
1

Bit Allocation Laws for Multi-Antenna Channel
Feedback Quantization: Multi-User Case

Behrouz Khoshnevis and Wei Yu

Abstract—This paper addresses the optimal design of limited-
feedback downlink multi-user spatial multiplexing systems. A
multiple-antenna base-station is assumed to serve multiple single-
antenna users, who quantize and feed back their channel state in-
formation (CSI) through a shared rate-limited feedback channel.
The optimization problem is cast in the form of minimizing the
average transmission power at the base-station subject to users’
target signal-to-interference-plus-noise ratios (SINR)and outage
probability constraints. The goal is to derive the feedbackbit
allocations among the users and the corresponding channel mag-
nitude and direction quantization codebooks in a high-resolution
quantization regime. Toward this end, this paper develops an op-
timization framework using approximate analytical closed-form
solutions, the accuracy of which is then verified by numerical
results. The results show that, for channels in the real space, the
number of channel direction quantization bits should be(M−1)
times the number of channel magnitude quantization bits, where
M is the number of base-station antennas. Moreover, users with
higher requested quality-of-service (QoS), i.e. lower target outage
probabilities, and higher requested downlink rates, i.e. higher
target SINR’s, should use larger shares of the feedback rate. It
is also shown that, for the target QoS parameters to be feasible,
the total feedback bandwidth should scale logarithmicallywith
the geometric mean of the target SINR values and the geometric
mean of the inverse target outage probabilities. In particular,
the minimum required feedback rate is shown to increase if
the users’ target parameters deviate from the corresponding
geometric means. Finally, the paper shows that, as the total
number of feedback bits B increases, the performance of the
limited-feedback system approaches the perfect-CSI system as
2−B/M2

.

Index Terms—Beamforming, bit allocation, channel quanti-
zation, limited feedback, multiple antennas, outage probability,
power control, spatial multiplexing.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) technology can po-
tentially provide significant performance improvements for
wireless systems. More specifically, in the context of cellular
communications, the availability of multiple antennas at the
base-station allows it to simultaneously transmit to multiple
users by multiplexing their data streams and hence improve
the total downlink rate. Such systems are generally referred to
as multi-user spatial multiplexing systems.

The performance of multi-user spatial multiplexing systems
depends heavily on the amount of channel state information
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(CSI) at the base-station [1], [2]. Such information is neces-
sary to form the downlink transmission beams at the base-
station and to perform rate/power adaptation for each user.
Acquiring channel information, however, is a challenging issue
in practice especially for frequency-division duplex (FDD)
systems, where the uplink and downlink channels use different
frequency bands. In these systems, the users need to explicitly
quantize their channels and send back the quantized informa-
tion through a shared feedback channel. The feedback link in
such a system is usually a rate-limited control channel, hence
the termlimited-feedback systems.

The scarcity of feedback bandwidth in limited-feedback
systems necessitates efficient channel quantization codebook
structures and an optimal allocation of feedback bits among
those codebooks. This paper aims at deriving these structures
and the corresponding bit allocation laws for limited-feedback
multi-user spatial multiplexing systems.

A. Related Work

Multi-antenna communications with limited CSI is exten-
sively studied in the literature for single-cell systems [1]–[10]
and to some extent for cooperative multi-cell networks [11]–
[13]. This paper focuses on single-cell multi-user systems.

The major advantage of multi-antenna multi-user systems
with respect to single-user systems is the sum-ratemultiplexing
gain, which follows from the fact that multiple simultaneous
transmissions can be established in a multi-antenna downlink.
In order to preserve this gain in limited-feedback systems,the
author of [2] shows that the total feedback rate should scale
linearly with the signal-to-noise ratio (SNR) in dB scale. The
work in [2] addresses a setup with small number of users. In a
network with large number of users, there is another source of
sum-rate improvement, referred to asmulti-user diversity gain,
which is realized by the base-station opportunistically schedul-
ing users with favorable channel conditions. For scheduling,
a well justified approach is to choose users with high channel
gains and near-orthogonal channel directions [1], [3]–[7], [10].
The authors of [3] specifically show that one needs the channel
gain information (CGI) in addition to the quantized channel
direction information (CDI) in order to realize the multi-user
diversity gain. The gain information however is assumed to
be perfect in [3]. The split of feedback bits between CGI and
CDI quantization introduces an interesting tradeoff between
multiplexing gain and diversity gain. This tradeoff is studied
by [7], where the authors numerically show that more bits
should be used for CGI quantization in order to benefit from
multi-user diversity gain as the number of users increases.

For the purpose of precoding the information intended
to scheduled users, two distinct approaches are proposed
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in the literature. The first group of work uses zero-forcing
beamforming based on the quantized directions [3], [6]. The
second group adopts a codebook (or multiple codebooks) of
orthonormal beamforming vectors and selects beamforming
directions based on the signal-to-interference-plus-noise ratio
(SINR) feedbacks from the users [1], [4], [10]. The authors
of [10] specifically claim that in the regime of large number
of users, the orthogonal beamforming approach outperforms
the zero-forcing method. Finally, the authors of [5] present a
more thorough analysis of multi-user limited-feedback systems
considering joint training, scheduling, and beamforming.

B. System Model

This paper considers a limited-feedback multi-user system
with a M -antenna base-station andM single-antenna users.
The users send their quantized CSI to the base-station through
a feedback link with a capacity ofB bits per each downlink
transmission block. Based on this quantized information, the
base-station then comes up with the downlink transmission
powers and beamforming vectors.

Our goal is to optimize the system performance subject
to the total feedback rate constraint. Although the proposed
approach is rather generic, we impose several simplifying
assumptions on the system model in order to achieve closed-
form solutions. These assumptions are listed below and willbe
explicitly mentioned and justified whenever needed throughout
the text:
Assumptions:
A1. Most of the analysis in this paper is based on the

assumption ofhigh resolution quantization, i.e.B → ∞.
This assumption is made mainly to achieve a tractable
formulation for system optimization and has been used
frequently in the literature of quantization theory [14],
[15]. In addition, the paper investigates, both numerically
and analytically, the system performance with moderate
values ofB, and examines the regime where the high
resolution results are applicable.

A2. Users’ channels are independent and identically dis-
tributed (i.i.d.).

A3. Users’ channel directions are uniformly distributed over
the M -dimensional unit hypersphere. This includes the
Rayleigh i.i.d. channels as an special case [16].

A4. Users’ channel magnitudes are independent from channel
directions and can have an arbitrary distribution.

A5. We assume a product structure for the channel quantiza-
tion codebook, i.e. channel magnitudes and channel direc-
tions are quantized independently. This product structure
is justified in [8], [17]. According to the high resolution
assumption, if we denote the magnitude and direction
codebook sizes byṄk and N̈k, we haveṄk, N̈k → ∞
for each user1 ≤ k ≤ M .

A6. The beamforming vectors are zero-forcing directions for
the quantized directions. This assumption is to mimic
the perfect-CSI case, where zero-forcing beamforming is
shown to achieve asymptotically optimal sum-rate scaling
with SNR [18], [19].

A7. The user channels are assumed to be real vectors. Al-
though this assumption appears in the earlier literature,

e.g. [20], [21], we use it mainly for the ease of geometric
representation of the quantization regions and the corre-
sponding calculations. The extension of the analysis to
complex space is discussed in Section VIII.

C. Problem Formulation

We formulate the system design problem as the minimiza-
tion of the average sum power subject to the users’ outage
probability constraints. In order to differentiate between the
users’ QoS requirements, we assume different target SINR’s
and outage probabilities across the users. Our goal is to
derive the optimal split of feedback bits among the users
and the corresponding magnitude and direction quantization
codebooks.

Different variations of the power minimization formulation
are used in the literature, e.g. in [22]–[26], as an appropriate
formulation for fixed-rate delay-sensitive applications,e.g.
voice over IP, video conferencing, and interactive gaming.
The reliability of the fixed-rate link is usually achieved by
applying power control at the base-station to compensate for
the channel fading, as in Wideband Code Division Multiple
Access (WCDMA) system standards [27].

An alternative problem formulation is to maximize the
average sum rate subject to a power constraint [1]–[4], [6],[7],
[10]. In most of these formulations, the transmission poweris
fixed and the quantized information is used only to adapt the
transmission rates. This type of formulation is more appropri-
ate for variable-rate communication systems, e.g. Worldwide
Interoperability for Microwave Access (WiMAX) and 3GPP
Long Term Evolution (LTE) system standards [28], [29].

We make the following comments on the existing rate-
maximization formulations in the literature:

1. The sum-rate maximization problem assumes equal pri-
ority for all users in terms of their applications. Since the
users are not differentiated based on their QoS measures,
this formulation cannot answer the question of how
to optimally split the feedback bits among users with
different QoS requirements.

2. The channel gain information (CGI) is clearly an impor-
tant factor in scheduling the users and also in setting the
downlink rate for each user. However, most of the existing
literature either assumes perfect channel gain information
or completely ignores this information. It is therefore not
clear how to optimally split the feedback bits between
channel direction and channel gain quantizers in the
context of sum-rate maximization problem. The works
that look into this problem are mainly numerical and lack
closed-form solutions [7], [10].

One solution to the first issue raised above is to prioritize
users with certain weights and consider the weighted sum-rate
maximization instead of the sum-rate itself. These weights
can be set by the scheduler based on users’ QoS require-
ments. The proportional fairness scheduler for example sets
the weights based on users’ backlogged traffic by assigning
a higher weight to a user with larger backlog. This type of
formulation appears for example in [30]–[33] for perfect-CSI
systems. Generalizing this formulation to limited-feedback
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systems however appears to be a difficult problem. We are not
specifically aware of any work that addresses such a problem.
For this reason, this paper resorts to a power minimization
formulation, which can easily incorporate the QoS constraints
by assuming different target SINRs and outage probabilities
across the users. The power minimization formulation also
simplifies the CGI/CDI bit allocation problem and provides
insight to the system design by allowing for closed-form
asymptotic bit allocation solutions.

D. Proposed Approach

Our approach for solving the power minimization problem
is to fix the channel outage regions in advance and transform
the problem to a robust optimization problem. Assuming zero-
forcing beamforming vectors, we first formulate the robust
power control problem in the form of a semi-definite pro-
gramming (SDP) problem. Using an approximate upper bound
solution to the SDP problem, we then derive the codebook
structures and the corresponding bit allocations in the asymp-
totic regime whereB → ∞. Within the proposed approximate
optimization framework, we show that for channels in real
space:

1. The optimal number of channel direction quantization
bits is M − 1 times the number of channel magnitude
quantization bits, whereM is the number of base-station
antennas.

2. The share of thekth user from the total feedback rate
is controlled by log γk and log 1/qk, where γk and
qk are the user’s target SINR and outage probability.
As a general rule, a user with a lower target outage
probability and higher target SINR needs a higher channel
quantization resolution and therefore requires a larger
share of the total feedback rate.

3. For the outage probability constraints to be feasible,
the total feedback rate should scale logarithmically with
γ̄, the geometric mean of the target SINR values, and
1/q̄, the geometric mean of the inverse target outage
probabilities. Moreover, the minimum required feedback
rate increases if the users’ target parameters deviate
from the average parameters̄γ and q̄, i.e. there is a
feedback rate penalty for serving users with non-similar
target parameters. The higher the deviation, the higher
the penalty.

4. As the total feedback rateB increases, the performance
of the limited CSI system approaches the performance of
the perfect-CSI system as2−

B

M2 .

These optimality results are based on minimizing an upper
bound of the sum power. The closeness of the upper bound to
the exact sum power is verified numerically in the paper.

E. Organization of the Paper

The remainder of this paper is organized as follows. Section
II provides an overview of the perfect CSI system. Section
III presents the system design problem in its general form
and describes our approach in transforming it to a robust
design problem. Section IV describes the product channel

quantization codebook structure. In Section V, we study the
power control optimization for fixed quantization codebooks
and derive an upper bound for the average sum power. By
using the sum power upper bound, we then optimize the
product codebook structures in Section VI and derive the
asymptotically optimal bit allocation laws. Finally, Section VII
presents the numerical results and Section VIII concludes the
paper.

Notations:Most of the computations in this paper are in real
space. The logarithm functions are base 2. The angle between
any two unit-norm vectorsu andv is defined as∠(u,v) =
arccos |uT

v| so that0 ≤ ∠(u,v) ≤ π/2.

II. M ULTIUSER SPATIAL MULTIPLEXING SYSTEM WITH

PERFECTCSI: OUTAGE IS INEVITABLE

We start by assuming perfect CSI at the base-station and
show that, unlike a single-user system, outage is inevitable in
the multi-user system even with perfect CSI. The difference
with the single-user case is due to the fact that the base-
station in a multi-user system needs to distinguish the users
spatially and when the user channels are closely aligned it is
not possible to satisfy the users’ target SINR’s with a bounded
average transmission power.

Consider a multi-user downlink channel withM antennas
at the base-station andM users each with a single antenna.
Let hk ∈ R

M , vk ∈ R
M , Pk, andγk denote respectively, the

user channel, the unit-norm beamforming vector, the allocated
power, and the target SINR for thekth user,1 ≤ k ≤ M . The
minimization of the transmission sum power subject the user
SINR constraints is formulated as follows:

min
Pk,vk

M
∑

k=1

Pk (1)

s.t.
Pk

∣

∣h
T
k vk

∣

∣

2

∑

l 6=k

Pl

∣

∣hT
k vl

∣

∣

2
+ 1

≥ γk, k = 1, 2, · · · ,M

where the receiver noise power is assumed to be1 for all users.
A suboptimal solution for problem (1) is to use zero-forcing

(ZF) beamforming vectorsvk to eliminate the interference
and find the power valuesPk that satisfy the constraints with
equality. This solution is asymptotically optimal in the high
SNR regime [18], [19]. Clearly, for the zero-forcing solution
to be applicable, the users’ vector channels need to be linearly
independent. Since the channels are assumed to be independent
random vectors, this condition is satisfied almost surely, i.e.,
with probability one.

An important matter to consider with this solution is that the
transmission powers would need to be extremely high when
the users’ channels are closely aligned, as the ZF beamforming
vectors would be almost perpendicular to the corresponding
channels in such cases. Therefore, it is not possible to always
satisfy the SINR constraints with a bounded average power
and as a result, a certain degree of outage must be tolerated
by the users.

To see this rigorously, defineθk = ∠(hk,H−k), where
0 ≤ θk ≤ π

2 , andH−k = span({hl|l 6= k}). For zero-forcing
beamforming vectorsvk we have∠(vk,hk)=

π
2−θk. Assume
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that the users’ channels are i.i.d. with uniformly distributed
directions and independent channel magnitudes (with arbitrary
distributions). The average sum power of the zero-forcing
method is given by

PMU,CSI=
M
∑

k=1

E

[

γk
∣

∣hT
k vk

∣

∣

2

]

=
M
∑

k=1

γkE

[

1

‖hk‖2
]

E

[

1

sin2(θk)

]

.

As θk is uniformly distributed in[0, π
2 ], the expectation of

1/ sin2(θk) becomes unbounded.
To avoid unbounded transmit power, the users should tol-

erate certain degrees of outage. A reasonable approach is to
declare outage for userk, i.e. setPk = 0, when

0 ≤ θk < θ◦k,

whereθ◦k ≪ 1 is the smallest acceptable angle betweenhk and
H−k. With this assumption the average sum power is given
by

PMU,CSI =

M
∑

k=1

γkE
[

1/‖hk‖2
] 1

π/2

∫ π/2

θ◦

k

dθk
sin2 θk

=
2

π

M
∑

k=1

γkE
[

1/‖hk‖2
]

cot θ◦k ≈ 2ρMU,CSI

π

M
∑

k=1

γk
θ◦k

, (2)

where the approximation holds forθ◦k ≪ 1 and

ρMU,CSI

def
= E

[

1/‖hk‖2
]

(3)

for i.i.d. users. The corresponding outage probabilities are
pout,k = 2θ◦k/π for 1 ≤ k ≤ M .

Having studied the perfect CSI system, the next section
describes a general framework for the limited-feedback system
design. The insights achieved by studying this general formare
used in the later sections for system design and optimization
with product channel quantization codebooks.

III. SYSTEM DESIGN PROBLEM AND VECTORCHANNEL

QUANTIZATION : GENERAL FORM

To clarify the arguments, we start by some basic definitions.
By a vector channel quantization codebookC of sizeN , we
mean a partition ofRM into N disjoint quantization regions
S(n), 1≤n≤N :

C={S(1), S(2), · · · , S(N)}.
For every quantization codebookC, we also define aquanti-
zation function

S(h) : RM → C,
which returns the quantization region thath ∈ R

M belongs
to.

Now, for each user1≤k≤M , associate a codebookCk of
sizeNk and the corresponding quantization functionSk(hk),
wherehk is thekth user’s channel. Further, define the ordered
M -tuples

H
def
= [hT

1 ,h
T
2 , · · · ,hT

M ] ∈ R
M2

,

S(H)
def
= [S1(h1),S2(h2), · · · ,SM (hM )] ∈

M
∏

k=1

Ck.

For a given total number of quantization (feedback) bitsB,
target SINR valuesγk, and target outage probabilitiesqk, the
system design problem is formulated as follows:

min
Ck,Nk,

Pk(S(H)),
vk(S(H))

EH

[

M
∑

k=1

Pk(S(H))

]

(4)

s.t.
M
∏

k=1

Nk = 2B,

prob









Pk(S(H))
∣

∣h
T
k vk(S(H))

∣

∣

2

∑

l 6=k

Pl(S(H))
∣

∣hT
k vl(S(H))

∣

∣

2
+1

<γk









≤qk,

k = 1, 2, · · · ,M
where the optimization is over the quantization codebooksCk,
codebook sizesNk, the power control functionsPk(S(H)) :
∏M

k=1 Ck → R+, and the beamforming functionsvk(S(H)) :
∏M

k=1 Ck → UM , whereUM is the unit hypersphere inRM .
An exact solution to this problem is intractable. Our ap-

proach in simplifying the problem is to fix the outage scenarios
in advance and transform the design problem to a robust design
problem that guarantees the target SINR’s for the no-outage
scenarios.

Define theoutage regionΩk ⊂∏k Ck for userk such that
prob[S(H) ∈ Ωk] = qk. Also defineIk(S(H)) as theactivity
flag for userk:

Ik(S(H)) = I(S(H) ∈ Ωc
k),

where I(·) is the logic true function. Whenever a user’s
channel resides outside the user’s predefined outage region,
the activity flag is on and the user must be served by the
base-station, i.e. the user should not face an outage.

Let us fix the codebook sizesNk for now. For a robust
system design, we need to design the codebooks, the power
control functions, and the beamforming functions such thatthe
target SINR’s are guaranteed wheneverIk(S(H))=1:

min
Ck,

Pk(S(H)),
vk(S(H))

EH

[

M
∑

k=1

Pk(S(H))

]

(5)

s.t. inf
w∈Sk(hk)

Pk(S(H))
∣

∣w
T
vk(S(H))

∣

∣

2

∑

l 6=k

Pl(S(H)) |wTvl(S(H))|2+1
≥ γkIk(S(H)),

∀ H ∈ R
M2

andk = 1, 2, · · · ,M (6)

Note that by including the activity flag in the constraint (6),
this formulation guarantees the target SINR whenIk = 1 and
returnsPk=0 whenIk=0. Also note that the activity flags are
fixed in advance such that prob[Ik(S(H))=0]=qk.

The design problem in (5) is a complicated problem. In
order to achieve a tractable reformulation, we accept two main
simplifying assumptions (Assumptions A5 and A6 in Section
I-B):

• We assume a product structure for the channel quan-
tization codebook, where the channel magnitude and
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the channel direction are quantized independently. Such
a product structure, also known as shape-gain quanti-
zation in the literature [14], provides several practical
advantages including faster quantization and lower stor-
age requirement for the quantization codebooks. Product
codebook structures are also shown to be sufficient struc-
tures for effective interference management in multi-user
systems [8].

• We assume a fixed zero-forcing design for the following
reason. Let us fix the quantization codebooksCk and
consider a time snapshot of the optimization problem in
(5) with a fixed channel realizationH and fixed quantized
information S(H). For this specific point in time, we
intend to optimize the beamforming vectorsvk and power
levels Pk such that the worst-case SINR conditions in
(6) are satisfied. It can be shown that this problem is
non-convex with respect toPk and vk and therefore
difficult to solve in general. However, if one fixes the
vectorsvk, the problem would be convex in terms of
Pk, since the objective and constraints are linear inPk.
Similar observations are made in [34]–[36]. In order to
preserve the convexity structure, we therefore assume that
the beamforming vectorsvk(S(H)) are fixed as zero-
forcing vectors for the quantized channel directions. This
is to mimic the zero-forcing beamforming with perfect
CSI, where the base-station knows the exact channel
directions. The exact definition of the quantized channel
directions is provided later in Section IV-B.

With these simplifying assumptions, the robust design prob-
lem reduces to the following subproblems: 1) optimizing
the power control function for fixed beamforming vectors
and codebook structures; 2) optimizing the product codebook
structure itself. The following sections address these subprob-
lems.

IV. PRODUCT QUANTIZATION CODEBOOK STRUCTURE

In this section, we describe the product quantization code-
book structures and specify the corresponding outage regions.
To be more exact, for a given target outage probabilityqk, we
specify the magnitude and direction outage regions such that

qk = q̇k + q̈k,

where themagnitude outage probabilitẏqk is the probability
that the channel magnitude resides in the specifiedmagnitude
outage regionand thedirection outage probabilitÿqk is the
probability that the channel direction resides in the specified
direction outage region.

A. Magnitude Quantization Codebook and Magnitude Outage
Region

For each user1 ≤ k ≤ M , we use a magnitude quantization
codebook

Yk =
{

y
(1)
k , y

(2)
k , · · · , y(Ṅk)

k

}

for quantizing the channel magnitude squaredYk
def
= ‖hk‖2.

Herey(n)k are the quantization levels anḋNk is the magnitude
codebook size.

For a givenmagnitude outage probabilitẏq, we define the
magnitude outage regionas the leftmost quantization interval
[

0, y
(1)
k

)

. The first quantization level is therefore fixed as

y
(1)
k = F−1(q̇k), (7)

whereF−1(·) is the inverse cumulative distribution function

(cdf) of Yk
def
= ‖hk‖2.

We further defineĊk as the set of magnitude quantization
regions, i.e. the set of quantization intervals for‖hk‖ =

√
Yk:

Ċk =
{

J
(1)
k , J

(2)
k , · · · , J (Ṅk)

k

}

, (8)

whereJ (n)
k =

[

√

y
(n)
k ,

√

y
(n+1)
k

)

and y
(Ṅk+1)
k

def
= ∞. Note

that the definition uses the square root of the levels as the
quantization levelsy(n)k are defined for quantizing‖hk‖2.

Finally, for Yk ≥ y
(1)
k , we define thequantized magnitude

Ỹk as the quantization level inYk that is in the immediate left
of Yk, i.e.,

Ỹk = y
(n)
k if y

(n)
k ≤ Yk < y

(n+1)
k . (9)

For reasons that are clarified later in Section VI, we are in-
terested in a magnitude quantization codebook that minimizes
E

[

1/Ỹk

]

. It is shown in [37] that the optimal codebook with
such a criterion is uniform (in dB scale) in the asymptotic
regime whereṄk → ∞. We denote such an optimal codebook
by Y

⋆
k and refer to it as theuniform magnitude quantization

codebookin the remainder of this paper.
The work in [37] further shows that the uniform codebook

Y
⋆
k satisfies the following upper bound:

E

[

1

Ỹ ⋆
k

]

< ρMU,CSI

(

1 + Ṅ
−ζk(Ṅk)
k + ωṄ

−2ζk(Ṅk)
k

)

, (10)

where
ρMU,CSI = E[1/Yk] = E[1/‖hk‖2]

as defined in (3). On the left hand side of (10), the variable
Ỹ ⋆
k is the quantized magnitude variable associated with the

uniform codebookY⋆
k. On the right-hand side of (10),

ω
def
=

E[Yk]

η2E[1/Yk]
,

where
η = lim

y→∞
−f(y)/f ′(y)

and f(·) is the probability density function (pdf) ofYk. The
function ζk(n) depends on the magnitude outage probability
q̇k and is defined as the solution to the following equation:

n−ζk(n)
(

1 + n−ζk(n)
)n−1

=
η

y
(1)
k

,

wherey(1)k = F−1(q̇k) as defined earlier. It can be shown that
for any q̇k > 0 and hencey(1)k > 0, we have

lim
n→∞

ζk(n) = 1. (11)

The bound in (10) and the limit in (11) are used in Sec-
tion VI for optimization of the product channel quantization
codebook structure.
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Fig. 1. Spherical capB(n)
k aroundu(n)

k on the unit hypersphereUM .

B. Direction Quantization Codebook and Direction Outage
Region

For each user1≤k≤M , we use a Grassmannian codebook
Uk of size N̈k for direction quantization:

Uk =
{

u
(1)
k ,u

(2)
k , · · · ,u(N̈k)

k

}

, (12)

whereu(n)
k vectors areM -dimensional unit-norm Grassman-

nian codewords.
Every channel realizationhk is mapped to a vector

ũk(hk) ∈ Uk that has the smallest angle withhk:

ũk(hk) = arg min
u∈Uk

∠(hk,u). (13)

The vectorũk is referred to as thequantized directionfor
the channel realizationhk. The corresponding quantization
regions, according to the Gilbert-Varshamov argument [38],
can be covered by the following spherical caps:

C̈k =
{

B
(1)
k , B

(2)
k , · · · , B(N̈k)

k

}

, (14)

where
B

(n)
k =

{

w ∈ UM

∣

∣

∣
∠(w,u

(n)
k ) < φk

}

is the spherical cap aroundu(n)
k as shown in Fig. 1. In this

definition,
φk = arcsin δk

is the angular opening of the caps andδk is the minimum
chordal distance ofUk. It should be noted that covering the
direction quantization regions with the spherical caps enlarges
the quantization regions. By considering the constraint (6) in
the robust design problem (5), such enlargement of the regions
will lead to an upper bound for the average transmission
power.

In order to describe thedirection outage regions, define

θk = ∠(ũk, Ũ−k),

where
Ũ−k = span({ũl|l 6= k})

andũk is the quantized direction for userk. This is a similar
definition as in Section II, except that the exact channelshk

are replaced with the quantized directionsũk. Similar to the
discussion in Section II for the perfect CSI system, we say
that userk is in direction outageif

0 ≤ θk < θ◦k,

whereθ◦k is the minimum acceptable angle betweenũk and
U−k. This implicitly defines the direction outage regions of

the users. Finally, assuming thatθk is approximately uniform
in [0, π/2]1, the direction outage probabilityis given by

q̈k ≈ 2

π
θ◦k. (15)

In Section VI, which addresses the product codebook
optimization, we will need the following inequality, which
describes the dependence between the angular openingφk and
the direction codebook sizëNk:

φk ≈ sinφk < 4λM N̈
− 1

M−1

k , (16)

whereλM=(
√
πΓ((M+1)/2)/Γ(M/2))

1
M−1 . This inequality

holds for large enough values of̈Nk and its proof is presented
in [37]. The approximation on the left-hand side of (16)
assumesφ ≪ 1, which is justified by the high resolution
assumptionN̈k ≫ 1 (Assumption A1 and A5 in Section I-B).

C. Product Codebook Structure

Using our definitions of the magnitude and direction quan-
tization regions, we define product channel quantization code-
book Ck for each userk as follows:

Ck = (Ċk × C̈k) ∪ Ok, (17)

where Ċ and C̈ are the magnitude and direction quantization
regions in (8) and (14), and

Ok =

{

h

∣

∣

∣

∣

‖h‖ <

√

y
(1)
k

}

is a ball centered at origin corresponding to the magnitude
outage region.

Based on the definitions of the magnitude and direction
outage regions, the activity flag for userk is given by

Ik = I
(

θk ≥ θ◦k ∧ ‖h‖ ≥
√

y
(1)
k

)

, (18)

whereI(·) is the logic true function, andθk, θ◦k, andy(1)k are
defined in Sections IV-A and IV-B.

According to the activity flag expression in (18), the outage
event for userk can be expressed as the union of the magnitude
outage event, corresponding to the channel magnitude lyingin
the magnitude outage region, and the direction outage event,
corresponding to the channel direction lying in the direction
outage region. By using the union probability formula we have

prob[Ik = 0] ≤ q̇k + q̈k ≈ F (y
(1)
k ) +

2

π
θ◦k,

where q̇k and q̈k are the magnitude and direction outage
probabilities respectively and the approximation followsfrom
(15). In order to satisfy the target outage probabilityqk, we
therefore impose the following constraint2:

F (y
(1)
k ) +

2

π
θ◦k ≤ qk. (19)

1This holds if the channel direction are uniformly distributed (Assumption
A3 in Section I-B) and the codebooksUk undergo sufficient random rotations.

2Note that this constraint is stronger than prob[Ik = 0] ≤ qk and would
therefore lead to an upper bound on the objective function (average sum
power). This agrees with the direction of our analysis in achieving an upper
bound for the sum power.
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Fig. 2. Sector-type channel uncertainty regionSk = S(Rk, rk, ũk, φk) for
userk.

Finally, the product channel quantization codebook size is
given by

|Ck| = Nk = ṄkN̈k + 1, (20)

whereṄk andN̈k are the magnitude and direction codebook
sizes respectively.

To summarize, for a given target outage probabilityqk and
a given codebook sizeNk, we propose a product quantization
structure and specify its outage regions and the corresponding
activity flags such that prob[Ik = 0] = qk. The proposed
product codebook structure is parameterized by the magnitude
and direction codebook sizeṡNk and N̈k, the minimum ac-
ceptable channel magnitudey(1)k , and the minimum acceptable
directional separationθ◦k.

V. OPTIMIZATION OF THE POWER CONTROL FUNCTION

WITH SECTOR-TYPE CHANNEL UNCERTAINTY REGIONS

Assuming the product codebook structure in Section IV,
this section addresses the optimization of the power control
function. For this purpose, we fix the quantization codebooks
Ck and the corresponding outage regions. Furthermore, as
mentioned in Section III, we make the simplifying assumption
that the beamforming vectors are the zero-forcing vectors for
the quantized directions.

For the product quantization codebooks considered in this
paper, the quantization (or channel uncertainty) regions are
sector-type regions as shown in Fig. 2. A sector-type region
is parameterized as

S(R, r, ũ, φ) =
{

h ∈ R
M
∣

∣

√
r ≤ ‖h‖ <

√
R, ∠(h, ũ) < φ

}

,

where in the terminology of Section IV,̃u is the quantized
direction andr is thequantized magnitude, which is denoted
as Ỹ in (9).

For a specific point in time, consider the channel realizations
H = [hT

1 ,h
T
2 , · · · ,hT

M ] and the corresponding quantization
(or channel uncertainty) regions

Sk = S(Rk, rk, ũk, φk)
def
= Sk(hk),

where thequantization functionsSk(hk), 1≤k≤M , are de-
fined in Section III. Also, letIk denote the corresponding
activity flags.

The goal is to optimize the power control function for the
robust design problem (5). Therefore, for the current channel
realizationsH, we have to find the transmission power levels

Pk that minimize the instantaneous sum power subject to the
worst-case SINR constraints:

min
Pk

M
∑

k=1

Pk (21)

s.t. inf
w∈Sk

Pk

∣

∣w
T
vk

∣

∣

2

∑

l 6=k

Pl |wTvl|2 + 1
≥ γkIk, k=1,2,· · ·,M (22)

where the beamforming vectorsvk are fixed, since the quan-
tized directionsũk are fixed. Let us refer to the users with
Ik = 0 as thesilent users and the users withIk = 1 as
the active users and let the setK denote the set of active
users:K = {1≤k≤M |Ik = 1}. In generalK is a random
set depending on the channel realizations and the specified
outage regions. Now, considering the power control problem
in (21), we note that if a userk is silent, i.e.Ik = 0, the
corresponding SINR constraint in (22) is redundant as the
problem returnsPk = 0 for such a user. We therefore confine
the SINR constraints in (22) to the set of active users, i.e. the
indicesk ∈ K.

According to the robust design formulation in (5), for any
channel realizationH = [hT

1 ,h
T
2 , · · · ,hT

M ], the base-station is
required to serve (guarantee the target SINR’s for) all active
usersk ∈ K. The power control problem in (21) therefore
must be feasible for the active users. The following theorem
presents a sufficient condition that guarantees feasibility.

Theorem 1:To ensure the feasibility of the robust power
control problem in (21), it is sufficient to have the following
for all 1 ≤ k ≤ M :

N̈k ≥
(

4λM

/

sin

(

arctan

(

sin θ◦k
1 +

√

(M − 1)γk

)))M−1

.

(23)
Proof: See Appendix A.

This condition is referred to as the minimum quantization
codebook size (MQCS) condition in the remainder of this
paper.

In the high resolution regime, where the codebook sizes
tend to infinity, the MQCS conditions are clearly satisfied;
therefore, feasibility of the power control problem is not an
issue as far as the high resolution analysis is considered. This
condition however plays a key role in finding the minimum
number of feedback bitsB for which the asymptotic bit
allocation laws are applicable. This issue is discussed in further
detail in Theorem 5 of Section VI.

We are now ready to solve the power control problem in
(21). An exact numerical solution to this problem can be
obtained by transforming it into a semidefinite programming
(SDP) problem as described in the following.

Theorem 2:The problem in (21) is equivalent to the fol-
lowing SDP problem forM ≥ 3:

min
Pk,λk,µk

∑

k∈K

Pk (24)

s.t.
1

γk
Pkvkv

T
k −
∑

l 6=k

Plvlv
T
l �(λk−µk)IM+

µk

cos2 φk
ũkũ

T
k

λk ≥ 1

rk
, µk ≥ 0, Pk ≥ 0, k ∈ K,
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whereIM is theM×M identity matrix.
Proof: The proof is based on the Polyak’s theorem in

[39]. See Appendix B for details.
Although the SDP reformulation provides a numerically

efficient solution, it does not give the minimized sum power in
a closed form. The availability of a closed-form expressionfor
sum power is crucial in optimizing the quantization codebook
structures. Moreover, for practical systems where the base-
station needs to continuously compute and update the trans-
mission powers for each fading block, the SDP reformulation
would be of a limited application. We therefore resort to a
suboptimal solution to the problem in (21) that provides a
closed-form upper bound to the sum power. This upper bound
solution is used later in Section VI as the objective function
for optimization of the users’ quantization codebooks.

First, we bound the SINR terms as follows. For the sector-
type regionsSk = S(Rk, rk, ũk, φk), we have

inf
w∈Sk

Pk

∣

∣w
T
vk

∣

∣

2

∑

l 6=k

Pl |wTvl|2 + 1

(a)
= inf

w∈Sk

Pkrk|ŵT
vk|2

rk
∑

l 6=k

Pl|ŵTvl|2+1

≥ Pkrk infw∈Sk
|ŵT

vk|2
rk
∑

l 6=k

Pl supw∈Sk
|ŵTvl|2+1

(25)

(b)
=

Pkrk sin
2 (θk−φk)

(
∑

l 6=k Pl)rk sin
2 φk+1

, (26)

whereŵ = w/‖w‖. The equality (a) holds since the SINR
term is monotonic in‖w‖, i.e. the minimum occurs on the
spherical boundary region‖w‖=√

rk in Fig. 2. The equality
(b) holds sincevk ’s are the zero-forcing directions for̃uk ’s.
To see this, considerθk = ∠(ũk, Ũ−k) as defined earlier. By
considering the zero-forcing principle, we have∠(vk, ũk) =
π
2 −θk and∠(vl, ũk) = 0 for l 6= k. Now, noting the definition
of the sector-type regionSk, we have

max
w∈Sk

∠(w,vk) =
π

2
− θk + φk,

min
w∈Sk

∠(w,vl) =
π

2
− φk.

By substituting the cosine of these angles in the numerator
and denominator of (25), we achieve the final expression in
(26).

In order to obtain an upper bound on the sum power, we
set the last term in (26) to be equal toγk:

Pkrk sin
2 (θk−φk)

(
∑

l 6=k Pl)rk sin
2 φk+1

= γk.

This is a set of linear equations inPk, k ∈ K, whereK is the
set of active users. By solving these equations and computing
∑

k∈K Pk, we achieve the following upper bound for the sum
power:

PMU

def
=
∑

k∈K

Pk =

∑

k∈K αk/βk

1−∑k∈K αk
, (27)

whereαk =
(

1 + sin2 (θk−φk)
γk sin2 φk

)−1

andβk = rk sin
2 φk. The

subscript MU inPMU stands formulti-user. The closeness of
the upper bound solution in (27) and the solution to the SDP
problem in (24) is verified numerically in Section VII.

The upper bound in (27) is a bound on the instantaneous
sum power for a single snapshot of channel realizations in
time. As the users’ channels change over time, the quantized
magnitudesrk = Ỹk, the quantized directions̃uk and the
corresponding anglesθk = ∠(ũk, Ũ−k) all change with
time. The variablesαk and βk in (27) are therefore random
variables. Since we are interested in the expected value of the
sum power as the design objective in (5), we use the following
sum-power upper bound approximation so that the expectation
operation can be applied conveniently.

Theorem 3:In the asymptotic regime with large quantiza-
tion codebook sizes and small values ofφk, we have

PMU =
∑

k∈K

ek +
∑

k∈K

fkφk +
∑

k∈K

o(φk), (28)

where

ek =
γk
rk

(1+ζ2k), fk =
2γk
rk

(ζk+ζ3k), ζk = cot θk. (29)

Here, the notationg(φ) = o(φ), for an arbitrary functiong(·),
means thatlimφ→0 g(φ)/φ = 0.

Proof: See Appendix C.
So far, we have only considered the active usersk ∈ K.

In order to make the results applicable to the general case
where some users might be in outage, we substituteγk with
γkIk in definitions of ek and fk in (28) so that users with
Ik = 0 contribute zero power to the sum-power upper bound.
We therefore use the following expression for the average sum-
power upper bound, where we have also replacedrk by the
quantized magnitudẽYk:

E[PMU ] ≈
∑

k

E[ek] +
∑

k

E[fk]φk, (30)

whereζk=cot θk andek andfk are redefined as follows:

ek =
γkIk

Ỹk

(1 + ζ2k), fk =
2γkIk

Ỹk

(ζk + ζ3k).

This concludes the optimization of the power control func-
tion. In the next section, we use the average sum-power upper
bound in (30) to optimize the product quantization codebook
structures and to derive the asymptotic bit allocation laws.

VI. PRODUCT CODEBOOK OPTIMIZATION AND

ASYMPTOTIC BIT ALLOCATION LAWS

In this section, we study the quantization codebook opti-
mization. For this purpose, we use the average transmission
power bound in (30) in order to optimize the users’ magni-
tude and direction codebook sizes for a given feedback link
capacity constraint and to derive the optimal bit allocation
across the users and their magnitude and direction quantization
codebooks. The optimization process is asymptotic in the
feedback rateB and assumes large quantization codebook
sizes,Ṅk, N̈k ≫ 1.

Consider the sum-power upper bound in (30). Assuming
that θk = ∠(ũk, Ũ−k) is approximately uniform in[0, π/2]
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and using the definition of the activity flag in (18), we have

E[ek] = γkE
[

1/Ỹk

] 1

π/2

∫ π/2

θ◦

k

1+ζ2k dθk ≈ 2γk
πθ◦k

E

[

1/Ỹk

]

,

E[fk] = 2γkE
[

1/Ỹk

] 1

π/2

∫ π/2

θ◦

k

ζk+ζ3k dθk ≈ 2γk

πθ◦k
2E

[

1/Ỹk

]

,

where the approximations hold forθ◦k≪1. By substituting
these in (30), we achieve

E[PMU ] ≈
2

π

M
∑

k=1

γk
θ◦k

E

[

1

Ỹk

](

1 +
φk

θ◦k

)

. (31)

The parameterφk in (31) is controlled by the direction
codebook sizeN̈k as described by (16). The termE[1/Ỹk]
on the other hand is controlled by the magnitude codebook.
The asymptotically optimal codebook that minimizes this term
is the uniform (in dB) magnitude quantization codebookY

⋆.
By settingY = Y

⋆ and by using (10) and (16), we can bound
the average sum power in (31) as follows:

E [PMU ] <
2ρMU,CSI

π
·

M
∑

k=1

γk
θ◦k

(

1+Ṅ
−ζk(Ṅk)
k +ωṄ

−2ζk(Ṅk)
k

)

(

1+
4λM

θ◦k
N̈

− 1
M−1

k

)

(32)

where ρMU,CSI is defined in (3) and the variableω and the
function ζk(·) depend on the magnitude outage probability
and the distribution of the channel magnitude as described in
Section IV-A.

Our goal is to minimize the average sum-power upper bound
in (32) in terms of the magnitude and direction quantization
codebook parameters. The optimization constraints are as
follows. Assuming a total number of feedback bitsB, we have
the following constraint on the codebook sizes:

M
∏

k=1

Nk =

M
∏

k=1

(

ṄkN̈k + 1
)

= 2B. (33)

The two other constraints are the target outage probability
constraints given by (19) and the MQCS conditions in (23).
For the total feedback rateB, the target outage probabilities
qk, and the target SINR valuesγk, the product codebook
optimization problem is therefore formulated as follows:

min
Ṅk,N̈k

y
(1)
k

,θ◦

k

M
∑

k=1

γk
θ◦k

(

1+Ṅ
−ζk(Ṅk)
k +ωṄ

−2ζk(Ṅk)
k

)

(

1+
4λM

θ◦k
N̈

− 1
M−1

k

)

(34)

s.t.
M
∏

k=1

(

ṄkN̈k + 1
)

= 2B, (35)

F (y
(1)
k ) +

2

π
θ◦k ≤ qk, (36)

N̈k≥
(

4λM

/

sin

(

arctan

(

sin θ◦k
1+
√

(M−1)γk

)))M−1

.

(37)

In order to obtain a closed-form solution for the optimal
product structure, we simplify this problem as follows.

First, by assumingṄk, N̈k ≫ 1 and using the fact that
limṄk→∞ ζk(Ṅk) = 1, we use the following approximation
for the objective function:

(

1 + Ṅ
−ζk(Ṅk)
k + ωṄ

−2ζk(Ṅk)
k

)

(

1 +
4λM

θ◦k
N̈

− 1
M−1

k

)

≈
(

1 + Ṅ−1
k

)

(

1 +
4λM

θ◦k
N̈

− 1
M−1

k

)

≈ 1 + Ṅ−1
k +

4λM

θ◦k
N̈

− 1
M−1

k . (38)

We therefore have the following approximate upper bound:

E [PMU ] <
2ρMU,CSI

π

M
∑

k=1

γk
θ◦k

(

1+Ṅ−1
k +

4λM

θ◦k
N̈

− 1
M−1

k

)

. (39)

Next, we simplify the optimization constraints as follows.
We approximate the first constraint (35) as

∏M
k=1 ṄkN̈k = 2B.

Regarding the outage constraint in (36), one can easily show
that the objective function in (34) is a decreasing function
of y

(1)
k and θ◦k. The constraint in (36) should therefore be

satisfied with equality at the optimum. In order to simplify
this constraint, we make the assumption that the magnitude
and direction outage probabilities are equally likely3 :

q̇k = F (y
(1)
k ) =

qk
2

(40)

q̈k =
2

π
θ◦k =

qk
2
. (41)

According to this assumption,y(1)k = F−1(qk/2) and

θ◦k =
π

4
qk (42)

are fixed and the codebook optimization is only over the
codebook sizes. Finally, since the optimization is asymptotic
in the codebook sizeṡNk and N̈k, the last constraint in (37)
is redundant. This constraint however is used later to derive a
lower bound on the total feedback rateB such that the target
outage probabilities are feasible.

Now, by using the approximation in (38), the optimization
problem in (34) simplifies to the following optimization prob-
lem:

min
Ṅk,N̈k

M
∑

k=1

γk
θ◦k

(

1 + Ṅ−1
k +

4λM

θ◦k
N̈

− 1
M−1

k

)

(43)

s.t.
M
∏

k=1

ṄkN̈k = 2B. (44)

Define Ḃk
def
= log Ṅk and B̈k

def
= log N̈k as the number of

magnitude and direction quantization bits respectively.

3It can be shown that any other division of the forṁqk = αqk and q̈k =
(1 − α)qk with 0 < α < 1 only changes the bit allocations in Theorem 4
by a finite constant and therefore does not affect the asymptotic bit allocation
results.
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Fig. 3. Analytical magnitude and direction bit allocationsin (47) and (48)
vs. numerical bit allocations for three users withγ1 = 15dB, q1 = 0.02 and
γ2 = γ3 = 10dB andq2 = q3 = 0.05.

Theorem 4:Define

Ḃave=
1

M2
B − M−1

M
log

1

q̄
− κMU (45)

B̈ave=
M−1

M2
B +

M−1

M
log

1

q̄
+ κMU , (46)

whereκMU=
M−1
M log 16λM

π(M−1) and q̄=(
∏

k qk)
1/M is the ge-

ometric mean of the target outage probabilities. The optimal
values ofḂk and B̈k are given by

Ḃk = Ḃave+ log
γk
γ̄

+ log
q̄

qk
(47)

B̈k = B̈ave+ (M−1) log
γk
γ̄

+ 2(M−1) log
q̄

qk
, (48)

where γ̄=(
∏

k γk)
1/M is the geometric mean of the target

SINR values.
Proof: See Appendix D.

Although the bit allocation laws in Theorem 4 are derived
with the simplifying assumption of equal magnitude and
direction outage probabilities in (40) and (41), the numerical
results, as shown in Fig. 3, verify that the analytical results
in (47) and (48) are close to the bit allocations derived by
numerical minimization of (34). For the example in this figure,
the base-station hasM = 3 antennas and serves three users
with the target parametersγk = 15dB and qk = 0.02 for
the first user (k = 1) and γk = 10dB and qk = 0.05 for
the two other users (k = 2, 3). The user channels are i.i.d.
andhk ∼ N (0, IM ), whereIM is theM×M identity matrix.
Also, the number of bits are rounded to the closest integer
numbers4.

Corollary 1: For each userk, the optimal number of mag-
nitude and direction quantization bits are related as follows:

B̈k = (M−1)Ḃk + (M−1) log
1

qk
+MκMU , (49)

4This is a popular approach in solving integer programming problems,
where the integer conditions are relaxed and the optimum of the relaxed
problem is rounded to the closed integer [40].

whereκMU is defined in Theorem 4. Moreover the total number
of quantization bits for userk is given by

Bk = Ḃk + B̈k =
1

M
B+M log

γk
γ̄

+(2M−1) log
q̄

qk
. (50)

As it is expected, if the users are homogenous in their
requested target parameters, i.e.qk and γk are the same for
all users, each user takes an equal share of1

MB of the
total feedback rate. In the case of heterogenous users, on the
other hand, a user with a higher QoS (lower target outage
probability) and a higher target downlink rate (higher target
SINR) uses a higher feedback rateBk.

The bit allocation laws in Theorem 4 are asymptotic results
in the feedback rateB → ∞. In the following, in order to get
a sense of how high the feedback rate should be, we determine
a lower bound onB for which the target SINR valuesγk are
in fact achievable with the target outage probabilitiesqk.

Theorem 5:Assumeγk > 1 andqk ≪ 1 and define

Qk
def
=

√
γk

qk
.

For the target SINR’sγk to be satisfied with outage probabil-
ities qk, the following total feedback rateB is sufficient:

B >
1

2
M2 log γ̄ + (M2−M) log

1

q̄
+M2 log∆ + b, (51)

Here γ̄ and q̄ are the geometric means ofγk ’s and qk ’s
respectively and

∆ =
Q̄

min
1≤k≤M

Qk
,

where Q̄ is the geometric mean ofQk ’s. The constantb in
(51) is defined asb=1

2M
2+3

2M
2 logM+M2κMU , whereκMU

is defined in Theorem 4.
Proof: See Appendix E.

Several interesting results can be extracted from Theorem
5. First, we observe that for the QoS constraints to remain
feasible, the system feedback link capacity should scale loga-
rithmically with the geometric mean of the target SINR values
and the geometric mean of the inverse target outage probabil-
ities. Second, if we compare the case of homogenous users
with the case of heterogenous users, we see that heterogenous
users impose an additional requirement,M2 log∆, on the total
feedback rate. If we think ofQk ’s as users’ QoS indicators,
the variable∆ can be interpreted as a measure of discrepancy
among users’ QoS requirements. A higher QoS discrepancy
requires a higher feedback bandwidth.

Finally, in order to study the performance of the limited-
feedback system as the feedback rate increases, we substitute
the optimal magnitude and direction codebook sizes given by
Theorem 4 into the average sum-power upper bound in (39).
The following theorem shows the scaling of the average sum
power with the feedback rateB.

Theorem 6:For a limited-feedback system with a total
number ofB feedback bits, we have

E [PMU ] < PMU,CSI

(

1 +
σMU

q̄
· 2− B

M2

)

, (52)
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Fig. 4. SDP solution in (24) vs. the upper bound solution in (27) for three
users with target SINR’s ofγ1 = 3dB andγ2, γ3 = 6dB.

wherePMU,CSI is defined in (2),̄q is the geometric mean of the
target outage probabilities, and

σMU =
16M

π(M−1)

(

π3/2(M − 1)Γ((M + 1)/2)

16Γ(M/2)

)1/M

.

Proof: See Appendix F.
If we define a quantization distortion measure as

D(B) =
E [PMU ]− PMU,CSI

PMU,CSI

, (53)

Theorem 6 implies that the distortion measure scales as2−
B

M2

asB → ∞.

VII. N UMERICAL VALIDATION

This section presents the numerical results that support and
verify the analytical results in the earlier sections.

1) Upper Bound Approximation for The SDP Problem in
(24): The codebook optimizations in Section VI are based on
the sum-power upper bound solution in (27) as an approxi-
mation of the solution to the SDP problem in (24). Here we
investigate the accuracy of this approximation by comparing
the two solutions forM = 3 users with target SINR’s of
γ1 = 3dB andγ2, γ3 = 6dB.

To simplify the comparison, we assume perfect channel
magnitude information, i.e. the quantized magnitude variables
rk in (24) and (27) are equal to the exact channel magnitudes.
For direction quantization we use Grassmannian codebooks
from [41]. The same codebook size is used for all users. The
sum power values are averaged over100 channel realizations
for which the SDP problem is feasible. The user channels are
i.i.d. andhk ∼ N (0, IM ).

Fig. 4 compares the two solutions as a function of the
direction quantization codebook sizëN . As the figure shows,
the two solutions converge as̈N increases5. This justifies the

5This can made rigorous by showing that asN̈k → ∞ andφk → 0, the
inequality in (25) is satisfied with an equality and therefore the upper bound
solution is exact in the asymptotic high-resolution regime.
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Fig. 5. Bit allocationsBk for three users withγ1=2dB, γ2=5dB, γ3=8dB,
andq1=q2=q3=0.1.

use of the upper bound solution as the optimization objective
in our high resolution analysis.

2) Bit Allocations and Distortion Scaling:Fig. 3 in Section
VI compares the numerical and analytical bit allocations for
M = 3 users with different target parameters. Here we repeat
the process with a different set of parameters and record the
share of each userBk from the total number of feedback bits
B. The target parameters areγ1=2dB, γ2=5dB, γ3=8dB, and
q1=q2=q3=0.1. Channel models are similar to those used in
Figs. 3 and 4 and the bit allocations are rounded to the closest
integer numbers. As the figure verifies, users with higher target
SINR’s receive larger shares of the total feedback rate.

Finally, we investigate the system performance scaling with
the number of feedback bits for the same set of parameters
as in Fig. 5. For this purpose we use the average sum-
power upper boundE [PMU ] in (32) and the definition of the
distortion measureD(B) in (53). Fig. 6 shows the distortion
measure as a function ofB when numerical and analytical bit
allocations are utilized. As expected, the two bit allocations
show close performances. The figure also shows the distortion
upper bound in Theorem 6 for the purpose of comparison.

VIII. C ONCLUDING REMARKS

We conclude this paper by comparing the asymptotic
magnitude-direction bit allocation law for the multi-usersys-
tem with that of the single-user system discussed in [37]. For
the multi-user system and in the asymptotic regime where
B → ∞, the relation in (49) implies that the number of
magnitude and direction quantization bits (for each user) are
related as follows:

B̈MU = (M − 1)ḂMU . (54)

The subscript MU in (54) stands for multi-user. For single-
user systems, on the other hand, we have the following bit
allocation law [37]:

B̈SU =
M − 1

2
ḂSU, (55)
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Fig. 6. Distortion measure with numerical and analytical bit allocations for
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with SU standing for single-user. If we define a relative
quantization resolution asΥ = B̈/Ḃ, then we have

ΥMU = 2 ΥSU, (56)

which means that for the same number of magnitude quantiza-
tion bits, the number of multi-user direction quantizationbits
is twice the number of single-user direction quantization bits.
This is shown schematically in Fig. 7. As the figure implies,
in order to make a single-user channel quantization codebook
applicable to the multi-user system, each direction quantization
region in the single-user codebook should be further quantized
with the same resolution as the whole unit hypersphere.

As the final note we mention that the results in this paper are
based on real channel space assumption mainly for the ease of
geometric representation of the quantization regions and the
corresponding sum-power calculations in Section V. However,
the exact same approach introduced in this paper can be
applied to complex space channels. The only main difference
is in using the upper bound in (16) for real Grassmannian
codebooks. For complex Grassmannian codebooks we need to
use the following bound [16]:

sinφk < 2N̈
− 1

2(M−1)

k , (57)

By doing so, the rest of the analysis can be applied in a
similar fashion to derive the bit allocation laws. In particular,
the codebook optimization problem in (43) translates to the
following problem for complex channels:

min
Ṅk,N̈k

M
∑

k=1

γk
θ◦k

(

1 + Ṅ−1
k +

2

θ◦k
N̈

− 1
2(M−1)

k

)

s.t.
M
∏

k=1

ṄkN̈k = 2B.

By solving this problem, one can easily derive the bit alloca-
tion laws and the system performance scaling for the complex
space similar to the ones in Theorems 4 and 6.

In particular, due to the difference between (16) and (57)
in the exponents of the direction codebook sizesN̈k, the

Single�UserDirectionQuantizationRegionsMulti�UserDirectionQuantizationRegions
Fig. 7. ΥMU=2ΥSU; single-user and multi-user direction quantization regions
are shown as spherical caps on the unit hypersphere.

asymptotic magnitude-direction bit allocation in the complex
space turns out to bëB = 2(M − 1)Ḃ for the multi-user case
and B̈ = (M − 1)Ḃ for the single-user case. Therefore, the
complex-space quantization resolutions also satisfy the relation
in (56).

APPENDIX

A. Proof of Theorem 1

In order to prove the theorem, we use the following lemma:
Lemma 1:To ensure the feasibility of the power control

problem in (21), it is sufficient to have

tanφk

sin θk
<

1

1 +
√

(M − 1)γk
, (58)

for all active usersk ∈ K.
Proof: The idea is to show that if the condition (58) holds,

the upper bound solution in (27) is a valid solution to the
power control problem in (21). For this purpose, it suffices to
show that

∑

k∈K αk<1, whereαk is defined in (27).
According to the condition (58), we have

tanφk

sin θk
<

1

1 +
√

(M − 1)γk
.

Then

sin(θk−φk)

sinφk
=

sin θk
tanφk

− cos θk >
sin θk
tanφk

−1 >
√

(M−1)γk.

(59)
Therefore

αk =

(

1 +
sin2 (θk − φk)

γk sin
2 φk

)−1

<
1

M
, (60)

and
∑

k∈K αk < 1, since|K| ≤ M .
The MQCS condition in (23) is equivalent to

4λMN̈
− 1

M−1

k < sin

(

arctan

(

sin θ◦k
1 +

√

(M − 1)γk

))

. (61)

Combining this with the inequality in (16), we have

sinφk < sin

(

arctan

(

sin θ◦k
1 +

√

(M − 1)γk

))

, (62)

which leads to

tanφk <
sin θ◦k

1 +
√

(M − 1)γk
. (63)
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Now for all active usersk ∈ K, we haveθk ≥ θ◦k, sinceθ◦k
is the smallest acceptable angle between userk’s channel and
the subspace spanned by all other users’ channels. Combining
θk ≥ θ◦k with (63) leads to

tanφk <
sin θk

1 +
√

(M − 1)γk
,

which according to Lemma 1 guarantees feasibility and there-
fore completes the proof.

B. Proof of Theorem 2

Consider the definition of the uncertainty region

Sk =
{

w ∈ R
M
∣

∣

√
r ≤ ‖w‖ <

√
R, ∠(w, ũ) < φ

}

.

As far as the constraint in (22) in concerned, the constraint
‖w‖ <

√
R is redundant since the infimum occurs on the

lower surface‖w‖ =
√
r (see the process of deriving the

upper bound solution in (25)).
Now define

T0 =











w

∣

∣

∣

∣

∣

∣

∣

Pk

∣

∣w
T
vk

∣

∣

2

∑

l 6=k

Pl |wTvl|2 + 1
> γk











, (64)

T1 =
{

w
∣

∣‖w‖ ≥ √
r
}

, (65)

T2 =
{

w
∣

∣|wT
ũk| > ‖w‖ cosφ

}

, (66)

where the condition in (66) is equivalent to∠(w, ũ) < φ.
With these definitions, the constraint in (22) is equivalentto

T1 ∩ T2 ⊂ T0. (67)

Now, define scalarsτn and symmetric matricesAn, for n =
0, 1, 2, as follows:

A0 =
∑

l 6=k

Plvlv
T
l − 1

γk
Pkvkv

T
k

A1 = −I

A2 = − 1

cos2 φ
ũkũ

T
k + I

τ0 = −1, τ1 = −r, τ2 = 0.

With these definitions, the setsT0, T1, T2 can be expressed as
sublevels of quadratic functions:

Tn =
{

w
∣

∣w
TAnw ≤ τn

}

, n = 0, 1, 2.

We therefore can use the following theorem from [39] to
replace the condition (67) with a SDP condition. This theorem
is an important extension of what is known as S-procedure in
the optimization literature [40].

Theorem 7:Let M ≥ 3 andAn ∈ R
M×M be symmetric

matrices forn = 0, 1, 2 and assume

∃ ν1, ν2 ∈ R s.t. ν1A1 + ν2A2 ≻ 0.

Define the quadratic functionsfn(w) = w
TAnw. Then the

following two statements are equivalent:

I. f1(w) ≤ τ1 , f2(w) ≤ τ2 ⇒ f0(w) ≤ τ0 (68)

II. ∃ λ > 0, µ > 0 s.t.

{

A0 � λA1 + µA2

τ0 ≥ λτ1 + µτ2
(69)

For the problem in hand, one can easily findν1 andν2 such
that the conditionν1A1+ ν2A2 ≻ 0 is satisfied; therefore, the
constraint in (67) translates to the SDP constraints in (24).

C. Proof of Theorem 3

From the definitions ofαk andβk in (27), we have

αk =
γk sin

2 φk

γk sin
2 φk + sin2 (θk − φk)

,

αk

βk
=

γk/rk

γk sin
2 φk + sin2 (θk − φk)

.

For small values ofφk ≪ 1, it is easy to verify that

γk sin
2 φk = γkφ

2
k + o(φ2

k),

sin2 (θk − φk) = sin2 θk − (sin 2θk)φk + o(φk).

After a few manipulations, one can show that

αk = ekrkφ
2
k + o(φ2

k),
αk

βk
= ek + fkφk + o(φk),

and

PMU =

∑

k∈K αk/βk

1−∑k∈K αk
=
∑

k∈K

ek+fkφk+o(φk).

D. Proof of Theorem 4

By applying Lagrange multipliers method, we achieve

Ṅk =
1

Λ
· γk
θ◦k

(70)

N̈k =
1

ΛM−1
·
(

4λM

M − 1
· γk
(θ◦k)

2

)M−1

, (71)

where Λ is a Lagrange multiplier that should satisfy the
constraint

∏M
k=1 ṄkN̈k = N . By solving forΛ we get

Λ =

(

4λM

M − 1

)
M−1
M

(

M
∏

k=1

γk

)

1
M
(

M
∏

k=1

1

θ◦k

)

2M−1

M2

·N− 1
M2 .

(72)
By substituting (72) in (70) and (71), and usingθ◦k = π

4 qk
as in (42), and further manipulation, the optimal quantization
resolutionsḂk = log Ṅk and B̈k = log N̈k can be expressed
as in (47) and (48).

E. Proof of Theorem 5

For the target parameters to be feasible, the optimal direc-
tion codebook sizes̈Nk=2B̈k are required to satisfy the MQCS
conditions in (37). With the assumption ofqk ≪ 1, we have
sin θ◦k ≈ θ◦k ≪ 1 and the MQCS conditions simplify to the
following conditions:

N̈k ≥
(

4λM

θ◦k

(

1 +
√

(M − 1)γk

)

)M−1

. (73)

In the following, we find a lower bound onB that guarantees
the conditions in (73).
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For M ≥ 2 andγk > 1, we have the following inequality:

1 +
√

(M − 1)γk <
√

2Mγk. (74)

To satisfy the conditions in (73), therefore, it is sufficient to
satisfy

N̈k ≥
(

4λM

θ◦k

√

2Mγk

)M−1

. (75)

By substitutingN̈k from (71) in (75), we achieve

1

Λ
≥ (M − 1)

θ◦k
γk

√

2Mγk. (76)

Therefore it is sufficient to have

1

Λ
≥

√
2M3/2 θ◦k√

γk
. (77)

By substituting the expression forΛ in (72) into (77), we
achieve the following constraints onN = 2B for 1 ≤ k ≤ M :

N ≥ C ·
(

γ̄ · θ̄◦−
2M−1

M · θ◦k√
γk

)M2

(78)

whereγ̄ = (
∏

k γk)
1/M and θ̄◦ = (

∏

k θ
◦
k)

1/M and

C =
(√

2M3/2
)M2 (

4λM

M − 1

)M(M−1)

.

Since (78) is to be satisfied for all1 ≤ k ≤ M , we have
the following sufficient bound onN = 2B:

N ≥ C ·
(

γ̄ · θ̄◦−
2M−1

M · max
1≤k≤M

θ◦k√
γk

)M2

= C ·
(√

γ̄ · θ̄◦−
M−1
M · max

1≤k≤M

θ◦k/
√
γk

θ̄◦/
√
γ̄

)M2

. (79)

By substitutingθ◦k = π
4 qk and θ̄◦ = π

4 q̄ in (79) and taking
the logarithm of the both sides we achieve the lower bound in
(51), which completes the proof.

F. Proof of Theorem 6

By substituting the optimal values oḟNk andN̈k given by
(70) and (71) into the average sum-power upper bound in (32),
we have

E [PMU ] <
2ρMU,CSI

π

M
∑

k=1

γk
θ◦k

(

1 + Ṅ−1
k +

4λM

θ◦k
N̈

− 1
M−1

k

)

=
2ρMU,CSI

π

M
∑

k=1

(

γk
θ◦k

+ Λ+ (M − 1)Λ

)

=
2ρMU,CSI

π

([

M
∑

k=1

γk
θ◦k

]

+M2Λ

)

(a)
=

2ρMU,CSI

π

([

M
∑

k=1

γk
θ◦k

]

+M2χγ̄

(

1

θ̄◦

)2− 1
M

2−
B

M2

)

,

(80)

whereγ̄=(
∏

k γk)
1/M and θ̄◦=(

∏

k θ
◦
k)

1/M . For the equality
(a) we have used the expression (72) forΛ with N = 2B and
χ = (4λM/(M − 1))

(M−1)/M .

By further manipulating (80), we have

E [PMU ]

<
2ρMU,CSI

π

([

M
∑

k=1

γk
θ◦k

]

+Mχ
[

M
γ̄

θ̄◦

]

(

1

θ̄◦

)1− 1
M

2−
B

M2

)

(b)
<

2ρMU,CSI

π

([

M
∑

k=1

γk
θ◦k

]

+Mχ

[

M
∑

k=1

γk
θ◦k

]

(

1

θ̄◦

)1− 1
M

2−
B

M2

)

=
2ρMU,CSI

π

[

M
∑

k=1

γk
θ◦k

]

(

1 +
Mχ

θ̄◦
θ̄◦

1
M 2−

B

M2

)

(c)
< PMU,CSI

(

1 +
Mχ

θ̄◦
2−

B

M2

)

, (81)

where in (b) we use the fact the geometric mean is smaller
than arithmetic mean:

γ̄

θ̄◦
=

(

M
∏

k=1

γk
θk

)

1
M

≤ 1

M

M
∑

k=1

γk
θk

,

and in deriving (c), we use the definition ofPMU,CSI in (2) and
the fact thatθ̄◦ = π

4 q̄ < 1, sinceq̄ is a probability measure.
By substitutingθ̄◦ = π

4 q̄ in (81), we achieve the bound in
(52) and the proof is complete.
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