
ECE431, Experiment 2, 2021
Communications Lab, University of Toronto

Experiment 2: Z-Transform
Bruno Korst - bkf@comm.utoronto.ca

Abstract
This experiment will deal with the placement of poles and zeros in the unit circle, and how this placement affects
the transfer function of a system (and vice-versa). At the end, you will design an oscillator, which consists of a
pole located on the unit circle at a certain angle, which determines the frequency of the oscillation.
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Introduction
In this lab, you will study linear time-invariant (LTI) discrete-time systems characterized by a difference equation that translates
into a system function, also known as the transfer function. You will experiment with the location of the poles and zeros of
such system function and verify how that affects frequency response, phase response and stability. At the end, it is hoped that
you will appreciate the relation between pole/zero location and system response, feedback and instability, and maybe even how
numeric precision on a DSP may affect the behaviour of a system.

This will be done in three main parts:

• First, you will understand the system function;

• Second, you will look at two simple systems, identify their poles and zeros and derive the system magnitude and phase
responses; and

• Finally, you will modify parameters of the system function on more complex systems to deliberately cause features to
appear or modify features in the system responses.

At the end, you will see how you would make the system do what you want (that is, if it can be done), and you will see that
sometimes any small error can cause a very undesireable outcome. That is, in fact, one of the beauties of control theory, but that
is another story.

Throughout this document, you will find in general the terminology and flow of standards textbooks in the field [1]. You
may use other books such as [3] as well if you so desire, but be careful with the terminology, as one can get lost very fast. In
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this lab, you will deal exclusively with causal systems. Also, to be consistent with the lectures, this document will use the term
transfer function rather than system function as the text uses. Keep this in mind as you go back and forth from this outline to the
textbook. In fairness, a great book for studying this particular topic is [2], Chapter 6.

You know that in the time domain a causal LTI system is characterized by its impulse response h[n], and in the frequency
domain it is characterized by its frequency response H(e jω), assuming it exists. For the system to be causal, h[n] = 0 for n < 0.
The function H(e jω) is the discrete-time Fourier transform (DTFT) of h[n]. Related to the frequency response function is the
transfer function, H(z), which is the z-transform of h[n]. By causality, this is the 1-sided z-transform. Finally, the frequency
response and the transfer function are related by

H(e jω) = H(z)|z=e jω .

The frequency response should be seen as gain and phase changes applied by the system onto the input. This occurs for
every individual frequency within the frequency band [−π,π). For example, suppose that the input is one sinusoid, such as
x[n] = sin(πn/10). Assuming stability, in steady state the output y[n] is a sinusoid of exactly the same frequency, π/10 radians
per sample, but of amplitude |H(e jπ/10)| and with a phase difference of ∠H(e jπ/10) from the input. An interesting example
is H(z) = z−2, for which ∠H(e jω) is a linear function of ω and y[n] = x[n−2], a delayed version of the input. Linear phase
filters are important in audio applications.

Finally, note that a discrete-time system frequently is embedded in a continuous-time system as in Figure 1.

xc(t) yc(t)
C/D D/C

x[n] y[n]
H(z)

Figure 1. Embedded discrete-time system.

This implements a continuous-time frequency response Hc( jΩ) from xc(t) to yc(t) provided the input is bandlimited to
frequencies less than the Nyquist rate fs/2.

Throughout this lab you will see that some changes imposed by the system to the input are desireable, some are not.
Your task as the engineer is to identify what are these changes (i.e., measure them) and then determine whether you want to
manipulate them further or not.

Note that the lab answer sheet is to be done in groups of two students. You should print the answer sheet to bring to the lab.
In the lab, then, you will follow the procedure below on the computer and record your answers for the remaining questions on
the answer sheet.

1. Experiment
You will first explore the characteristics of two simple systems: a differentiator and an integrator. You will study the location
of poles and zeros and how they determine the frequency response in magnitude and phase. Then you will look at two more
complex systems and will try to manipulate their parameters in order to achieve a certain result. This should give you a better
understanding of your freedoms and limitations in making changes to discrete-time systems.

1.1 The Transfer Function
Your previous course on Signals and Systems should have made you familiar with transitioning from time domain to frequency
domain and vice-versa. Discrete time is similar, except for the fact that you are now operating with sampled signals. You should
think of signals and system responses in terms of “sequences” of numbers. Some of them will represent voltage, some gain,
some phase shift. Below you will find a more appropriate mathematical development, taken from Chapter 5 of [1]. Towards the
end of this lab, some notions will come from Chapter 6 of the text.

1.1.1 Problem Definition
In time domain, an LTI system can be characterized by its impulse response h[n]. Given an input, the output is produced by the
convolution of that input and the system impulse response:

y[n] = x[n]∗h[n] (1)

The impulse response relates to the system frequency response through the Fourier Transform, providing this frequency
response exists. You know that the z-transform is a generalization of the Fourier transform. Therefore

Y (z) = X(z)H(z) or Y (e jω) = X(e jω)H(e jω) (2)
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H(z) is called the transfer function, and H(e jω) is the frequency response. Note that the complex exponential yields
magnitude and phase, therefore the frequency response will be represented by two plots over frequency: one indicating the
variation in gain (or magnitude) and the other indicating phase shift as it occurs over the frequency range.

We assume H(z) is rational, a ratio of polynomials in z. It is convenient to write the numerator and denominator as
polynomials in z−1:

H(z) =

M
∑

k=0
bkz−k

N
∑

k=0
akz−k

The numerator and denominator can then be factored as monomials:

H(z) =

(
b0

a0

) M
∏

k=1
(1− ckz−1)

N
∏

k=1
(1−dkz−1)

(3)

In the numerator product, if any of the factors results in zero, the whole numerator goes to zero, bringing H(z) to zero.
Likewise, in the denominator product, if any of the factors results in zero, the denominator goes to zero, bringing H(z) to
infinity. Whenever you identify a z that brings the transfer function to zero, you have identified a zero (surprised?). Likewise,
whenever you identify a z that brings your transfer function to infinity, you have identified a pole. Poles and zeros will interact
with each other and determine the frequency response (its magnitude and phase), as you will see next with examples.

From this point on, you should start referring to the answer sheet and recording your answers.

1.2 The Differentiator
You will now study one of the simplest systems that serves a variety of purposes. You have already seen it in basic circuit
theory, both in passive (i.e., as an RC circuit) and active (i.e., with an Op-Amp) configurations. Now you will see it in discrete
time, analyze its poles and zeros and modify things to see what happens. The transfer function for the differentiator you will
study is this:

H(z) = 1−bz−1

The system has one zero and one pole. Their positions determine the magnitude and phase on the frequency response.
Before you start answering the questions pertaining to the differentiator, you may find it helpful to explore the FDA Tool

found within MATLAB. You can open it by typing fdatool at the MATLAB propmpt, or you can go a longer way and look for
it within Simulink. For the latter, do this:

• open Simulink, by typing “simulink” at the prompt or by clicking the Simulink icon;

• open a blank model, then click on the Library Browser;

• open the DSP System Toolbox from the blockset tree at the left-hand panel;

• within the DSP System Toolbox, open Filtering and then Filter Implementations;

• drag the block labelled Digital Filter Design and drop it into your blank project;

• double-click on the Digital Filter Design block from within the project and it will open up the FDA Tool.

• now catch your breath.

Within the FDA Tool, the part that you will be exploring in this lab is found under File/Import From Workspace.
When you select that, you will be presented with some options at the bottom half of the window, and a plot at the top half.
For the Filter Structure, leave it as Direct-Form II Transposed (you will study some more of this later in the
course). You are interested in manipulating the Numerator and Denominator vectors in all exercises in this experiment.
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Figure 2. View of the FDA Tool on Import mode

Take the time now to try some numerator and denominator vectors to input to the FDA Tool. Figure 2 shows one of the views
of the window that you should see, but with different numbers.

Also, explore the buttons below the top menu to see the plots for impulse response, magnitude and phase of frequency
response, coefficients and pole-zero plot. It’s all there. You must be careful, as the designer, in knowing what you expect to see
from the plots that the tool produces. You cannot blindly believe that if it is on the computer screen it must be the answer you
are looking for. Know what to expect beforehand. If you input your parameters carefully, the tool will provide you with the
analysis you are looking for.

1.2.1 Creating a Notch in the Frequency Response
You saw above that by having a zero along the real axis of the unit circle (and a pole at the origin) you could create a notch in
the magnitude of the frequency response. Suppose we want the notch to be at the frequency π/2. Then we should make b close
to j. Intuitively, by controlling where this zero is located, you can place that notch in the magnitude anywhere you want.

There is a catch, though. If you try to place a single zero at b = j, thinking that you will create a notch at π/2, you will not
be able to realize (i.e., implement) your system. That is because you thought only half the way, meaning, going around the unit
circle from DC up to π .

You know at this point that in discrete-time what happens between DC to π is mirrorred between π and 2π , so your system
at this point is incomplete. The solution is to try to implement the “other half” of the unit circle as well. A notch system that
you can realize will have two zeros: one at the upper half of your unit circle and one at the bottom half, as well as two poles at
the origin.

Now use your Simulink skills and try to simulate such system. You already know how to derive the transfer function
for such system and how to work with the FDA Tool. All you need now is to put a system together. Figure 3 shows you a
suggestion for a simulation system, as well as a suggestion for the pole-zero plot to be achieved.

You may think about this pole-zero interaction in the following (rather non-elegant) way: If you imagine the magnitude plot
of the transfer function to be a string, a ”clothes line”, zeros will pull the magnitude of the transfer function down from where it
is, and poles will pull it back up. Poles at the centre pull everything equally up, and zeros at the centre pull everything equally
down. Poles close to the unit circle with zeros at the centre of the circle create a peak (a ”pass-band”), and poles at the centre
with zeros close to the unit circle create a notch (a ”reject-band”). They counter-act each other.

Now that you know the trick, move on to the answer sheet to answer some questions on the differentiator and make a fancier
system work.
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(a) Simulation Model (b) Pole-Zero Plot

Figure 3. Creating a Notch

1.3 The Integrator
The transfer function for the integrator you will study is

H(z) =
1

1−az−1 (4)

You can see that z = a is the pole. If you want your system to work, stay away from placing your pole on or outside the unit
circle. Try a couple of these scenarios now, and when you are ready answer the questions pertaining to the integrator on the
answer sheet.

1.4 Blowing It All Up (or Not)
Time has come for you to make stranger changes to the transfer function. Since this is a course on Digital Signal Processing,
the changes you are about to propose are likely to be changes in numbers, which represent parameters of a system implemented
in real-time on a microprocessor. In the analog world, a change intended to place a zero somewhere in the transfer function is
likely to be physical, such as “place a damper here.” For instance, such change could be the insertion of a capacitor to ground
somewhere in a circuit (which equates mechanically to a damper anyway – both absorb higher frequencies or vibrations). Now,
in the digital world you will have the freedom to create a mathematical representation of your system and implement it in code
using a microprocessor. However, you will have limitations in terms of memory, precision, execution time, etc. You are the
Engineer now: would you throw hardware at your problem or would you polish your assembly skills and make your design run
lean? It’s your call!

1.4.1 Generating a Sine Wave
This is only one method to generate a sine wave using a signal processor. The straightforward method would be to create a
table of values and read from (selected) values cyclically. This method is explained in a variety of practical DSP books, and it is
best described in [4], Chapter 5. What you seek to implement here is also called a digital resonator. You can look at it as an
“inverted notch”, that produces a sinusoidal output upon being presented with an impulse. Such systems are used, for instance,
in parametric equalizers along with notch filters.

The idea is simple. Open reference [1] to page 104, Table 3.1. You will see a number of z-transform pairs. Pairs number 11
and 12 indicate that if you implement a system whose transfer function H(z) is the one found under the Transform column, and
present such system with an impulse, the output will be a scaled cosine or sine. This is exactly what you will do here. You just
need to pick the frequency, and use that frequency and the right scale to make your system work. The relevant z-transform pair
is

(sinω0n)u[n] ↔ (sinω0)z−1

1− [2cosω0]z−1 + r2z−2 (5)
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You will implement the transfer function below and give it an impulse. This means that you will present to it an input with
a high energy lasting a very short period of time. Yes, think of it as a “bang”.The system will then resonate at the frequency you
selected.

H(z) =
(sinω0)z−1

1− (2cosω0)z−1 + r2z−2 (6)

Now that this is all figured out, move on to the answer sheet and fill it out as to baffle the TAs with brilliance. You can
also expand the breadth of your knowledge and look up the very interesting early studies on resonators done by Hermann von
Helmholtz, which eventually lead to a theory on how the cochlea works, and to a better understanding on how people hear and
perceive sounds.

2. Accomplishments
In this lab, you learned about the role played by the roots of the denominator and the numberator of the system transfer function.
The roots of the denomiator are the poles of the transfer function, while the zeros are are roots of its numerator. Their locations
with respect to the unit circle determine the most significant features of the system frequency response. You started with
single-zero and single-pole systems and escalated to systems with multiple poles and zeros. You have seen how changing their
number, their magnitude and angle modifies sometimes drastically the behaviour of a system. It is hoped that at the end of this
lab you are able to assess the response of a system and propose improvements and changes by manipulating the position of
poles and zeros, thus modifying the system transfer function.
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