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INTRODUCTION TO ARRAY PROCESSING (1) 

- Array is a set of sensors. The output signals from the sensors are 

combined appropriately to produce a desired result. 

I 

SENSOR 

x (n) , . . . x (n) is a "snapshot" 

READINGS 
x, (n) 

5 (n> ARRAY 

?ROCESSOR 

arrival of 5 
5 (n) 

source wave 

Detection 
Classification 
Bearing estimation 

) Beam forming 



INTRODUCTION TO ARRAY PROCESSING (2) 

Narrowband Array Processing Wideband Array Processing 

/ ' q ~ f i  SOURCE SPECTRUM m 
APPICATIONS 

Sr 
1) SONAR 

2) RADAR 

3) GEOPHYSICS 

4) BIOMEDICINE 



INTRODUCTION TO ARRAY PROCESSING (3) 

ARRAY CONFIGURATIONS 
a 

LINEAR CIRCULAR PLANAR T-SHAPE 

"SNAPSHOT": is a set of sensor readings (outputs) at time instant n 

ARRAY PROCESSING: is the Power Spectral Analysis along snapshots 
(instead of time) 

1-d ARRAY PROCESSING: A snapshot is in the form of 1-d signal 



INTRODUCTION TO ARRAY PROCESSING (4) 

1-d ARRAY PROCESSING 

-- - - 
1 2  3 ' 4 ' 5  6 7 time (n) 

4" snapshot 

k" snapshot [xl(k), x,(k), x3(k), x4(k), x5(k)I 

Difficult spectral estimation problem since the number of sensors is usually 

small. However, we can use "ensemble" averaging over different 

snapshots. 



INTRODUCTION TO ARRAY PROCESSING (5) 

1-d ARRAY PROCESSING 
.---f.-. 
- 

.LINEAR ARRAY 

I . . n 
I .  . Zr((m- 1 )d sin 8 
' (m-l)d sin 8 - phase difference if u(i,m) = 

i 

d: spacing betwenn sensors, h: wavelength of source si(i), Bi: bearing of source si(.) 

sin 0,  
4 MODEL EOUATION [I incoherent sources (i.e., with different )I 

A ,  
I 

x m ( n )  = C s , [ u ( i , m )  + 4 ( i , n ) ]  + w m ( n )  
i= 1 

mth sensor at time n phase difference random phase noise 



INTRODUCTION TO ARRAY PROCESSING (6) 

1-d ARRAY PROCESSING 
* 

e 
a 

la n 
R 

a a e 
CIRCULAR ARRAY 

4 MODEL EQUATION (I incoherent sources) 
I 

x m ( n )  = C s i [ u ( i , m )  + @ ( i , n ) ]  +wm(n) 
i= 1 

mh sensor at time n phase difference random phase noise 



INTRODUCTION TO ARRAY PROCESSING (7) 

1-d ARRAY PROCESSING 

- Objective: Given (x , (n)) ,  n=I, ..., N, m=1, ..., M, estimate {Oil, i=1, ..., I 
. . 

"Bearing estimation" 

I 

I + 
I 

I 
1 I 

90 
8 

-90 0 0 2  O 

DUALITY BETWEEN PSE and AP 
1 1 1) P ( f ) ,  --sf<- * P ( 8 ) ,  - 9 0 ~ 0 ~ 9 0 "  
2 2 

2) Frequency, f tt Angle, sin 0 

3) Sampling period, T tt sensor spacing, d 

4) Aliasing I f *  > &] tt Aliasing [h<2d] 



INTRODUCTION TO ARRAY PROCESSING (6) 

4 1-d ARRAY PROCESSING 
* 

- - 

a a CIRCULAR ARRAY 

MODEL EQUATION (I incoherent sources) 
I 

x m ( n )  = C s i [ u ( i , m )  + a(' , ' )]  + w m ( n )  
i=l  

m'h sensor at time n phase difference random phase noise 



INTRODUCTION TO ARRAY PROCESSING (7) 

1-d ARRAY PROCESSING 

- Obiective: Given (x , (n) ) ,  n=l, ..., N, m=l,  ..., M, estimate ( O i l ,  i=1, ..., I 

"Bearing estimation" 

I 

I + 
I 

I 
I I 

90 
8 

-90 0 O 2  O 

DUALITY BETWEEN PSE and AP 
1 1 1 P f ,  -- f 5 - * P(8), -90 i8 290" 
2 2 

2) Frequency, f t, Angle, sin 8 

3) Sampling period, T t, sensor spacing, d 

4) Aliasing [ fo > --&I t, Aliasing [h<2d] 



INTRODUCTION TO ARRAY PROCESSING (8) 

1-d ARRAY PROCESSING 

Estimate P(8)-8 or equivalently find the distribution of power for 
j 2n  (m- l)dsinOi 

{ x  m (n)  } on the exponentials x 1 y m = 1,2, ...,M 

Notice the similarity with Fourier transform exponentials 

{ej2"fnT} , n = 1,2, ... . Actually array processing is nothing else but 

evaluation of the Fourier transform along snapshots ofthe array. 

i j 2 x  ( m  - l)dsinO, 

AMBIGUITY: To avoid distributing the power on e 

(sign ambiguity) compute first the analytical signal for each sensor signal 

( n ) ,  n=1,2 ,..., N 



INTRODUCTION TO ARRAY PROCESSING (9) 

COMPLEX ANALYTIC SIGNAL FOR SENSOR m 

ym (n) = xm (n) + j H [ x m  (n) ] where H[.] is the Hilbert transform 

COMPUTATION USING FFT I 

Given {xm(n) ) , n= 1,2,. . . ,N 

1) Obtain: Xm(k) = FFT[xm(n)], k=l ,..., N 

N X m ( k )  , k = 2,3 ,..., - 
2 

2) Form: Y,(k) X m ( k ) / 2 ,  k =  1,F+1 
2 

0 , N k = - + 2 ,  ..., 
2 

N 

3) Obtain: ym(n) = I F F '  [Ym(k)], n=1, ..., N 



INTRODUCTION TO ARRAY PROCESSING (10) 

SPATIAL COVARIANCE MATRIX OF SNAPSHOTS 

MxM M: # of sensors 

ESTIMATED COVARIANCE MATRIX 

(If NcM, then R is singular) 



ARRAY PROCESSING METHODS (1) . CONVENTIONAL (BEAMFORMING) 

p(e )  = C ~ R C  

ML OF CAPON 

. THERMAL NOISE 



ARRAY PROCESSING METHODS (2) 

u T = [ l , O , O ,  ..., 0](1xM) (Unitsteeringvector) 

4(1) e~4(2) • c=[1, d , , , ... , e j4(M - I )  ] (Steering vector) 

2nd  (loo= a (m - 1 ) sin 8 (LINEAR ARRAY) 

2 n R  
@(m)= a [ C O ~ ( ~ ~ - O ) - C O S ( ~ ~ ) ]  (CIRCULARARRAY) 

4 (m) = m 2  n f T (SPECTRUM ESTIMATION) 



ARRAY PROCESSING METHODS (3) 

RESOLUTION 

m a .  a  l 
1 2 3 M- 1 M 

CONV 

ML 

A k 2  
1 

SNR dM 

- / d l +  A A 

4 

sin 8 
k= - 

1 h 
A k 2 -  

dM 

A k  + 

* 



ARRAY PROCESSING METHODS (4) EXAMPLE: 3 SOURCES 



ARRAY PROCESSING METHODS (5) 

EXAMPLE: M=8, N=1024, I=2, BEARING 18" and 22" 



ARRAY PROCESSING METHODS (6) 

EFFECT OF THE CHOICE OF UNIT STEERING VECTOR 

u T = [ l , O , O , O , O , O ]  (mO=l) ~ ~ = [ O , O , 0 , 0 , 0 ,  11 (m0=6) - 

u T =  [0, 0, 0, 1, 0 , O ]  (m(,=4) - 

LINEAR PREDICTION FORMULA x^ (n) = am xm (n) , 
"0 

m, m +mo 

minimize E x (n)  - 2 J n )  f } {I mo 



ARRAY PROCESSING METHODS (7) 

EFFECT OF DIFFERENT CHOICES FOR UNIT STEERING 
VECTOR 



ARRAY PROCESSING METHODS (8) 

PROPERTIES OF SPATIAL COVARIANCE MATRIX 

. . . M- 1 

1) LINE ARRAY: e m a h '  m i 

2) I narrowband plane waves of frequency w, = 2 x f ,  and bearings 

el, e2, - * - 9  

10 0,, IeM; d < - -  where A , = - ,  c: the speed of propagation 
2 f, 

3) Sensor analytic signals (Linear array) 
I sin 0, 

- j o 0 ( m -  1) - . d 

ym(n)  = C s i ( n )  e +wm(n) 
i= 1 

si(.) is the signal of i" wavefront 

wi(.) is additive noise with variance d, uncorrelated with each other noise 
sources and with signals 



ARRAY PROCESSING METHODS (9) (noise sources assumed spatially 
uncorrelated) 

4) In vector form P ( n )  = A  S ( n )  + K ( n )  

Mxl MxI 1x1 Mxl 

- Y ( n )  = [ Y , ( ~ )  9 y 2 ( n )  9 m * * - , y M ( n ) ~ T  (Mxl) 

where g ( O i ) = [ 1 , e  - ~ @ ~ ( l )  , ..., e I)] 

d sin 0, 
&(m) = oo.- . m . s inOi=2x  m d .  

C Lo 

With M sensors we can only identify up to M incoherent sources 



ARRAY PROCESSING METHODS (10) 

SPATIAL COVARIANCE MATRIX 

Following a procedure similar to narrowband PSE method 
I 

R = S M +  WM - 
MxM MxM MxM 

signal noise 

where, S M = A  s 
MxI 1x1 IxM 

s = E { s ( ~ )  s H ( n ) )  - 
1x1 (cross correlation 

matrix of source signals) 1. 

2 wm = o im (White noise assumption) 



ARRAY PROCESSING METHODS (11) 

SPATIAL COVARIANCE MATRIX 

Thus, for B = S + W ; 
-M M 

MxM 
We have: 

Rank(S ) = I (NUMBER OF SOURCES) 
-M 

Rank( W ) = M (NUMBER OF ELEMENTS) 
M 

w Rank(B) = M 

If there is no noise (a2 = 0), then B = S and therefore Rank(R)=I 
-M 



ARRAY PROCESSING METHODS (12) 

SPATIAL COVARIANCE MATRIX 

{ s i ( n ) } ,  i = 1, ..., I 

1) Uncorrelated 

2) Partially correlated 

3) Coherent . fully correlated 

X- sin 0 

- s = E { s ( ~ )  ~ * ( n ) )  
1x1 

I 

Diagonal non-sigular 

Non-diagonal, non-singular 

Non-diagonal, singular 



ARRAY PROCESSING METHODS (13) 

ORTHOGONAL DECOMPOSITION OF R 

SIGNAL + NOISE EIGENVECTORS 
I 

{ V  V ,  ... V )  p i = h  i + a ,  i = 1, ..., I 
-1' -2 ' -1 

NOISE EIGENVECTORS 

Inotherwords: R=C ( h i + a 2 ) v  v H + a 2 E  yvH 
- i - i  c- i 

i=l  i= 1 



ARRAY PROCESSING METHODS (14) 

EIGENVALUES OF R 

> 

.2  

1 
1 2 3 4  5 M 

I +  1 

c 
X X-h,+ o 2 

X 

X 

. . X  
S + N  * 

. . . 
I 

N 8  
m a  * 

>c. X X X . .  . . X  X 

I I 
I 



ARRAY PROCESSING METHODS (15) 

SIGNAL SUBSPACE I NOISE SUBSPACE 

CONVENTIONAL 

ML 

AR 

THERMAL NOISE 

MUSIC 

EIGENVECTOR 

PISARENKO 



ARRAY PROCESSING METHODS (16) 

SIGNAL SUBSPACE METHODS 

RECONSTRUCT THE "NOISE FREE" SPATIAL COVARIANCE 
MATRIX 

I I .. 

MxM 
METHODS 

MxM 

CONV: P ( 0 ) = c H ~ c  

ML: P ( 0 )  = 
1 

H --1 c R c  

AR: P ( 0 )  = 
I 

--I 2 
IaTR c( 



ARRAY PROCESSING METHODS (17) 
EXAMPLE Sources at: -54", -42",0°, 15", 22", 30°, - - 

N - 4 - - - ;  - - - - I - - - - I - - - -  - - - -  
I 

d 1 SIGNAL 
B SUBSPACE 

BEARING 



ARRAY PROCESSING METHODS (18) 

NOISE SUBSPACE METHODS 

- Basic estimator 

where ~ ( 0 )  is the steering vector 

MUSIC: 

EIGENVECTOR: 

.* PIS ARENKO: 

qi = 1 for all (i) 



ARRAY PROCESSING METHODS (19) 

USING SVD 

- Obtain SVD of covariance matrix I 

signal + noise noise 

SIGNAL SUBSPACE METHODS 
I 

R=C - p.vsH, i =C -s  VH 
Z- i - i  - 

- i  - i  
i=l  i=l Pi  

MxM MxM 

NOISE SUBSPACE METHODS 

P(0) = 
1 

M 



ARRAY PROCESSING METHODS (201 

USING SVD 
1) Obtain SVD of MxM covariance matrix E 
2, p 1 2 p 2 2 - - *  p M  

I 

Signal subspace I -+ Noise subspace 
X I 

X x x  
I 
1 
I 

x x  ' xix x  x  ;, x  
I * i  

1 2 3 4  . . . . . .  I M 
I 

In practice it might not be easy to distinguish noise from signal subspace as above 
3) Minimiurn discription length (MDL) criterion , 

4) Pick I: MDLmin(i)=MDL(I- 1) 
5) if T>(M-T) use si~nd si~hsn~ce, met-hods 



RESOLVING COHERENT SOURCES OR TARGETS (1) 

Very difficult problem: , Resolve fixed-phase coherent sources (RF in radar) 

which are spatially separated by less than the beamwidth of the array 

sampling aperture. 
I 

If the coherent sources maintain their fixed-phase relationship and if the 

array elements do not move then the signal covariance matrix has one 

unique eigenvalue: S - A S dR, 
M 

Rank[S,]=I= 1 
MxM MxI 1x1 I><M 

All coherent sources map into one eigenvalue. 

S is non-diagonal and singular. 

S is non-Toeplitz (spatial signal is not "stationary") 
M 



RESOLVING COHERENT SOURCES OR TARGETS (2) 

Exam~le (1): M=8 element array with half-wavelength spacing, two equal-strength 30dB 
coherent sources located at 16" and 24" with fixed-phase difference, 
N=1024 snapshots. 

Example (2): in radar the direct and specular component behave like coherent sources. 



RESOLVING COHERENT SOURCES OR TARGETS (3) 

SPATIAL SMOOTHING METHOD 

1) Divide linear array into overlapping subarrays 



RESOLVING COHERENT SOURCES OR TARGETS (4) 

2) Estimate the spatial covariance matrix of each subarray 

B : i = 1,2, ..., 
i 

K where Bi - E { Y . ( ~ )  L Y H ( n ) )  2 

PXP I 

x i ( n )  is the vector of reveived signals at the i' subarray 

Thus: 
-- -- 

( i -  1) (i-1) H B , - A ( P  S [ D  ] ) d H , + w  -i 

pxp pxI 1x1 IXI IXI IXP PXP 

,Q - diag [e  - / q p 1  , ..., e -/a01 I] where . r i =  -sinei d 
C 



RESOLVING COHERENT SOURCES OR TARGETS (5) 

3) Average the subarray covariance matrices 

-- 

i- 1) i-1 H It follows that: E - 8 g~ + o2 I where S = 1 C D( S [ D  ] 
P K i -  1 

S is nonsingular regardless of the coherence of the signals 

CONCLUSION: In resolving coherent sources, apply "incoherent sources 

techiques" on R 

LIMITATION: 

1) Resolution is smaller 

2) The number of sources that can be detected is less than p 



RESOLVING COHERENT SOURCES OR TARGETS (6) 

Example: SNR=3dB, N=600, coherent sources at 70°, 85", incoherent sources at 130' 



RESOLVING COHERENT SOURCES OR TARGETS (7) 

THE FORWARD - BACKWARD LEAST SQUARES AR METHOD 

Given the data array 
M - 1  M . . . . f . ..... a a 

D 4 

FORWARD BACKWARD 

Apply the FBLS AR method on each one of the snapshots independently. 
We may also use the burg technique, CLS method etc. 

4 Good 

d 6  

-q 
performance if model order is accurately estimated. 

Modified FBLS (Kumaresan, Tufts) 



BEAMFORMING (1) 

Definition: A beamformer is a processor that in conjunction with an 

array of sensors provides a form of spatial filtering 

Obiective: Given a # of desired signals and a # of interferers 

(incoherent from the signals), then reje$ the interferers. 

Case I : D.O.A. for desired signal is known 

Case I .  D.O.A. for the desired signal is not known 

Implementation: Shape the sensor array pattern by appropriately weighting 

the sensor outputs so that maximum gain is placed at the 

direction of "desired signal" and minimum gain (nulls) at 

the direction of interferers 



BEAMFORMING (2) 

BEAMFORMER CONFIGURATION (Narrowband) 
(or analytic signal form) 

>% ( 4  Quadrature 
Hybrid 

Incident wave 

\' >Gn)  . Quadrature 
Hybrid 

error e(n) 

0 I 
Quadrature 

Aicos [coon + ql Hybrid 

90 I 

Aicos[oon+qt] +jAis in[o in+qt]  
d(n) in analytic form 

Aicos [coon + q ]  



BEAMFORMING (3) 

BEAMFORMER CONFIGURATION (Wideband) 

\> > 
Y,; J JY., . - -  4 W* 1.L 

XI ("1 Y, (n) I 

Q.H > Tapped delay line 
t 

WIL ww .... 
Tapped delay line i 

. . . . . . . 



BEAMFORMING (4) 

SOLUTION 

MMSE solution: 

Minimize: E (1  e ( n) f } w.r.t. { ~ i , k I  I 

Solution: 

1 N 
1 N 

where: R = - ~ ( n )  zH(n) and r =-C P(n)d*(n) 
N n-1 -Yd N n-1 

P ( n )  - [ y ,  ( n ) ,  y, (n - 11, ... ,yl ( n  - L )  ,y , (n) ,  ... ,y2(n - L ) ,  .=. ,yM(n) , . . . Y ~ ( ~ - L ) ] ~  



BEAMFORMING (5) 

ARRAY PATTERN (Narrowband) 

Assuming reference node on top I 

Array pattern: 

( 0 , ) :  steering vector at wave h 



BEAMFORMING (6) 

LINEAR CONSTRAINED MINIMUM VARIANCE BEAMFORMING 

1 Given the spatial covariance matrix _R = - C P(n) xH(n) 
N n - 1  

Minimize [ y H g  F V ] ,  s.t.c. y H t ( B d , h d )  - 1, w.r.t. w , i - l , . . . ,  
Y { 4 M 

where: 0 d ,  A  d :  D.O.A., wavelength of desired signal respectively 

SOLUTION 

~ - l  c ( 0 , ~ )  
w -  - Y 

c H ( O , A )  ~ - l c ( 0 , ~ )  
Y 



1 ADAPTIVE BEAMFORMING -- (1) 

LINEAR ADAPTIVE ARRAY (1) 

.- \ Three element adaptive linear array 
h 

Note: 

- Use LMS, RLS 

m  arrowb band Array 

or . . . adaption rules 
- Reference (desired) signal must be known 
- DOA for the desired signal is not known 

~ - M sensor can be rejected up to M-1 interferers 



ADAPTIVE BEAMFORMING (2) 

LINEAR ADAPTIVE ARRAY (2) (3 sensors) 

LMS ALGORITHM 
1) Initialization: H(0)  - Q 

2) Updateequation: '(n) -E(n-1)+ pY(n-l)e(v-1) 

where e(n) - d(n) - IKH(n) Y(n) 
r )  

where d(n), e(n) are real 

- w(n) [ ~ 1 , 1 ( ~ ) 9  ~ 1 , 2 ( ~ ) 9  w2,1(n)9 w2,2(n)90**9~M,l(n),'~M,2(n)]T 



ADAPTIVE BEAMFORMING (3) - ADAPTIVE SIDELOBE CANCELLER (1) (Narrowband) -r O r 

- Beamforming network forms a set: of orthogonal beams 

3 

- Consider as reference sensor the one in the middle 

.) 

Reference - ' 
- 

Antenna 
Elements 

- Assume D.O.A. for desired signal is known 

- M sensors can reject up to M-2 interferers 

- j Z a  x e  
I A(@, a) I 

x e-j.C 

Multiple 
Beam-forming ----------- I Ad!- -1 o 
Network I (  a. -5 

5 

j 2 M  
control I 

x e algorithm I 1 A(@. a1 l - I 
I 

5 sensors 

I 
I I A -r 
I 
I I 
-----------------------------------I 

Multiple sidelobe canceller rn - +" 
5 

4 orthogonal beams 



ADAPTIVE BEAMFORMING (4) 

ADAPTIVE SIDELOBE CANCELLER (2) 

- Assume for the moment that outputs of the sensors are equally weighted 

and have a uniform phase. Then, 

Response of array to an incident phase @ 

X for a = -k ,  k =  *1,*3 ,..., *M-2 
M 

M-1 orthogonal array beams can be generated 
2nd A - $ = *-sine, special case ( d  = - 
1 2 

9 - x i # i ~ ,  -90° i0i90°) 



ADAPTIVE BEAMFORMING (5) 

ADAPTIVE SIDELOBE CANCELLER (3) 

1) Given M sensors, forrn M-1 orthogonal beams by combining 
appropriately the sensor outputs. 

2) Place one of the beams at the direction of the desired ,signal. 
Then the other auxiliary beams will place a null at that direction. 

3) Weight each beam with the weights {wi (n) )  , i = 1, ... , M. Due to the 
symmetry of the problem the weights are real. , 

4) Update {w . (n ) )  z , i - 1, ... , M using LMS algorithm. 

5) The array beam at instant n is 



ADAPTIVE BEAMFORMING (6) 

Example: INTERFERENCE REJECTION (1) 

Given an adaptive array with M=3 elements uniformly spaced with d=l 

( A  = 2 )  The data received by the array are described by the equation 
I 

where: 

- f, is the frequency of desired signal 

- f, is the frequency of an interferer 

- w(n) if AWGN 



ADAPTIVE BEAMFORMING (7) 

Example: INTERFERENCE REJECTION 

Array P.1L.m (SNR.90dB. S/1-2OdB.nld-fl. Ad-10.6 6.r) 


