the rest of the networkhat each resource is allocated to exactly one transmiggion
The paper is organized as follows. Section Il introducefne slot. The second constraint dismisses the option cd-tim

the system model. In Section Il the network clusteringharing during a time slot. In a cellular network withBSs,

problem is defined and the network clustering algorithm the scheduling problem can be generalized as follows:

developed. Section IV discusses the resource allocatéonds

work, presents the coordinated resource allocation method

K
and elaborates on the different time scales of adaptation. | max ZUZ (r1(t)) (4)
Section V the performance evaluation results are discussed (), Ta(t)}
Section VI concludes the paper and provides possible future ) Sier, In(t) <1 Wi
research directions. subject t ()€ {01} Wn,l

Notation: Bold upper case letterX() denote matrices, lower _ ) _
case lettersx) are adopted for column vectors and the LateWher?Ii(t) is the frequency channel allocation matrix of BS
Mathcal font @) is used for setsx”, |X|, X denote the ¢ for time slotz.
transpose ok, the cardinality ofX and the complement of
X respectively. The set of real numbers is denoted Ritthe I1l. NETWORK CLUSTERING

empty set with) and an}/ x N matrix of zeros withO/ . The optimal solution to (4) requires full coordination argon
all BSs. This degree of coordination in a cellular network,

however, is not practical. Alternatively, the resourceedltion
[l. SYSTEM MODEL

. . . . 1In this paper, it is assumed that all BSs have the same povagehuThe
In order to prowde service t& wireless terminalsA BSs results, however, are applicable to the more general caseevthe BSs have

are deployed. Each B% has a backbone connection to thelistinct power budgets.
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problem can be broken down into smaller sub-problems aAd Smilarity index

solved locally. Instead of coordinating the resource allon  posoyree allocation in a cellular network is performed in
among all BSs, coordination can be among a subset (clustgnjme_siotted fashion. At each time slot, each BS serves a
of BSs. At each time slot, the coordinating BSs adjust theifmper of terminals on the available frequency channels. Th

transmission power levels to achieve the best performanegnr of a terminal on a given frequency channel can be
Inevitably BSs outside each cluster induce interferencalbn | iitten as

links in the cluster. Hence larger clusters of BSs would ltesu

in a better performance due to a lower number of potentially Pp

: , . ) SINR= —,
interfering BSs. The improvement in performance comes at Pr +noW
the price of hlgherc.omplex.ny for coordination among a &rg where Pp is the received signal from the desired BS at the
number of BSs. This Section develops a framework to for[P

clusters of coordinating BSs based on the BS locations ap%sw_ed termlnaIPI_ denotes the mterfere_)nce at the de5|_red
T erminal andn, W is the background noise power. The in-
the traffic distribution.

terference is caused by simultaneous transmission (i#neat

Let us define the network topology by the interferencgme time slot and on the same frequency channel) from all
matrix H = [h;] € RE*4, whereh;; denotes the channel 5, 4 subset of BSs in the network.

gain between termindland BS:. High channel gains between |, general, the quality of a link improves with higher SINR.
terminals and BSs result in dense topologies and call fpL; ;s define theperformance level of a terminal by the
coordination in resource allocation. On the other hand, @ responding SINR level. Each BS serves a set of terminals
sparse topology is formed as a result of low channel gai&h 5 unique set of performance levels. Simultaneous trans

between t_erminals and interfering BSs. Naturally, the siZe ission from BSj has an impact on the performance levels
a scheduling cell should depend on the network topologyyf the terminals assigned to BSIf the impact is significant,

Although a large scheduling cell implies high coordinatiopyqgination in resource allocation between B&nd BS; is
and hence a better system performance, it in turn INCreasegyired.
the implementation cost and complexity. On the other hand, o performance level of a BS is defined by an increasing
too small a schedulin.g cell results in excessive interfeeen;,, tion of the performance levels of the terminals assigne
levels among scheduling cells. to it. The performance level of BS can be defined as the
DEFINITION 4.1 (Network clustering problem) Letl be arithmetic average of the performance levels of its terfeina
the set of BSs in the network. A partition of is defined as This definition has one major problem. The SINR levels of the
the set of subsetsi(1),A(2),--- ,.A(C) such that terminals assigned to a BS can take a wide range of values. In
some scenarios, due to exceptionally good channel gains (or
c unrealistic simulation models or flaws in channel estinreg)o
{ Uc_:l A(C),: . (5) a few terminals experience unexpectedly high SINR levels.
Ali) NAGG) =0,V # j The resource allocation decisions, however, should not be
influenced by or be based on the channel gains of these
Clustering is the process of finding such a partition subjegirminals. Albeit, the arithmetic average SINR level isved
to some criteria. The clustering problem imposes bounsgari@ward these high values. The median SINR level, on the other
among scheduling cells. Each boundary delineates the fackhand, is defined as the midpoint where half of the SINR levels
coordination among certain BSs. This in turn means, unlikge above and half of the SINR levels are below this value.
traditional frequency allocation schemes, transmissiotet- Essentially, by defining the performance level of a BS as the
minals at the boundary between two adjacent scheduling cefledian value, the effect of unrealistically high SINR levis
will no longer be perfectly orthogonal. The level of intetiad  mitigated.
among scheduling cells heavily depends on the network topol Based on the interference coming from BSthe SINR at
ogy. An intelligent choice of boundaries among schedulingrminal! assigned to BS can be written as
cells reduces the inter-cell interference to acceptahlelde

(6)

More importantly in a clustered network, practical cooaded SINR;; = hiipi 7)
resource allocation methods in autonomous cellular will be Y hps + oW
possible.

whereh;; denotes the channel gain between termiraid BS
Let us model the cellular network as a fully connected ;. is the transmit power of BS With no interference from

weighted graph(V,£). The set of verticed’ represents the Bs ;, the signal-to-noise ratio (SNR) for terminials
set of BSs.A. Each edge connects two BSs in the network.

The weight on the edge is defined based on the notion of SNR; — hiipi ®8)
interference among BSs. This notion is introduced in Sec- oW

tion 11lI-A which gives rise to the definition of thamilarity
index. In Section I1I-B, a clustering algorithm is proposeda”
which partitions the BSs into scheduling cells.

Let us form the SINR vectok;; by the SINR levels of
terminals assigned to B% with interference from BSj
as calculated in (7). Similarly, leg; be the vector of SNR
levels of the terminals assigned to B&s calculated in (8).

2The size of a scheduling cell is defined as the number of BS&én tThe loss in performance due to the effect of interferencenfro
scheduling cell. BS j on BS: is quantified by the following index:
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BSs to a central control unit where the similarity matrix is
formed. In Section IlI-B, this matrix is employed to develop
the network clustering algorithm.

B. Clustering

Parallel computing efficiently distributes computatioads
across multiple processors. Firstly, the computationsishioe
Fig. 1. A cellular network with two BSs and two terminals assigned to the processors in such a way that there exiks lit
or no inter-processor communication. Secondly, the coaxput
tion load should be balanced across the processors. The load
distribution can be stated as the problem of finding the com-
f(y:) putation load assignment which minimizes the inter-preces
“ij = f(xij)’ ©) communication, while keeping the computation loads assign
to the processors as equal as possible.
The cellular network clustering problem is analogous to the
load distribution problem in parallel computing. Schedgli

where f(y;) is the performance level of B% without in-
terference from BSj. Similarly, f(x;;) is the performance

l(;\s/ﬁlusosfioiz zef:l,\rlllitgr Iirr]wtetgiesresnecgi;owheBSpfe'rf?)?rsr‘wi\dncc;nIetygzl cells take the place of processors and inter-cell inteneze

. ) ) tgkes the place of inter-processor communication. Instéad

each BS 'S deflneo_l as the median of the performance lev ﬁﬂmizing the inter-processor communication, the irgerf
of all termlnals_ a55|gneq _to the BS. . , ence levels among the scheduling cells are to be minimized. A

By exchangingi and j in (7), (8) and (9)c;; is defined. balanced distribution of the computation load is replacg@b

A larger c;; and/orc;; impligs higher levels Of. interfergncebalanced distribution of the resource allocation load s&the
between BSsi and j, and in turn translates into a higher

urgency for coordination between the two BSs. The simj!arit:lChedu"ng cells, which in other words, equalizes the nesou
. : . ' llocation complexity across the scheduling cells.
index between BS and BSj is defined as ! plexity uling

The load distribution problem in parallel computing has

1 been extensively studied in the context of graph partitigni
5ij = 5 (cij + ¢ji) - (10)  There are several ways to pose partitioning a graph as a math-
ﬁmatical problem. The min-cut technique is a straightfedva
method which attempts to minimize the inter-dependencies
among clusters. LetV,£) be a fully connected weighted

As an example let us consider the cellular network in Figure
BS 1 is serving terminall and BS2 is serving terminakb.
Based on (9) we have

graph with N nodes{v;}~ , and weight matrixW e RN *N,
_ SNRiy _ hasps The connectivity between two sefs F C V is defined as
€12 = SNR;; = now T 1 (11)
€21 = sﬁgn = hmvzl)/l +1 -
221 70 0(5, ]:) = Z Wef, (13)
Depending on the values of the channel gdinsandhsy, the ve€EupEF
two indices can be very diﬁgrent. Hence the similarity ix‘devvherewef is the element on row and columnf of the weight
between BSI and BS2 is defined as matrix W. The min-cut technique generates a Q-partition of
the graph{V1,---,Vo} by minimizing the connectivity of
$12 = So1 each cI_usten)q from the rest of the networl’,. Mathemati-
1 h h cally this problem is expressed as
=~ (c1g +cgp) = 22D L (1)
g 12 2noW Q
It should also be noted that the similarity index is defined as Vo) Z c(Vg, V)- (14)
a function of large-scale fading channel gains (i.e. pa#s| =1

and shadow fading). As a result it can be easily applied Tde min-cut solution often tends to separate individuétives
multiple antenna systems, since the MIMO channel structurem the graph which disturbs the desirable balance in the si
usually affects only the small-scale fading gains. of the clusters. In order to avoid the generation of too small
The network similarity matrixS = [s;;] € R4*4 is formed clusters, the problem is modified as
by the similarity indices of all pairs of BSs in the network.
This matrix quantifies the level of interference between any . o c(Vg, Vq)
pair of BSs in the network. In order to form this matrix, the Vo) > 7
channel gains between all terminals and BSs are requirésl. Th
information is readily available from the BS assignmengsta By normalizing the connectivity(V,,V,) by the cardinality
where the channel gains of each terminal to the BSs in i§the corresponding s¢V,|, we are essentially enforcing the
vicinity are compared and the terminal is assigned to the B&mation of reasonably large clusters.
with the strongest channel gain. The estimated channeksgainThe solution of problem (15) has been shown to be NP
are reported from each terminal to the corresponding BSwrd. In what follows, we elaborate on how the problem can be
The reported channel gains are then communicated from tleéaxed into an easy-to-solve standard linear algebral@mb

(15)

q=1
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This technique is known as the spectral clustering techniqwith coordinatesg,, € R<. In order to form aQ-partition

[13] {Vlv V27 e 7VQ}1 the pOintS {gla g2, " 7gN} in the Q-
1) Spectral clustering: Let U = [uy,--- ,ug] € RV*@ be dimensional vector space are partitioned based on the K-
the indicator matrix such that clustering technique. The pseudo-code for the spectrah clu
. tering is provided in Algorithm 1. The choice of K-clustegin
N vi €V for the last stage of the spectral clustering method is gurel
Uij = 7 (16) . .. . . . . .
0 . vV due to the simplicity of this technique as will be discussed i

] ) the following.
andL be the Laplacian of the weight matr® as follows:

Algorithm 1 Spectral clustering

L=D-W, 17 Require: Parameter)).
whereD = [d;;] € RV*¥ is a diagonal matrix withi;; = 1 Compute the Laplacian.mat.rM =D 7VVV, whereD is
Z;\f:l w;;. It is easy to show that a diagonal degree matrix witlh; = >0, wij.
- 2: Compute the first) eigen-vectorsiy,--- ,ug of L.
o Lu. — c(Vg, V) (18) 3: Let U € RN¥*? be the matrix containing the vectors
g4 WV, uy,- -+ ,ug as columns.

Hence 4: Let g, € R be the vector corresponding to the row

' of matrix U.

o ) o 5: Cluster the pointggy,---,gn into Vi,---, Vg clusters

c(Vg, Vy) T T with the K-clustering algorithm.
> Vi > ugLu, = tracgU"LU) (19) & Form clustersy, = {n|g, € V, 1.
q=1 q=1

and the partitioning problem can be formally written as . . . .
P gp y Let us consider a graph a¥ vertices with the coordinate

. T set{gi,g2,- - ,gn}. Given a Q-partition, each clust¥y, can
{Vlymg{l.pva}trace{U LU), (20) be represented by a cluster-haaq defined as
whereU is defined in (16). 1
By relaxing the constraint olJ, the optimization problem my = Wil Z 8- (24)
can be written as 1 vev,
It should be noted that the cluster-head can be any point in
min tracd UTLU) (1) the vector space and does not necessarily have to be chosen
{V1,V2,+,Vo} from the vertices.
subject to U e RV*€, Similarly given a set of cluster-headsn;, m,--- ,mg},

the corresponding Q-partition can be formed by assigning

From the Rayleigh-Ritz theorem, it is well-known that th@ach vertex of the graph to the cluster-head with the sntalles
optimum U is formed by the first) eigen-vectorsof L as Egclidean distance.

its columns. HencelU can be written as{_ul,ug, -, ug] The K-clustering problem is defined as finding the set of
whereu, is the eigen-vector corresponding to the smallegj ¢jyster-heads which minimizes the squared distance from
eigen-value. For any eigen-vectay = [u1q, u2q,- - ,ung)"»  any vertex to its cluster-head. The K-clustering techniguan
we have iterative algorithm to solve this problem: In the initiaion

. N N ) step, the vertices are randomly clustered irdjo clusters

Ly =" (tng — tmg)*Wom. (22) [y po ... ,Vg))}. The corresponding cluster-head set
n=1m=1 0 0 0 . ) .

Without loss of generality the eigen-vectors are assumée to m;”, mg”,- - m{) } is formed according to (24). Given

the set of cluster-heads, vertex with coordinatesg, is

normalized, i.eu’ u, = 1. Hence, _
reassigned to cluster such that

N N
g = D (ng = tmg)*wam. (23) ¢ =arg min_[|g, —m,|>. (25)
n=1m=1 1<q<@Q

Let us consider two vertices andm with a highw,,,,. For Hence, a new set of) clusters Vl(l)’v2(1)’“. ’VC(;) is

i R _ 2
a small cigen v_alue\q, the term (ung u"?q) should be_ formed. In the subsequent iterations the set of clustethea
small. SinceU is constructed from the eigen-vectors with

the smallestQ eigen-values ofL., the term (., — tmg)? updated an_d the vertices are correspondingly reassigried. T
should be small for all = 1. - - ,Q. This in tur;?\ tranZIqates procedure is repeated fd¥ iterations. The pseudo-code of

. . e . . this technique is provided in Algorithm 2. It should be noted
into two geometrically close points in@-dimensional vector that
space. Following this argument, each vertex of the graph’is

represented by a point in th@-dimensional vector space * the solution of the K-clustering algorithm is a partition of
the graph with not exactly but at magtclusters. In some

3Corresponding to th€) smallest eigen-values. instances, one or more cluster-heads may not have any
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vertex associated to them. In this case, a smaller numHBeérjoin the same scheduling cell. The network clustering
of clusters are formed. strategy is provided in Algorithm 3.

« the K-clustering technique is very sensitive to the ini-
tialization step. In other words, with a different initialAlgorithm 3 Forming the scheduling cells
random partition, the techniqgue may result in a verRequire: Parameters) andT.
different solution. 1: Initialize the association matridD < 04x 4.

2. forl=1to L do
Algorithm 2 K-clustering 3:  Cluster the BSs based on Algorithm 1 witN = S.
Require: ParameterQ, V. 4. if i andj are members of the same clustken
1: Randomly cluster{g;,g2,---,gn} into @ clusters 5 dij < dij + 1.
{V1(0)7 2(0)7 . ,Véo) 6: end if
2: for w=1to W do 7 end for
3 For each clusten){” " find the coordinates of the & If dij >T then
cluster-headngw) based on (24). 9 f BS 1 or j is already part of a S@hen
10: Join the other node to that SC.

4. Reassign nodg, to clusterg* based on (25), and form 1

» w w w else
the Q-partmon{vf )’V2( )’ o ’V(E? )}' 12: Form a new SC with BS$ andj as members.
5. end for 13- end if
14: end if
2) Network clustering algorithm: In traditional cellular 15: BSs which are not members of any SC form stand-alone
networks, pre-determined static frequency re-use clsistes SCs.

employed to decrease the level of interference among BSs.
In the proposed network clustering approach, the key ideaThe proposed clustering algorithm has two paramefgrs
is essentially the same. Instead of the static frequency emdT. Parameter) defines the maximum number of clusters
use clusters, it is the role of the network clustering akjponi in the K-clustering problem and hence limits the maximum
to adaptively form scheduling cells such that the interfee2 number of clusters in each iteratiénA higher@ results in a
among clusters are reduced to acceptable levels. By deémglogower number of BSs per scheduling cell which translates int
the network clustering algorithm, a new level of adaptat®n less coordination in resource allocation. Param@&texdjusts
introduced into the resource allocation framework of dellu the tendency of BSs to join one cluster. A largérequires
networks. two BSs to have a larger association factor to join the same

In the network graph, each vertex represents a BS. Téeheduling cell and as a result it also directly impacts the s
vertices are all connected and weighted according to tbethe scheduling cells. With & of unity, no two BSs will
similarity matrix introduced in Section llI-A. Thus a fully join the same scheduling cell @; < 1 for any i # j. On
connected and weighted graph is constructed. The netwahke other hand, & of zero translates into full coordination
clustering algorithm forms a partition of the graph whickamong all BSs. This is due to the fact thaj > 0 for any
translates into the formation of scheduling cells. It skido¢ ; #£ ;. Figure 2 shows the average scheduling cell size as a
noted that the scheduling cells are not completely isolat@ghction of Q and7'. Regardless of), a smallerT results in
from each other. In other words, interference among tlehigher degree of coordination as expected. In a sense, the
scheduling cells still exits. Nevertheless, as will be sBem |evel of coordination that is affordable — based on the atxéd
the performance evaluation results, an appropriate lefel etwork infrastructure (e.g. back-haul capacity) — is wéd
coordination among the BSs, reduces the level of interta&erin an appropriate choice @f. Parametet) can then fine tune
among the scheduling cells to acceptable levels such thiaé level of BS coordination based on the desired trade-off
independent coordination in the scheduling cells becomigstween complexity and performance.
possible.

The proposed network clustering algorithm is based on IV. RESOURCE ALLOCATION FRAMEWORK

the spectral clustering technique. By applying the Spec-rhe proposed resource allocation framework is comprised
tral clustering method on the network graph, a partitiog 1, Jevels of abstraction. In the first level (level A), the
P= Vi,V Ve} is formed with B < Q. Lequork is clustered into scheduling cells. In the secorelle
Due to the intrinsic sensitivity of the K-clustering techyeye| By, resource allocation is performed. Resourcecalo
nique fo initialization, the spectral clustering will berpe yjon s coordinated among the BSs forming each scheduling
formed for L randomly chosen independent initial parge| and is performed independently across scheduling.dell

titions. Thus L independent partitions of the networki yaqed on a coordinated proportional fair strategy deesio

1 2 L iati i
{PO, PO, ’E(;}- are formed. An association matriXiy gection IV-A. Section IV-B discusses the time scales of
D = [d;;] € [0,1]**4 is defined based on the partitions as adaptation in this framework.
follows:
g — # of times BSi and j are in the same cluster (26) A. Coordinated resource allocation
Y L ' A scheduling cellc with the BS setA(c) and the terminal

BSs: andyj with an association factat;; larger than threshold setC(c) is studied. For ease of notation the indeis dropped
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The power budget of the BSs is assumed to be uniformly
distributed across the available frequency channels. lneng
time slot and frequency channel, a BS either transmits with a
fixed transmit power or not transmit at all. With the assummpti
of equal power distribution across the available frequency
channels, the optimization problem in (31) is reduced to a
per-frequency channel problem as follows:

Tln
max Z = 1 (32)
ki ek

Average cluster size

In the remainder of this Section, a system with one fre-
quency channel is assumed. Lgft) = [p1(t), -, pa(t)]"
be the transmission power vector of the BSs in time slot
Each terminal receives a desired signal from the serving BS
1 w w w w w and interfering signals from all or a subset of BSs in the
4 5 6 5 8 o 10" network. With a fixed power vectqs(t), each BS knows the
received signal power levels from all BSs in the scheduligly ¢
Fig. 2. The average scheduling cell size as a function otelimg parameters at each of its assigned terminals. Hence,iR8n estimatéthe
e e o, o s sy SUPPOTIEd data fae of the terminals s serving. Accatin
each BS allocates the frequency channel to termigat)

increaseT” to achieve a higher coordination among BSs. ) : ’ =
based on the following proportional fairness criterion:

fin ri(t)
throughout the Section. In time slothe data rate of terminal ka(t) = arg meky Tt —1) Va €A (33)

l is given by (2). After time slot, the average rate of terminal

is updated according to For a given power vectas(t), the set of the chosen terminals

{k*( )}ac. forms the co-channel user s€tp, t) in time slot
. In a scheduling cell withA BSs, there ar@” possible

Ri(t) = (t—Dr(t—1)+n(t) transm|SS|on power vectors. At time slot for each power
t vector p(t) € {0, Pma}” *' the corresponding co-channel
— (1 _ 1) Ft—1)+ lrl(t), (27) user setk(p,t) = {k;(t)},c4is formed according to (33).
t t The optimal power vector at time slotis then the one which
where the average rate at the beginning of the first time slotsatisfies
set to zero for all terminals. The resource allocation probl ri(t)
at the beginning of time slat is formulated as p*(t) = argmax Z _271 (34)
kieK(p,t) Tl( B )
max Z log7:(t), (28) ' The complexity of this approach increases exponentialtj wi
ek the number of BSs in a scheduling cell. However, this

where K is the set of terminals in the scheduling cell. Icomplexity is tunable by adjusting the average size of the
can be shown that assumings - f(lt t)1) < 1 the following scheduling cells as will be discussed in Section V.
approximation holds:

B. Time scales of adaptation
log 7t <1 B _> nit = 1)] The coordinated resource allocation at level B is performed
1 n) once every transmission time interval, also known as a sub-
to 1 A1) (29)  frame (SF) in the LTE terminology. The network clustering at

o ) _ ) level A re-forms the scheduling cells at a larger time sdate,
(constant). Hence, the optimization problem (28) can Bfpends on the rate of variations in the wireless communica-

approximated by tion environment. For a fast time-varying network, a small
U translates into fast re-formation of the scheduling cells.

max Z (30) Parametet/ is essentially a design parameter which should be

kX mi( t - 1 adjusted according to the environment. As an example, let us

ggsume that the shadow fading changes with a displacement

In a multi-carrier system this problem can be enerahzed
Y P 9 the order of tens of wavelengths. For a system with a

follows:
41t should be noted that due to the lack of knowledge of outef-
I ln Tln interference, the actual supported data rate of each tatrnismot available.
max Z Z 7 t 1 . (31) However, an estimate can be obtained based on the in-cefféntnce which
l _

k ek n=1 is known due to the coordination within each scheduling. cell
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TABLE |

center frequency dGHz and a terminal velocity cfOKmph, SYSTEM PARAMETERS
a terminal travels ten wavelengths 18 seconds which is
equivalent tal8 frames in the LTE system. Consequently/a | System parameter | Value
of a few tens of sub-frames will be a reasonable choice. The Carrier frequency >GHz
pseudo-code of the framework is presented in Algorithm 4. Bandwidth (V) T5KHz
Sub-frame size (time slot duration) 1ms
- Number of simulated sub-frames| 40
Algorl_thm 4 Proposed framework pseudo-code BS power budgetnay) TS 59dBm
Require: Parameters), U. Noise figure at terminal 7dB
1: |00p Background noise PSD —174dBm/Hz
) Terminal velocity 30Kmph
2 {LEVEL A} . . . Number of BSs /) 21
3:  Update the set of active BS4 and active terminal. Total number of terminals 7,6,8,10 per BS
4: Update the wide-band interference matrtd = Traffic model Full buffer
[hli]KXA- Clustering algorithm thresholdI) 0.7

5. Assign terminal! to BS a(l) such thata(l) =
arg maxq, e A hi;.
6: Form the similarity matrixS = [s;;]4*4, with s;; in « Static cluster size of 3: The cellular network witt21 BSs

(10). is clustered intd” scheduling cells o8 BSs. Scheduling
7. Apply the adaptive clustering Algorithm 3 on similarity  is based on the coordinated approach discussed in Sec-
matrix S and form the scheduling cellsd(c), K(c)). tion IV-A.
& {LEVEL B} In Figure 3 the average size of clusters is plotted as a
9: for SUBFRAME=1to U do o function of the clustering parametéx. A higher Q results in a
10: Perform coordinated resource allocation in eaqfgher number of clusters. Essentialyis a system parameter,
scheduling cell as discussed in Section IV-A. equivalent to the frequency reuse factor of the cellulacept,
11:  end for which adjusts the level of BS coordination and hence the
12: end loop complexity in resource allocation.

The system performance is evaluated with Monte-Carlo
simulations. In the ITU report 2135, drop is defined as an
independent deployment of terminals and BSs [14]. During
) . the simulation of a drop, the shadow fading and slow fading

In Section V-A, we study the performance of a traditionglyanne| gains are assumed to be constant. The mobility of
cellular network. Section V-B discusses the performance f?efrminals, however, change the channel gains from one sub-
the proposed framework in an autonomous cellular network. . 15 the next according to the Doppler effect. In thisgyap

1000 drops have been considered and the performance of each
A. Traditional cellular network drop is evaluated ovet0 sub-frames.

The BSs are deployed regularly according to the hexagonal‘et 7 be the average spectral efficiency of termingéfined

pattern with an inter-site-distance 600 meters. Channel as 7i(ts)
gains are modeled based on the ITU recommendations for m = W (35)

urban-macro gnwronments [14.]' T_h(_a simulation parametef:ﬁe cell spectral efficiency is defined as the sum spectral
are provided in Table I. For simplicity, a system with one

. . ... efficiency of all terminals in the network normalized by the
frequency channel is considered. In order to comply with thneumber of BSS\/
LTE air interface technology, the system bandwidth has been '

chosen to be equal to that of a sub-carrier in the standard. _ Zfil i (36)

In addition, each time slot has been chosen to be equal to M

a sub-frame oflms. In each time sloi4 transmissions (in | gt g — [71,--- ,7x] denote the vector of average spectral

time) occur for the scheduled terminal corresponding to theficiencies of all terminals in the network. The cell edge

14 OFDM symbols in a resource block. spectral efficiency is defined as th# point of the cumulative
The effect of the clustering parameté&r is discussed in distribution function ofs.

section [1I-B2. In the numerical results a fixdd of 0.7 has The performance of the proposed technique is evaluated for

been considered. The choice of this value is simply becaus@yjo values of4 ands for Q, corresponding to average cluster

results in a shorter simulation time due to a lower degree §fes of3.3 and 1.7 respectively. The cell spectral efficiency

coordination among BSs. With a smallEybetter performance performance results are provided in Figure 4. WittQQaof

V. NUMERICAL RESULTS

is expected at the expense of higher complexity. 4, the cell spectral efficiency is on averatfe7% higher than
‘The performance of the proposed framework is compargsht of UFR. Compared to a static cluster siz&gthe spectral
with the following classical techniques: efficiency has improved bg.4%. With a Q of 8, the spectral

« Universal frequency reuse (UFR): The entire system efficiency is5.5% greater than that of UFR. It achieve®.7%
spectrum is available to all BSs. At each time slot, eadf the cell spectral efficiency with a static cluster size3ofn
BS schedules one terminal on the available frequenother words, by reducing the coordination fr@o 1.7 BSs
channel based on the proportional fairness criterion. (43.4%), the loss in performance is on#3%.
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Fig. 3. ~Average cluster size as a function of the clusteringameterQ:  rig 5. Cell edge spectral efficiency as a function of theltotanber of
Increasing decreases the average cluster size. This in turn resultioies  erminals in the network: Despite the lack of coordinationoag clusters,
level of coordination among BSs. these results show that the cell edge performance is not roniged.
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Fig. 4. Cell spectral efficiency as a function of the total tw@mof terminals

in the network: UFR achieves the worst performance due tessiee level of

interference among BSs. For@ of 8 the proposed technique is better than

UFR. With aQ of 4 the coordination is increased to an averag8.6fwhich

results in a better performance. A proper choice @iachieves a desirable Fig. 6. Network coverage area for a cellular network with BSs: In

balance between complexity and performance. the traditional network the BSs are deployed at the centehefillustrated
hexagons. In the autonomous cellular network the same nuoft®Ss are
randomly deployed in the network coverage area, modeled avitircle of
radius4.5R.

The cell edge spectral efficiency performance is illusttate

in Figure 5. With &) of 4 the cell edge spectral efficiency is on
average3_3.1% higher than that of UFR. C_Z(_)mpared t(_) a Statiﬁ ustrates the coverage area of a traditional cellulamoek
cluster size .OB’ the cell edge spectral efficiency hag IMPTOVERith 19 BSs. In the autonomous cellular network, the same
by 5.5%. With a @ of 8, the cell edg_e spectral efficiency Snumber of BSs is deployed in the same coverage area, modeled
24% great _th_an that of L.JFR' It a_chlevﬁb% of the cell with a circle of radius4.5R. A random two-dimensional
speciral efficiency of static clustering. uniform distribution is considered for the deployment ofsBS
and terminals. The same system parameters of Section V-A
B. Autonomous cellular network are adopted with the exception that in this Section the kellu
Due to the irregularity in the infrastructure of an aunetwork is formed byl9 BSs (instead of1).
tonomous cellular network, most of the classical resourceln Figure 7, the average size of a scheduling cell is plotted
allocation techniques are not applicable. In fact, UFR & ttas a function of the clustering parametgr A @ of 8 results
only classical method which can be considered. Figurei® an average scheduling cell size bff BSs. With aQ of
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in a lower level of coordination among BSs.
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D Total number of terminals
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Q in the network: The performance of two network with regulaaditional)
and irregular (autonomous) BS deployment pattern are credp®ased on
Fig. 8. Cell spectral efficiency as a function of the clustgrparameter the system designer requirements, the technique allowsablier trade-off

Q: As the number of terminals in the network increases, a higpectral
efficiency is observed. This can be explained by the largdtituser diversity
gain. With a fixed number of terminals, a smaligimproves the performance
due to a higher level of coordination among BSs.

between complexity and performance. Decreagihgncreases coordination
among BSs and consequently improves the performance.

cluster size o88.5 and 1.7 BSs respectively. The cell spectral
efficiency is plotted as a function of the total number of term

4 the level of coordination increases to among an average(ffis in Figure 10. With & of 8, the cell spectral efficiency

3.5 BSs.

is on averaget% higher than that of UFR. Increasing the

The cell spectral efficiency is plotted as a function@®f coordination to among an average 5 BSs (with Q of 4)
in Figure 8. The performance is evaluated for an averagetht cell spectral efficiency improvement increaseslt#. The
4, 5 and 6 terminals per BS. Based on Figure 7, decreasipgrformance results of a traditional cellular network asa
@ from 10 to 4 is equivalent to increasing the coordinatiofprovided as a point of reference. In the traditional network
level by a factor of2.5. For a network with152 active UFR is considered for resource allocation and is denoted
terminals, this results in &.4% improvement in the cell by 'Traditional network (UFR)’. The results show that the
spectral efficiency. The cell edge spectral efficiency impso autonomous network with no coordination, i.e. UFR, incurs a
by 35.5% as illustrated in Figure 9. penalty of14% for deployment irregularity in the cell spectral
In the rest of this section, the system performance éficiency. With aQ of 8 the penalty is reduced &% which
evaluated for) equal to4 and8 corresponding to an averages further reduced t8% with a @ of 4.
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‘ _ TABLE Il

—-UFR RESOURCE ALLOCATION PERFORMANCE COMPARISON
- # - Adaptive clustering (Q = 8)

N 022 —8— Adaptive clustering (Q = 4)]|

% =0~ Traditional network (UFR) Resource allocation Cell spectral | Cell edge spectral

s 0. method efficiency(%) efficiency (%)

2018 UFR 86 61

S Proposed @ = 8) 92 72

S o1 Proposed @ = 4) 97 94

@

T 0.1

3

2 0.1 - . I

OO el N on the spectral clustering approach. Similar methods, asch
2o the page rank algorithm [15], should also be studied.

% 00 In an autonomous cellular network, the deployment of extra
go.

BSs would naturally improve the system performance. If we
assume there are a limited number of extra BSs to be deployed,
0.04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ where is the best location to deploy them? The strategic
76 90 100 110 120 130 140 150 160 170 180 190 positioning of additional BSs given the available network
Total number of terminals . . . . L
infrastructure is an interesting problem to pursue. In toldli
Fig. 11. Cell edge spectral efficiency as a function of theltatmber of W€ have a5$um9d all terminals have the_siime.' quality of servic
terminals in the network (QoS) requirements. The volume of traffic is directly traesd
into the number of active terminals. The framework can be
extended to cases where multiple classes of terminals with

The cell edge spectral efficiency performance results sf#éferent QoS requirements are considered.

provided in Figure 11. With &) of 8, the cell edge spectral In this paper, each terminal communicates with only one
efficiency is improved byl7% when compared to UFR. With BS. Alternatively, each terminal can communicate with more
a Q of 4 an improvement 0$4% is observed in the cell edgethan one BS in the scheduling cell. Coordinated transnmssio
spectral efficiency. When compared to a traditional networffom the BSs in a cell to each terminal can potentially imjrov

a  of 8 achieves72% of the cell edge spectral efficiencythe system performance. However, whether the additional
andQ of 4 achieve€)4% of the cell edge spectral efficiency.complexity would result in considerable improvements or no
This is while the autonomous network with no coordinatiorshould be carefully examined. Furthermore, we have assumed
i.e. UFR, achieve$1% of the cell edge spectral efficiencythat the power budget of each BS is equally distributed acros
of the traditional network. Table Il reports the performancthe available frequency channels. The frequency channels a

evaluation results as a percentage of the performance in th@n assigned based on a terminal scheduling policy. Aghou
traditional network. this is a common practice in OFDMA-based systems, power

control is still an area which should be thoroughly studied i
autonomous cellular networks.

VI. SUMMARY AND FUTURE WORK

In this paper we have developed an adaptive framework
for resource allocation in cellular networks with irreglya

deployed BSs. A scheduling cell is defined by a set of!! \\fb:"'S“é'aﬁgoqa'gb"%e_zi"ul'g;go”CEptBe"SwemTe“h”icaj Journal,
coordinating BSs. A network clustering method is proposeds] T. Bonald, S. Borst, and A. Progie, “Inter-cell scheduling in wireless

Accordingly, the scheduling cells are formed based on the data networks, European wireless proceedings, 2005.

network infrastructure (i.e. distribution of BSs and temals). [3] G. Li and H. Liu, “Downlink radio resource allocation fanulti-cell
( ) OFDMA system,”|EEE Trans. Wireless Commun., vol. 5, no. 12, pp.

Scheduling cells adapt to_the tim(_e variatior_ls in the network 3451-3459, Dec. 2006.
The size of each scheduling cell is a function of the densitja] K. Son, Y. Yi, and S. Chong, “Utility-optimal multi-patn reuse in
of BS and terminal deployment in each locality. The average ™Multi-cell networks,” |[EEE Trans. Wireless Commun,, vol. 10, no. 1,

. f heduli s i ble i d hi pp. 142-153, Jan. 2011.
size of scheduling cells Is tunable In order to achieve ?5] M. Rahman and H. Yanikomeroglu, “Enhancing cell-edgefqgrenance:

desirable balance between performance and complexity. A a downlink dynamic interference avoidance scheme with r-cid

coordinated resource allocation scheme is developed which igggjir/‘_\agiro%'l'foEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1414~

achieves proportional fairness among the terminals in eagfy r v, chang, z. Tao, J. Zhang, and C.-C. J. Kuo, “Multic@FDMA
scheduling cell. downlink resource allocation using a graphic framewotEEE Trans.

In section I1I-A, we have introduced the notion of similgrit __ Ve Technol., vol. 58, no. 7, pp. 3494-3507, Sept. 2009.

S . 7] S. H. Ali and V. C. M. Leung, “Dynamic frequency allocatioin
between two BSs. The similarity index quantifies the Ieve[ fractional frequency reused OFDMA networkéZEE Trans. Commun.,

of interference among BSs and plays an important role in vol. 8, no. 8, pp. 4286-4295, Aug. 2009. _
the formation of the scheduling cells. It should be noted®! G. Fodor, C. Koutsimanis, A. &z, N. Reider, A. Simonsson, and

that th to defi th imilarity ind Th W. Milller, “Intercell interference coordination in OFDMA netvks and
a ere are many ways 1o define the similarity inaex. € in the 3GPP long term evolution systendgdurnal of Communications,

defined index in this paper is dynamically updated based vol. 4, no. 7, pp. 445-453, Aug. 2009.

on the channel gains of the active terminals. One mighf] A- L. Stolyar and H. Viswanathan, "Self-organizing dyni fractional
id ic indi lelv b d he | . f th frequency reuse for best effort traffic through distributeder-cell
consider static indices solely based on the location of the coordination,” inProc. 2009 |EEE INFOCOM Conference, pp. 1287—

BSs. Furthermore the proposed clustering technique isdbase 1295.
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