

*Threshold is the maximum allowed p2p variation, It is defined through system training and iteratively every fixed amount of time

Electrocardiogram (ECG)

► ECG reflects the cardiac Electrical activity over time ➢Typical ECG Heartbeat consists of

- P wave, Atrial
- Contraction •*QRS* complex, Ventricle
- Contraction
- *T* wave, re-polarization
- of Ventricles
- Recording with a set of electrodes on the body surface.

Peak Detection

► ECG signals are noisy

R

- Filtering requirements Complex Peak
- Detection Algorithm

Energy concentrated around R-peaks

Higher Amplitude

➢Output: RR interval in seconds

\underline{Sp}_{O2}

➢ Percentage of arterial hemoglobin in the oxyhemoglobin configuration ➢Non-invasive (blood sample) not required) ➢ Continuous periodic waveform

Peak Detection

► Iterative Local Maxima algorithm

- Scan window iterates and extracts
- the index and
- amplitude of peak

≻Output:

P-P periods

Interpreting Body Sensor Networks (BSNs) for Sensor Abnormalities

Ali Tawfiq and Haiyan Xu **Supervisor: K.N Plataniotis**

Background

BSN: A network of bio-sensors

- Wearable/implantable
- Wireless communication
- Positioned strategically on the body > Applications
 - Health monitoring, Disease diagnosis
 - Field agent monitoring (i.e. soldiers)
- > Challenges
 - Reliable monitoring

> Novel approach for sensor signal validation

System Components

sensors

Electrocardiogram (ECG), Peripheral Oximeter (Sp_{O2})

Graphical User Interface

Step 1: Locate the three data files by using the 'Load' buttons

Objective

Determine system failure based on comparison of *heart cycles* from various *cardiovascular* signals.

 Cardiovascular signals are universal and can be obtained through primary or secondary

There exists a certain correlation between the Peak-to-Peak periods of the different Cardiovascular signals.

System Overview

- Identify % Error for
- each device

Multiple Users

- Replace a set of the from User#1 into User#2
- Detect pulse cycle inconsistencies

Engineering

Testing and Verification

Correlation of Physiological Data

Confirmed the assumption that there exists a certain correlation between the Peak-to-Peak periods of the different Cardiovascular signals.

Mean of Difference			Standard	STD of Difference			Percent
SpO2	Vernier	Hidalgo	Deviation	SPO2	Vernier	Hidalgo	Error
0	0.0057	0.0057	0.0464	0	0.0047	0.0046	0.77%
	0	0.0023	0.0451		0	0.0017	0.54%
		0	0.045			0	0.54%

Introduce artificial noise to the ECG data > Test the robustness of the Peak Detection algorithm

- Filtered ECG

Original ECG

Performance Results

> Identify Inconsistencies based of average

Choose a % allowance

Vernier and Sp_{O2} data

100 = 15 Number of P-to-P period

Testing Robustness of Error Detection code

with multiple user data