Exp05: Multirate Signal Processing - Answer Book

• Name:	Lab Date:	
• Student No.:	Day of the week: Time:	
• Name:	TA Signature:	
• Student No.:	Grade:	

3. Experiment

3.1 Decimating and Interpolating

• As you run your system, you will notice that the output does not like exactly like the input. Why is this the case? [1 pt]

• What other blocks or subsystems you will need in order to recover the original signal? Add to your model and show it running to the TA. [1 pt]

• Now that you have a better representation of the original signal, why is the output offset/delayed? [1 pt]

3.2 Designing Mirrored Filters

• Show the TA the impulse responses of the two filters you have designed. Plot them overlapping each other. [1 pt]

• Show the TA now the frequency response of the two filters. Use actual frequency values on the x-axis and dB (Decibels) on the y-axis. [1 pt]

 	-	-	-			-	-	-	 	-	-	-	-	-		-	 -		-	-	-	-	-	-	 	-	-	-	-	-	-	-	_	-	-	-	-	
	_	_		_		_	_		 _		_	_	-	_			_		_		_	_	_	-		_		_	_					_		-		
	_			_		_			 -		_	_	-	-			_		_	_		-		-		-		_	_				_	_				
									 		_	_									_			_					_									
 -	-						-		 -		-	-	-	-			-		-	-	-	-	-	-		-		-	-					-		-		
_	_	_				_			 _		_	_	-	-					_	_	_	-	_	-				_	_							-		
	_	_		_		_	-		 _		_	_	-				_		_		_	_	-	-		_		_	_				_	_	_			
	_					_			 _		_	_											_					_	_							_		
	-					-			-		-		-				-				-		-	-		-										-		
	_					_	_		 _		_	_	_				_		_		_	_	_	-		_		_	_					_				
	-			-	_	-	-		 -		-		-	-			-	_	-		-	-	-	-		-		-	-	-			_	-	-	-		
	_	_				_			 												_		_					_	_				_					
	-			-					-		-												-			-		-	-				-			-		
-	-	-			_	-	-		 -		_	-	-	-			_					-	-	-			_		-					_	_	-		
		_				_																	_						_							_		

• If you were to write a C function to implement the filtering through convolution, how would you minimize the use of memory to store the coefficients of both filters?[1 pt]

~ ~		•	0	March 1997 and 1997	0
3.3	Α	One	Stage	Multirate	System

• Using a discrete impulse as an input, what is the offset/delay needed to recombine the signal? What else could be used instead of a pure delay block?[1pt]

• Using a bandlimited white noise block as input, vary the gain from 0.1 to 10. Be sure to use 48KHz as your sampling rate. Explain to the TA what is happening.[1pt]

3.4 A Multi-stage Multirate System

• For comparison, design an FIR filter of order 60, $f_s = 48$ KHz and $f_c=2$ KHz. Compare the band selection of this filter you have designed with the selection obtained with the multi-stage design you are running. Is an order 60 comparable in performance (cutoff)? Which one takes longer to run? Which one takes more memory?[1pt]

• Place slider gains at multiple signal paths and show the TA which bands the sliders are affecting[1pt]