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A novel approach for bidimensional empirical mode decomposition (BEMD) is proposed in this paper. BEMD decomposes an
image into multiple hierarchical components known as bidimensional intrinsic mode functions (BIMFs). In each iteration of
the process, two-dimensional (2D) interpolation is applied to a set of local maxima (minima) points to form the upper (lower)
envelope. But, 2D scattered data interpolation methods cause huge computation time and other artifacts in the decomposition.
This paper suggests a simple, but effective, method of envelope estimation that replaces the surface interpolation. In this method,
order statistics filters are used to get the upper and lower envelopes, where filter size is derived from the data. Based on the
properties of the proposed approach, it is considered as fast and adaptive BEMD (FABEMD). Simulation results demonstrate that
FABEMD is not only faster and adaptive, but also outperforms the original BEMD in terms of the quality of the BIMFs.
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1. INTRODUCTION

Empirical mode decomposition (EMD), originally devel-
oped by Huang et al. [1, 2], is a data driven signal processing
algorithm that has been established to be able to perfectly
analyze nonlinear and nonstationary data by obtaining local
features and time-frequency distribution of the data. The
first step of this method decomposes the data/signal into
its characteristic intrinsic mode functions (IMFs), while the
second step finds the time frequency distribution of the data
from each IMF by utilizing the concepts of Hilbert transform
and instantaneous frequency. The complete process is also
known as the Hilbert-Huang transform (HHT) [1]. This
decomposition technique has also been extended to analyze
two-dimensional (2D) data/images, which is known as
bidimensional EMD (BEMD), image EMD (IEMD), 2D
EMD and so on [3–8]. Both EMD and BEMD require finding
local maxima and local minima points (jointly known as
local extrema points) and subsequent interpolation of those
points in each iteration of the process. Local extrema points
of one-dimensional (1D) signal are obtained using either

a sliding window or local derivative, and local extrema
points of 2D data/image are extracted using sliding window
or various morphological operations [1–4]. Cubic spline
interpolation is preferred for 1D interpolation while various
types of radial basis function, multilevel B-spline, Delaunay
triangulation, finite-element method, and so on have been
used for 2D scattered data interpolation [1–7], where
Delaunay triangulation and finite-element method provide
relatively faster decomposition compared to the other meth-
ods. Beside 2D implementation of the BEMD process, 1D
EMD has also been applied to images to obtain 2D IMFs or
bidimensional IMFs (BIMFs) [8–10]. In this technique, each
row and/or each column of the 2D data is processed by 1D
EMD, which makes it a faster process. However, it has been
found that this 1D implementation results in poorer BIMF
components compared to the standard 2D procedure due to
the fact that the former ignores the correlation among the
rows and/or columns of a 2D image [11].

In EMD or BEMD, extraction of each IMF or BIMF
requires several iterations. Hence, extrema detection and
interpolation at each iteration make the process complicated
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and time consuming. The situation is more difficult for the
case of BEMD that requires 2D scattered data interpolation
at each iteration. For some images it may take hours or days
for decomposition unless any additional stopping criterion is
employed, whereas additional stopping criteria may result in
inaccurate and incomplete decomposition [12–15] that may
not be desired. Another common and significant problem
related to the 2D scattered data interpolation in BEMD is that
the maxima or minima map often does not contain any data
points (interpolation centers) at the boundary region, which
may be more severe for the later modes of decomposition.
Currently available scattered data interpolation methods are
inefficient in handling this kind of situation. Additionally, the
effect of incorrect interpolation at the boundary gradually
propagates into the mid region from iteration to iteration
and from BIMF mode to BIMF mode causing corrupted
BIMFs. Overshooting or undershooting is another problem
of interpolation-based envelope estimation, which causes
incorrect BIMFs. Although a few modifications have been
suggested in the literature to reduce the number of iterations
and/or to overcome the boundary effects [6, 11, 12], the
technique still suffers from the above-mentioned problems
to some extent. In the BEMD process, the number of extrema
points decreases from one mode to the next mode. For
the later modes, there may be very few irregularly spaced
local maxima or minima points, which can cause highly
erroneous and misleading upper or lower envelopes, and
thus incorrect modes of BIMFs. In order to improve the
algorithm performance, some modifications have been sug-
gested for EMD [16–20], which may not be useful for BEMD
in the context of processing speed and algorithm com-
plexity. Moreover, any types of additional processing steps
may make the process more complex and computationally
extensive.

BEMD is a promising image processing algorithm that
can be applied successfully in various real world problems,
for example, medical image analysis, pattern analysis, texture
analysis, and so on. But the problem, due to scattered data
interpolation in BEMD, limits its application to very small
size images, while the size of the real images may be much
bigger than is suitable for BEMD processing. It is also not
appropriate to reduce the size of the images only for the
purpose of BEMD processing and thus loose the fine details
and/or relevant information. Hence, improvement of the
BEMD algorithm is very important. In this paper, a novel
BEMD approach is suggested that replaces the interpolation
step by a direct envelope estimation method. In this tech-
nique, spatial domain sliding order-statistics filters, namely,
MAX and MIN filters, are employed to get the running
maxima and running minima of the data, which is followed
by smoothing operation to get the upper envelope and
lower envelope, respectively. The size of the order-statistics
filters is derived from the available information of maxima
and minima maps. In addition to eliminating the poor
interpolation effects and reducing the computation time for
each iteration, this process facilitates performing only one
iteration for each BIMF. The proposed fast and adaptive
BEMD (FABEMD) method can be a good alternative for
efficient BEMD processing.

For ease of discussion, some new terms have been intro-
duced in this paper in place of the existing terms associated
with EMD or BEMD. Before introducing the novel concepts
of FABEMD, the regular BEMD process is briefly reviewed
in Section 2 of this paper. The detailed description of the
proposed FABEMD algorithm is given in Section 3. Although
the extrema detection method suggested in FABEMD is
the same as in BEMD, it is explained in the first part of
Section 3 for understanding the proposed envelope estima-
tion technique, since it requires the extrema information as
its foundation. The second part of Section 3 describes the
new method of envelope estimation. Simulation results with
various images comparing FABEMD and BEMD are given in
Section 4. Finally, concluding remarks are given in Section 5.

2. BEMD OVERVIEW

EMD or BEMD is a sifting process that decomposes a signal
into its IMFs or BIMFs and a residue based basically on
the local frequency or oscillation information. The first
IMF/BIMF contains the highest local frequencies of oscilla-
tion or the highest local spatial scales, the final IMF/BIMF
contains the lowest local frequencies of oscillation and the
residue contains the trend of the signal/data. Like time-
frequency distribution with EMD, acquiring the space-
spatial-frequency distribution of 2D data/image is possible
with BEMD, which may be named as bidimensional HHT
(BHHT). Although direct estimation of the horizontal and
vertical frequencies of BIMFs has been studied [21], BHHT
has not yet been reported in the literature. It is claimed and
experimentally shown that the HHT performs better than
the other existing techniques of analyzing the time-frequency
distribution of nonstationary and nonlinear data [1]. Thus,
HHT or BHHT can better represent the local frequency and
amplitude scale of the signal if the IMF or BIMF components
appear perfect. However, decomposition of an image into
BIMFs alone can offer a wide variety of image processing
applications. Hence, the following discussion will be limited
to the first part of BEMD only, that is, decomposition of an
image into BIMFs and the Residue. It should be noted that
once the BIMFs are obtained, the space-spatial-frequency
distribution of an image can be acquired with standard
techniques of 2D Hilbert spectral analysis (HSA).

2.1. Properties of IMF/BIMF

The IMFs of a signal obtained by EMD are expected to have
the following properties [1, 2, 12, 22].

(i) In the whole data set, the number of local extrema
(maxima and minima together) and the number of
zero crossings must be equal or differ by at most one.

(ii) There should be only one mode of oscillation, that is,
only one local maxima or local minima, between two
successive zero crossings.

(iii) At any point, the mean value of the upper and lower
envelopes, defined by the local maxima and minima
points, is zero or nearly zero.

(iv) The IMFs are locally orthogonal among each other
and as a set.
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In fact, property (i) ensures property (ii), and vise versa. The
definition and properties of the BIMFs are slightly different
from the IMFs. It is sufficient for BIMFs to follow only the
final two (iii) and (iv) properties given above [3, 4]. In fact,
due to the properties of an image and the BEMD process,
it is not possible to satisfy the first two properties (i) and
(ii) given above in the case of BIMFs, since the maxima and
minima points are defined in a 2D scenario for an image. For
the same reason, it is also difficult or impossible to define
and/or to achieve any characteristic relationships between
the number of maxima points and the number of minima
points for BIMFs.

2.2. Steps of BEMD

The required properties of IMFs are achieved via an “empiri-
cal” iterative process [1] in EMD. The same algorithm applies
for BEMD as well, where extrema detection and interpola-
tion are carried out using 2D versions of the corresponding
1D methods. Let the original image be denoted as I , a BIMF
as F, and the residue as R. In the decomposition process ith
BIMF Fi is obtained from its source image Si, where Si is
a residue image obtained as Si = Si−1 − Fi−1 and S1 = I .
It requires one or more iterations to obtain Fi, where the
intermediate temporary state of BIMF (ITS-BIMF) in jth
iteration can be denoted as FT j . With the definition of the
variables, the steps of the BEMD process can be summarized
as follows [1–5].

(i) Set i = 1. Take I and set Si = I .

(ii) Set j = 1. Set FT j = Si.

(iii) Obtain the local maxima map (LMMAX) of FT j ,
denoted as Pj .

(iv) Form the upper envelope (UE) of FT j , denoted as UEj

by interpolating the maxima points in Pj .

(v) Obtain the local minima map (LMMIN) of FT j ,
denoted as Qj .

(vi) Form the lower envelope (LE) of FT j , denoted as LE j
by interpolating the minima points in Qj .

(vii) Find the mean/average envelope (ME) as MEj =
(UEj + LE j)/2.

(viii) Calculate FT j+1 as FT j+1 = FT j −MEj .

(ix) Check whether FT j+1 follows the BIMF properties.
These criteria are verified by finding the standard
deviation (SD), denoted as D, between FT j+1 and FT j

as defined below and comparing it to the desired
threshold [1, 3]

D =
M∑

x=1

N∑

y=1

∣∣FT j+1(x, y)− FT j(x, y)
∣∣2

∣∣FT j(x, y)
∣∣2 , (1a)

where (x, y) denotes the coordinate of the 2D data, M
is the total number of rows and N is the total number

of columns in the 2D data. The SD can also be defined
as

D =
∑M

x=1

∑N
y=1

∣∣FT j+1(x, y)− FT j(x, y)
∣∣2

∑M
x=1

∑N
y=1

∣∣FT j(x, y)
∣∣2 . (1b)

Although both of the SD measures in (1a) and
(1b) provide a global measure of SD, the later one
is not dominated by the local fluctuations of the
denominator. Normally, a low value of D (e.g., below
0.5 for (1a) and below 0.05 for (1b)) is chosen to
ensure nearly zero envelope mean of the BIMF.

(x) If FT j+1 meets the criteria given in step (ix), then take
Fi = FT j+1. Set i = i+ 1 first and then Si = Si−1−Fi−1.
Go to step (xi). If FT j+1 does not meet the stopping
criteria, then set j = j+1, go to step (iii) and continue
up to step (x) as before until the criteria are fulfilled.

(xi) Determine whether Si has less than three extrema
points, and if so, this is the residue R of the image
(i.e., R = Si); and the decomposition is complete.
Otherwise, go to step (ii) and continue up to step
(xi) to obtain the subsequent BIMFs. In the process of
extracting the BIMFs, the number of extrema points
in Si+1 should be lower than that in Si.

The BIMFs and the residue of an image together can
be named as bidimensional empirical mode components
(BEMCs). Except for the truncation error of the digital
computer, the summation of all BEMCs returns the original
data/image back as given by

ΣC =
K+1∑

i=1

Ci = I , (1)

where Ci is the ith BEMC and K is the total number of
BIMFs excluding the residue. An orthogonality index (OI),
denoted as O, has been proposed for IMFs in [1], which may
be extended for the case of BEMCs as follows:

O =
M∑

x=1

N∑

y=1

(K+1∑

i=1

K+1∑

j=1

Ci(x, y)Cj(x, y)
∑2

C(x, y)

)
. (2)

A low value of OI indicates a good decomposition in terms of
local orthogonality among the BEMCs. In general, OI values
less than or equal to 0.1 are acceptable.

2.3. Issues related to BEMD

The decomposition of an image into BEMCs is not a unique
process. The number of BEMCs and their characteristics
depend on the extrema detection method, interpolation
technique, and stopping criteria of the iterations for each
BIMF. In that sense, there are an infinite number of BEMC
sets for each image [12]. As mentioned in Section 1, local
extrema (maxima and minima) points of 2D data/image are
obtained using 2D sliding window or various morphological
operations [1–4] and radial basis function, multilevel B-
spline, Delaunay triangulation, finite-element method, and
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so forth, 2D scattered data interpolation [3–7] have been
used for interpolating the extrema points to form the
upper and lower envelopes. To stop the iterations for
each BIMF, the SD threshold criterion is mostly used to
satisfy the zero envelope mean, although there are several
additional stopping criteria that may be employed [12–
15]. The performance of scattered data interpolation in the
BEMD process is highly dependent on the interpolation
centers, their orientation, location, numbers, and so on.
Hence, local maxima and minima maps play a significant role
in creating the upper and lower envelopes. Absence or lack of
extrema points at the boundaries of ITS-BIMFs FT js and the
presence of very few extrema points in the source images Sis
for higher values of i, cause erroneous surface interpolation
that results in misleading upper or lower envelopes and hence
incorrect BIMFs. Because the surface interpolation method
fits a surface in iterative optimization approach utilizing the
scattered data arising from the extrema points, it makes the
BEMD process an extremely slow one.

3. FABEMD ALGORITHM DETAILS

With the intention of overcoming the difficulty in imple-
menting BEMD via the application of surface interpolation,
a novel approach is devised that eliminates the need for
surface interpolation. This new BEMD process, named as
fast and adaptive BEMD (FABEMD), differs from the actual
BEMD algorithm, basically in the process of estimating the
upper and lower envelopes and in limiting the number of
iterations per BIMF to one. Hence, the steps of the FABEMD
algorithm remain the same as BEMD given in Section 2.2
with maximum required value of j (iteration index for
each BIMF) equal to one considered being sufficient. The
details of extrema detection and envelope formation of the
FABEMD process are discussed in this section.

3.1. Detection of local extrema

Detection of local extrema means finding the local maxima
and minima points from the given data. The 2D array of
local maxima points is called a maxima map (LMMAX)
and the 2D array of local minima points is called a minima
map (LMMIN). Like BEMD, neighboring window method
is employed to find local maxima and local minima points
from the jth ITS-BIMF FT j of any source image Si, where
FT j = Si for j = 1 (i = 1, 2, . . . ,K). In this method, a data
point/pixel is considered as a local maximum (minimum), if
its value is strictly higher (lower) than all of its neighbors. Let
A be an M ×N 2D matrix represented by

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

... · · ·
...

aM1 aM2 · · · aMN

⎤
⎥⎥⎥⎥⎦

, (3)

where amn is the element of A located in the mth row and nth
column. Let the window size for local extrema determination

8 8 4 1 5 2 6 3
3336 32 97

7 8 3 2 1 4 3 7
4 1 2 4 3 5 7 8
6 4 2 1 2 5 3 4

81 3 7 9 9 8 7
77
119 97

762
2

9 8
8 1

6

(a)

0 0 0 0 0 0 0 0
0 0 0 0 7 0 9 0
0 8 0 0 0 0 0 0
0 0 0 4 0 0 0 8
6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 8
9 0 0 0 0 0 0 0
0 0 0 9 0 9 0 0

(b)

0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 3 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

6

(c)

Figure 1: (a) A sample 8 × 8 data matrix; (b) local maxima map
obtained from (a); and (c) local minima map obtained from (a).

be wex ×wex. Then,

amn �
{

Local Maximum if amn > akl;

Local Minimum if amn < akl,
(4)

where

k = m− wex − 1
2

: m +
wex − 1

2
, (k /=m);

l = n− wex − 1
2

: n +
wex − 1

2
, (l /= n).

(5)

Generally, a 3 × 3 window (i.e., wex = 3) results in an
optimum extrema map for a given 2D data. However, a
higher window size may be used in some applications; but
this will result in a lower, if not equal, number of local
extrema points for a given data matrix. Let us consider the 8×
8 data matrix given in Figure 1(a) for illustration purposes.
The maxima map given in Figure 1(b) and minima map
given in Figure 1(c) are obtained when a 3 × 3 neighboring
window is used for every point in the matrix. For finding
extrema points at the boundary or corner, the neighboring
points within the window that are beyond the image are
neglected. As an example, 3× 3 windows centered at a32, a75,
and a26 with darker grids are also shown in Figure 1(a). The
center element of the first window is a local maximum, the
center element of the second window is a local minimum,
while the center element of the third window is neither a local
maximum nor a local minimum.

3.2. Generating upper and lower envelopes

After obtaining the maxima and minima maps, Pj and Qj ,
respectively, from a given ITS-BIMF FT j , the next step is to
create the continuous upper and lower envelopes, UEj and
LE j . In usual BEMD, suitable 2D scattered data interpolation
is applied to Pj and Qj to create these envelopes. In
this work, a simple but efficient modification has been
formulated for the generation of upper and lower envelopes.
This approach basically applies two order statistics filters to
approximate the envelopes, where a MAX filter is used for
upper envelope and a MIN filter is used for lower envelope.
Order statistics filters are spatial filters whose response is
based on ordering (ranking) the elements contained within
the data area encompassed by the filter [23]. The response of
the filter at any point is determined by the ranking result.
The crucial part of applying the order statistics filters for
envelope estimation is to determine an appropriate size for
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the filter. Based on the desired properties of BIMFs along
with the characteristics of Pj and Qj for a given Si, the
method described in Section 3.2.1 is developed for window
size determination to extract the corresponding BIMF Fi.

3.2.1. Determining window size for order-statistics filters

The window size for order statistics filters is determined
based on the maxima and minima maps obtained from a
source image Si, that is, based on Pj and Qj derived from
FT j when j = 1 and FT j = Si. For each local maximum point
in Pj , that is, for each nonzero element in Pj , the Euclidean
distance to the nearest nonzero element is calculated. The
array of distances thus obtained is called adjacent maxima
distance array (AMAXDA), denoted as dadj-max, where the
number of elements in AMAXDA is equal to the number
of local maxima points in the maxima map Pj . Figure 2(a)
shows the maxima map of Figure 1(b) with the maxima
points being represented as bright boxes while the other
points are represented as dark boxes. Figures 2(b) and 2(c)
show two points of interest from the set of maxima points
marked with “©” and their corresponding nearest neighbors
marked with “�”.

Similarly, the array of distances obtained from the
local minima map Qj is called adjacent minima distance
array (AMINDA), denoted as dadj-min, where the number of
elements in AMINDA is equal to the number of local minima
points in the minima map Qj . Both dadj-max and dadj-min

are sorted in descending order for convenient selection of
distances from these arrays. Considering square window, the
gross window width wen−g for order statistics filters can be
selected in many different ways using the distance values
in dadj-max and dadj-min among which four choices are given
below

wen−g = d1 = minimum
{

minimum
{

dadj-max
}

,

minimum
{

dadj-min
}}

,

wen−g = d2 = maximum
{

minimum
{

dadj-max
}

,

minimum
{

dadj-min
}}

,

wen−g = d3 = minimum
{

maximum
{

dadj-max},
maximum

{
dadj-min

}}
,

wen−g = d4 = maximum
{

maximum
{

dadj-max
}

,

maximum
{

dadj-min
}}

,

(6)

where maximum{} denotes the maximum value of the
elements in the array {} and minimum{} denotes the
minimum value of the elements in the array {}. wen−g is
then rounded to the nearest odd integer to get the final
window width wen producing a window of size wen × wen.
The relation of the distances obtained from (6) is d1 ≤
d2 ≤ d3 ≤ d4. Let the order statistics filter widths (OSFW)
obtained via (6) be defined as Type-1, Type-2, Type-3, and
Type-4, respectively, where Type-1 and Type-4 may also be
denoted as lowest distance OSFW (LD-OSFW) and highest
distance OSFW (HD-OSFW), respectively. wen required for
i + 1th BIMF generally appears larger than that for the ith
BIMF if using Type-3 or Type-4 OSFW; however, wen for

(a) (b) (c)

Figure 2: (a) Maxima map of Figure 1(b) shown with shades where
the brighter boxes represent the location of the maxima points,
(b) and (c) sample maxima point and its nearest neighbor shown,
respectively, with “©” and “�”.

i + 1th BIMF sometimes may not appear larger than that for
the ith BIMF if using Type-1 or Type-2 OSFW. Therefore,
if the calculated wen for a BIMF mode is not larger than
the previous BIMF mode, then additional manipulation may
be required to make it larger than the previous mode (e.g.,
current wen may be taken as approximately 1.5 times of the
previous wen). Though it is not necessary, it will ensure the
currently existing properties of BIMF hierarchy in the sense
that the later BIMF will contain coarser local spatial scales
[1, 3]. It will be clear from Section 4 that the choice of wen

from the above four options depends on the application
and/or desired BIMF characteristics.

It is preferable to apply the same window size for both
MAX and MIN filters as discussed above, though it may
be possible to choose different window sizes for them. For
example, window size for the MAX filter can be selected
based on the distances in AMAXDA, while window size for
the MIN filter can be selected based on the distances in
AMINDA as follows:

wmaxen-g = minimum
{

dadj-max
}

,

wmaxen-g = maximum
{

dadj-max
}

,
(7)

wminen-g = minimum
{

dadj-min
}

,

wminen-g = maximum
{

dadj-min
}
.

(8)

Equation (7) can be used for the MAX filter and (8) can
be used for the MIN filter. However, there is a practical
limitation to this approach. In some situations, there may
be only one local maxima (minima) in a source image Si,
which will result in an empty array for dadj-max (dadj-min)
and thus will prevent upper (lower) envelope formation and
hinder the algorithm before it satisfies the extrema criteria
for stopping. On the other hand, employing the same size for
MAX and MIN filters for the same BIMF induces extraction
of similar spatial scales into that BIMF, while different
window sizes for MAX and MIN filters may obstruct this
process. It is worthwhile to mention an additional option for
the selection of wen before describing the envelope formation
in Section 3.2.2. Based on the image or desired properties
of BIMFs, wen may be chosen arbitrarily as well. In that
case, wen for i + 1th BIMF should be chosen higher than the
wen for the ith BIMF; but extraction of BIMFs will be less
data driven with an arbitrary selection of wen. The various
possibilities of window sizes for MAX and MIN filters for
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envelope formation provide different decomposition of an
image. It is this feature that makes the proposed approach
an adaptive one.

3.2.2. Applying order statistics and smoothing filters

With the determination of window size wen for envelope
formation, MAX and MIN filters are applied to the cor-
responding ITS-BIMF FT j to obtain the upper and lower
envelopes, UEj and LE j , as specified below:

UEj(x, y) = MAX
(s,t)∈Zxy

{
FT j(s, t)

}
, (9)

LE j(x, y) = MIN
(s,t)∈Zxy

{
FT j(s, t)

}
. (10)

In (9) the value of the upper envelope UEj at any point (x, y)
is simply the maximum value of the elements in FT j in the
region defined by Zxy , where Zxy is the square region of size
wen × wen centered at any point (x, y) of FT j . Similarly, in
(10) the value of the lower envelope LE j at any point (x, y)
is simply the minimum value of the elements in FT j in the
region defined by Zxy . It should be noted that the MAX and
MIN filters produce new 2D matrices for upper and lower
envelope surfaces from the given 2D data matrix, it does not
alter the actual 2D data. Since smooth continuous surfaces
for upper and lower envelopes are preferable, an averaging
smoothing operation is carried out on both UEj and LE j
employing the same window size used for corresponding
order statistics filters. This averaging smoothing operation
may be expressed as below:

UEj(x, y) = 1
wsm ×wsm

∑

(s,t)∈Zxy

UE j(s, t),

LE j(x, y) = 1
wsm ×wsm

∑

(s,t)∈Zxy

LE j(s, t),
(11)

where Zxy is the square region of size wsm × wsm centered at
any point (x, y) of UEj or LE j , wsm is the window width of the
averaging smoothing filter and wsm = wen. The operations
in (11) are arithmetic mean filtering that smoothes local
variations in data. From the smoothed envelopes UEj and
LE j , the mean or average envelope MEj is calculated as in the
original BEMD method given in Section 2.

As previously mentioned, FABEMD differs from BEMD
in the way of formulating the upper and lower envelopes, UEj

and LE j , and in restricting the number of iterations for each
BIMF to one. In fact, one iteration per BIMF in FABEMD
produces similar or better results than can be achieved by
BEMD with more than one iteration. On the other hand,
scattered data interpolation itself is an iterative process that
fits a surface over the scattered data points in multiple steps.
Though upper and lower envelope formation in FABEMD
requires three steps: window size determination, getting the
MAX (MIN) filter output, and averaging smoothing, all these
operations can be done very fast using efficient programming
routines; and the time required is much less than is required
in the interpolation-based envelope estimation.
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Figure 3: For data matrix of Figure 1(a): (a) upper envelope matrix
using FABEMD before smoothing, (b) lower envelope matrix using
FABEMD before smoothing.

3.2.3. Illustration of upper and lower envelopes estimation

For illustration purposes of the envelope formation in
FABEMD, let us consider the 2D data of Figure 1(a) and
corresponding local maxima and minima maps of Figures
1(b) and 1(c). Window width wen obtained using Type-4
OSFW is 3. So, taking a 3 × 3 window for MAX and MIN
filters and applying them to the data matrix of Figure 1(a)
results in the upper and lower envelope matrices given in
Figures 3(a) and 3(b), respectively.

The application of averaging smoothing operations to
Figures 3(a) and 3(b) results in the smoothed upper
and lower envelope matrices shown in Figures 4(a) and
4(b), respectively. The mean envelope matrix produced by
averaging the matrices of Figures 4(a) and 4(b) is shown in
Figure 4(c). For comparison purpose, corresponding matri-
ces for UE, LE, and ME derived by using thin-plate spline
surface interpolation to the maxima and minima maps are
shown in Figure 5. Comparison of data in Figures 1(a), 4(c),
and 5(c) reveals that the mean envelope derived by FABEMD
method more closely matches the local mean of the given
data. Since local mean subtraction is essential for the BEMD
or FABEMD process to yield nearly zero local mean BIMFs,
the FABEMD achieves this goal in as few as one iteration. It
is shown in the literature [1, 3] that IMF or BIMF properties
are retained when local mean is defined as the local mean
of the upper and lower envelopes, not just the usual local
mean as might be obtained by averaging the data using a
spatial averaging filter smaller than the original size of the
data matrix. Nevertheless, zero local envelope mean that also
induces zero local mean yields well-characterized BIMFs.

To visualize the envelope formation for FABEMD more
explicitly, let us consider a 1D signal for simplicity, given
in Figure 6, where local maxima points are indicated by
“©” and local minima points are indicated by “x” that are
obtained using a 1 × 3 neighboring window. The sorted
array of AMAXDA for this signal appears as dadj-max =
[ 107 106 93 93 72 ], while the sorted array of AMINDA
appears as dadj-min = [ 108 107 93 93 78 ]. Using these
distance arrays, OSFW for Type-1, Type-2, Type-3, and
Type-4 appears to be 73, 79, 107, and 109, respectively.
Taking Type-4 OSFW (i.e., wen = 109) as the width of
the MAX and MIN filters and applying them to the 1D
signal of Figure 6 results in the UE, LE, and ME shown
in Figure 7(a). The corresponding envelopes after applying
smoothing averaging filter of the same size are displayed
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Figure 4: For data matrix of Figure 1(a): (a) upper envelope matrix using FABEMD after smoothing, (b) lower envelope matrix using
FABEMD after smoothing, and (c) mean envelope matrix obtained by averaging the data in (a) and (b).
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Figure 5: For data matrix of Figure 1(a): (a) upper envelope matrix using BEMD with thin-plate spline interpolation, (b) lower envelope
matrix using BEMD with thin-plate spline interpolation, and (c) mean envelope matrix obtained by averaging the data in (a) and (b).
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Figure 6: A 1D signal and its local maxima and minima points.

in Figure 7(b), and the same envelopes created by applying
cubic spline interpolation to the maxima and minima maps
are given in Figure 7(c). Figure 7(c) indicates the possibility
of incorrect interpolation at the boundary and thus causing
improper ME. The top waveforms in Figures 8(a) and
8(b) are the original 1D signal given in Figure 6, whereas
the bottom waveform in Figure 8(a) is the result of ME
subtraction in FABEMD method and the bottom waveform
in Figure 8(b) is the result of ME subtraction in BEMD
method. This illustration, along with the previous analyses,
demonstrates the effectiveness of the proposed FABEMD
method for BIMF or BEMC extraction.

4. SIMULATION RESULTS

The effectiveness of the FABEMD is investigated by imple-
menting the algorithm for analyzing various images. The
decomposed BEMCs resulting from FABEMD are compared

with the BEMCs acquired using BEMD. Simulation results
are reported for FABEMD with OSFW of Type-1 and Type-
4. Although only one iteration for each BIMF is suggested in
the FABEMD method, some results are also shown for more
than one iteration to justify the adequacy of performing
one iteration. Since the window sizes for order-statistics and
smoothing filters are determined from the source image
information, these sizes remain the same for all the iterations
for the corresponding BIMF. FABEMD results are compared
with the BEMD results obtained by thin-plate spline (TPS)
interpolator, a radial basis function (RBF) that has been
established as a good choice for BEMD [3–5]. For BEMD
with RBF-TPS, SD criterion is employed as the fundamental
stopping criteria with a threshold of 0.01, while the maxi-
mum number of allowable iterations (MNAI) is applied as
additional stopping criterion to prevent over sifting [6, 15].
Additionally, in some cases BEMD results are also examined
and reported for one iteration, to compare with the results
of FABEMD with one iteration. To further limit the number
of iterations and thus prevent over sifting in BEMD, SD
defined by (1b) is considered for the simulation. It should be
noted that the definition of SD affects the number of required
iterations to achieve a given threshold and thus, the amount
of sifting per BIMF; it does not have any contribution to
the calculation of UE, LE, or ME in a particular iteration.
Even though the complete space-spatial-frequency analysis
using BHHT is investigated, the results are not shown in
this paper. However, it is obvious that a good set of BIMFs
will yield a good BHHT-based image representation. In the
simulation, the maximum image size is limited to 256× 256-
pixel. Although FABEMD is capable of decomposing images
of any size or resolution very fast (e.g., in few seconds or
few minutes), BEMD is unable to do so. Since FABEMD
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Figure 7: (a) Envelopes using the proposed approach before smoothing, (b) envelopes using the proposed approach after smoothing, (c)
envelopes using cubic spline interpolation.
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Figure 8: (a) Original signal (top) and mean envelope subtracted signal (bottom) using FABEMD algorithm, (b) original signal (top) and
mean envelope subtracted signal (bottom) using BEMD algorithm.

results are compared with BEMD results for the same images,
256× 256-pixel images help perform the task conveniently.

4.1. Analysis with synthetic texture image

A synthetic texture image (STI) of 256 × 256-pixel size is
taken, which is composed by adding three different compo-
nents of the same size. For convenience of synthesizing, each
synthetic texture component (STC) is generated from hori-
zontal and vertical sinusoidal waveforms having different but
closely spaced frequencies. The first STC consists of higher
frequencies, the second STC consists of medium frequencies,
and the last STC consists of very low frequencies. The STI
and STCs are shown in Figure 9, while the diagonal intensity
profiles of the STI and STCs are presented in Figure 10. Even
if the addition of arbitrarily developed STCs in Figures 9(a)
to 9(c) yields the original STI of Figure 9(d), application
of BEMD or FABEMD to the STI of Figure 9(d) may not
necessarily regenerate the STCs of Figures 9(a) to 9(c) (e.g.,
BEMC-1 may not be the same as STC-1), a consequence that
can be attributed to the property of BEMD/FABEMD. Still,
analysis of BEMD/FABEMD employing this synthetic texture
provides a good performance indication of the algorithm.
The OI among the original STCs and the global mean of
each component are given in Table 1, which facilitates the
comparison of the extracted BEMCs with the actual STCs.
Since STC-1 and STC-2 are nearly symmetric with bipolar

Table 1: Global mean of STCs and their OI.

Global Mean Orthogonality Index (OI)

STC-1 0.6589
0.0270STC-2 0.0415

STC-3 234.2684

gray level values, their global mean should be close to zero
as seen from Table 1. Thus, for STC-1 and STC-2 zero local
envelope mean also implies zero global mean or vice versa.

Before demonstrating the final results of STI decomposi-
tion using FABEMD and BEMD, let us investigate the UE, LE,
and ME of the STI generated by using different approaches.
Figures 11(a) to 11(c) display the combined three-
dimensional (3D) mesh plots of 32 × 32-pixel regions taken
from the same locations of the original 256 × 256-pixel STI
and the envelopes obtained by FABEMD with Type-4 OSFW,
FABEMD with Type-1 OSFW, and BEMD with RBF-TPS
interpolation, respectively. Figure 11 manifests the effective-
ness of the proposed scheme of envelope estimation, which
can very well replace the interpolation-based envelope esti-
mation. Computation time of mean envelope estimation for
the 256× 256-pixel STI is also given in the parenthesis of the
corresponding caption of Figure 11. In this case, it is noticed
that the envelope estimation takes much shorter time with
FABEMD than with BEMD. In general, OSFW increases for
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Figure 9: (a) Component 1 (STC-1), (b) component 2 (STC-2), (c) component 3 (STC-3), (d) original synthetic texture image (STI)
obtained from addition of (a) to (c).

300250200150100500
−80

−40

0

40

80

(a)

300250200150100500
−80

−40

0

40

80

(b)

300250200150100500
50

100

150

200

250

300

(c)

300250200150100500
0

100

200

300

400

(d)

Figure 10: 1D diagonal intensity profiles of (a) STC-1, (b) STC-2, (c) STC-3, (d) STI.
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Figure 11: Mesh plots of 32× 32-pixel regions taken from the 256× 256-pixel STI and its UE, LE, and ME employing (a) FABEMD Type-4
OSFW (4.298072 seconds), (b) FABEMD Type-1 OSFW (3.717336 seconds), (c) BEMD RBF-TPS (193.124406 seconds).

the later source images and hence the corresponding compu-
tation times of the envelopes also increase for the later BIMFs
in the FABEMD process. On the other hand, the number of
extrema points decreases for the later source images or ITS-
BIMFs and therefore envelope estimation time decreases for
later BIMFs in the BEMD process. The overall computation
time in the BEMD process still remains much higher due to
the iterative surface-fitting problem from the scattered data.

Decomposition of the STI in Figure 9(d) is first con-
ducted by applying FABEMD having Type-4 OSFW with
MNAI = 1. The resulting BEMCs and the summation of the
BEMCs are displayed in Figure 12(a); and the corresponding
diagonal intensity profiles are displayed in Figure 12(b).
Figure 12 reveals the similarity of the BEMCs with the
original STCs very well.

As mentioned in Section 2.2, in any approach of BEMD
or FABEMD, the summation of the BEMCs will always return
the original image back, except for the truncation/rounding
error introduced at various steps of the process. This fact
can be well verified from comparison of the STI and the
summation of BEMCs in Figures 9, 10, and 12. Hence,
showing the summation of BEMCs is excluded in the
subsequent analyses of this paper.

The BEMCs of the STI obtained by applying FABEMD
with Type-4 OSFW are displayed in Figure 13(a) for MNAI =
5. The diagonal intensity profiles of the corresponding
images in Figure 13(a) are shown in Figure 13(b). Because
of the increased iterations, the stopping point SD for each
BIMF decreases. This helps in attaining a first BIMF (BIMF-
1), which is more similar to the original STC-1. But, due
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Figure 12: Decomposition of the STI using FABEMD with Type-4 OSFW (MNAI = 1) (a) BEMC-1 to BEMC-3 and summation of the
BEMCs, (b) diagonal intensity profiles of BEMC-1 to BEMC-3 and summation of the BEMCs.
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Figure 13: Decomposition of the STI using FABEMD with Type-4 OSFW (MNAI = 5) (a) BEMCs (b) diagonal intensity profiles of BEMCs.

to the over sifting, an additional component appears that
does not have any similarity to any of the original STCs.
By looking at BEMC-3 of this decomposition, it may be
inferred that this type of component may not have any
significance in actual image processing applications. In fact,
BEMC-3 and BEMC-4 may be combined to get a component
similar to STC-3, although BEMC-3 contains some higher
spatial scales compared to STC-3. Since the characteristics of
diagonal intensity profiles for various BEMCs of the STI are
now realized, displaying these profiles will be left out in the
subsequent analyses.

As a third example, the decomposed BEMCs employing
FABEMD with Type-1 OSFW for MNAI = 1 are shown
in Figure 14. Because Type-1 OSFW gives the minimum
possible width from the distance matrix, it causes an
increased level of sifting and thus a greater number of
BIMFs/BEMCs (e.g., six BEMCs in this case). This reveals the
fact that the selection of OSFW type can be made based on
the image properties and desired applications.

Application of FABEMD with Type-1 OSFW for MNAI =
5 generates seven BEMCs, which are displayed in Figure 15.
This decomposition also shows the effect of over sifting and
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Figure 14: BEMCs of the STI obtained by FABEMD with Type-1 OSFW (MNAI = 1).
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Figure 15: BEMCs of the STI obtained by FABEMD with Type-1 OSFW (MNAI = 5).

thus extraction of improper BEMCs in FABEMD. Due to the
property of order statistics filter-based envelope estimation
followed by a smoothing operation, over sifting in FABEMD
may cause improper BEMCs as well.

The STI is next decomposed using BEMD with RBF-TPS
interpolation to compare the results with the new FABEMD
method. The BEMCs resulting with MNAI = 1 are given in
Figure 16 and the BEMCs resulting with MNAI = 5 are given
in Figure 17. In both cases four BEMCs are generated, where
BEMC-3 and BEMC-4 together may become similar to the

STC-3. Due to the increased number of iterations, BEMC-1
appears better in Figure 17 than in Figure 16. In general, for
BEMD, more than one iteration may generate more accurate
BEMCs [3–5], although it is also better to limit the number of
iterations without satisfying SD threshold criteria to prevent
over sifting [6, 15, 21].

For additional performance assessment of the above six
modes of the FABEMD/BEMD algorithm, the decomposi-
tion data of the STI are presented in Tables 2 to 5. Table 2
displays the number of obtained BEMCs, time taken for
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Figure 16: BEMCs of the STI obtained by BEMD with RBF-TPS (MNAI = 1).
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Figure 17: BEMCs of the STI obtained by BEMD with RBF-TPS (MNAI = 5).

each algorithm, and OI for each case. In terms of time
taken and orthogonality index, FABEMD employing Type-
4 OSFW with MNAI = 1 appears to be the best choice
for decomposing the STI considered in this paper. From
Table 3 it is observed that one iteration of the process
for each BIMF results in a comparatively higher stopping
point SD. While higher SD implies nonzero local envelope
mean for the corresponding BIMF, in the spatial scale-
based decomposition, strict zero local envelope mean of a
BIMF is not essential, which has been already established
in the literature [6, 15]. This relaxation in turn allows
prevention of over sifting by reducing the number of
iterations, or not having a very low SD at the termination
of the iterations. For FABEMD, increased iterations may
cause erroneous envelopes and thus improper BIMFs, as
mentioned previously. Table 4 represents the global mean of
the BEMCs for all the FABEMD/BEMD modes applied to the
STI. Like the first two symmetric and bipolar original STCs,
the BIMFs are also expected to be symmetric and bipolar. For
this reason, zero global mean of a BIMF should also indicate
zero local mean or zero local envelope mean of it. In that
sense, except the residue, other BEMCs (i.e., BIMFs) having
nearly zero global mean can be considered good BIMFs.
Hence, the method that produces a BIMF with higher global
mean from the considered STI can be treated as poor. These
features again designate FABEMD employing Type-4 OSFW
with MNAI = 1 as a good choice for decomposition of the
STI of Figure 9(d). Although the number of extrema in the
source images for BEMD or FABEMD and the OSFW for
each BIMF in FABEMD does not indicate any performance
measure, these statistics are given in Tables 5 and 6 to provide
some additional details of the processes.

4.2. Analysis with real images

Three real images are analyzed, in this section, to further
investigate and compare the performance of FABEMD and
BEMD. The first image is a 256 × 256-pixel region of a
real texture image, D18, taken from the Brodatz texture
set and shown in Figure 18(a) [24]. The second image
is a subsampled 256 × 256-pixel Elaine image shown in
Figure 18(b), while the third image is a 200×228-pixel noisy
aurora image shown in Figure 18(c). The BEMCs generated
from the D18 image, Elaine image, and aurora image by
applying FABEMD with Type-1 OSFW and MNAI = 1
are shown in Figures 19, 21, and 23, respectively. On the
other hand, the BEMCs generated from these same images by
applying BEMD with RBF-TPS interpolation and MNAI =
10 are shown in Figures 20, 22, and 24, respectively.

Because there are no ground-truth BEMCs of the con-
sidered real images, intuitive analysis using visual assessment
is reported as the fundamental performance criterion in this
paper. It is obvious from the BEMCs of real images that the
FABEMD yields very well-defined BEMCs, which represent
the image features at various spatial scales similar to, or
better than, the BEMCs obtained from the BEMD method.
Unwanted distortion and other artifacts may accompany
the BEMCs when obtained via BEMD, which is apparent
from the figures of BEMCs obtained by BEMD and given
in Figures 20, 22, and 24; and thus they may not appear
to be suitable for further image processing tasks. Although
further evaluation of the texture decomposition can be
reported by showing it for true texture analysis (e.g., texture
classification, texture segmentation), achievement in having
less distortion in the BEMCs of the texture image obtained



Sharif M. A. Bhuiyan et al. 13

25020015010050
250

200

150

100

50

(a)
25020015010050

250

200

150

100

50

(b)
20015010050

220

180

140

100

60

20

(c)

Figure 18: (a) 256× 256-pixel region of Brodatz texture D18 [24], (b) 256× 256-pixel Elaine image, (c) 200× 228-pixel noisy aurora image.
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Figure 19: BEMCs of D18 obtained by FABEMD with Type-1 OSFW (MNAI = 1).

Table 2: Comparison among various FABEMD/BEMD for the STI in terms of total number of BEMCs, total time required, and
orthogonality index (OI).

FABEMD
Type-4
MNAI = 1

FABEMD
Type-4
MNAI = 5

FABEMD
Type-1
MNAI = 1

FABEMD
Type-1
MNAI = 5

BEMD RBF-TPS
MNAI = 1D = 0.01

BEMD RBF-TPS
MNAI = 5D = 0.01

Total no. of
BEMC

3 4 6 7 4 4

Total Time
(seconds)

14.698635 446.639196 70.289524 166.728798 205.511427 975.323369

OI 0.0342 0.0581 0.0735 0.0376 0.0988 0.664
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Figure 20: BEMCs of D18 image obtained by BEMD with RBF-TPS (MNAI = 10).
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Figure 21: BEMCs of Elaine image obtained by FABEMD with Type-1 OSFW (MNAI = 1).
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Table 3: Comparison among various FABEMD/BEMD for the STI in terms of achieved stopping point SD for each BIMF.

FABEMD
Type-4
MNAI = 1

FABEMD
Type-4
MNAI = 5

FABEMD
Type-1
MNAI = 1

FABEMD
Type-1
MNAI = 5

BEMD RBF-TPS
MNAI = 1D = 0.01

BEMD RBF-TPS
MNAI = 5D = 0.01

BIMF-1 0.98159 0.02355 0.98351 0.10443 0.98337 0.0067263

BIMF-2 0.99306 0.028749 0.99385 0.041544 0.99189 0.012556

BIMF-3 — 0.036908 0.99702 0.31663 0.90914 0.016638

BIMF-4 — — 0.99662 0.080695 — —

BIMF-5 — — 0.97419 0.050807 — —

BIMF-6 — — — 0.13184 — —

Table 4: Comparison among various FABEMD/BEMD for the STI in terms of global mean of the BEMCs.

FABEMD
Type-4
MNAI = 1

FABEMD
Type-4
MNAI = 5

FABEMD
Type-1
MNAI = 1

FABEMD
Type-1
MNAI = 5

BEMD RBF-TPS
MNAI = 1D = 0.01

BEMD RBF-TPS
MNAI = 5D = 0.01

BIMF-1 −0.1533 0.1332 0.0841 0.0652 0.4239 0.1035

BIMF-2 −0.9565 −0.4404 −0.0416 −0.0489 −0.6868 −0.1446

BIMF-3 — 8.2379 −0.1059 −0.1826 18.1854 9.9507

BIMF-4 — — −0.0171 −0.2247 — —

BIMF-5 — — 2.3059 0.1550 — —

BIMF-6 — — — 0.2183 — —

Residue 236.0785 227.0380 232.7433 234.9865 217.0462 225.0591

Table 5: Comparison among various FABEMD/BEMD for the STI in terms of number of extrema points in the source images for the
corresponding BIMF, and the residue.

FABEMD
Type-4
MNAI = 1

FABEMD
Type-4
MNAI = 5

FABEMD
Type-1
MNAI = 1

FABEMD
Type-1
MNAI = 5

BEMD RBF-TPS
MNAI = 1D = 0.01

BEMD RBF-TPS
MNAI = 5D = 0.01

BIMF-1 660 660 660 660 660 660

BIMF-2 98 161 196 420 78 84

BIMF-3 — 19 91 91 6 8

BIMF-4 — — 66 90 — —

BIMF-5 — — 8 80 — —

BIMF-6 — — — 12 — —

Residue 1 2 1 1 2 2

with FABEMD is clearly visible in Figure 19. On the other
hand, improvement of the BEMC quality for Elaine image
and aurora image is obvious with FABEMD. For example,
BEMCs of the Elaine image have no or less distortion, and
more clearly reveal the edges and other characteristic features
at different scales compared to the BEMCs obtained by
BEMD. Similarly, observation of Figures 23 and 24 reveals
that the noise is better separated into the first or first few
BIMFs in FABEMD method than in BEMD method. This in
turn should facilitate more efficient denoising of the aurora
image using FABEMD compared to using BEMD. Since the
obtained BEMCs are better in FABEMD, the complete BHHT

analyses of images employing those BEMCs will be more
effective. Preliminary studies on edge detection and noise
removal using FABEMD show promising and significantly
better performance compared to the analysis using BEMD,
besides showing a dramatic improvement in the computa-
tion time. Since the objective of this paper is to provide the
details of the FABEMD algorithm and its features, and to
propose the algorithm for all types of applications, wherever
BEMD-type processing may be used, the specific application-
wise performance is not reported here.

Envelope estimation in FABEMD, employing order-
statistics filters, is nearly independent of the image or texture
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Figure 22: BEMCs of Elaine image obtained by BEMD with RBF-TPS (MNAI = 10).
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Figure 23: BEMCs of noisy aurora image obtained by FABEMD with Type-1 OSFW (MNAI = 1).

pattern in terms of complexity and processing time; and the
envelopes closely follow the image. But envelope estimation
in the BEMD method, employing surface interpolation, is
highly dependent on the maxima or minima maps, while
the envelopes are not guaranteed to follow the image.
In some cases when there are very few points in the
maxima or minima maps, BEMD is prone to generate an
erroneous surface and thus erroneous BEMCs. On the other
hand, FABEMD is inherently free of boundary effects and
overshoot-undershoot problems, and thus it does not require
additional boundary processing. In Section 4.1, the time

required for BEMD-based decomposition has been found
to be higher than the time required for FABEMD-based
decomposition of a simple and uniform STI. But for real
images, the time taken by BEMD is even much higher than
that required by FABEMD, which has been experienced in the
example simulations presented in this section as well. While
FABEMD takes only a few minutes, BEMD takes many hours,
even for a very few iterations performed per BIMF. This
problem hinders the application of BEMD in many practical
cases. Adaptability achievable through the selection of OSFW
is another supplementary feature of the FABEMD process.
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Figure 24: BEMCs of noisy aurora image obtained by BEMD with RBF-TPS (MNAI = 10).

Table 6: Comparison among various FABEMD/BEMD for the STI
in terms of order statistics filter width (OSFW).

FABEMD
Type-4
MNAI = 1

FABEMD
Type-4
MNAI = 5

FABEMD
Type-1
MNAI = 1

FABEMD
Type-1
MNAI = 5

BIMF-1 13 13 9 9

BIMF-2 45 43 13 13

BIMF-3 — 183 15 19

BIMF-4 — — 33 29

BIMF-5 — — 121 43

BIMF-6 — — 255 97

Residue — — — 255

This feature allows various possible sets of BEMCs from the
same image, which in turn helps in optimizing the image
processing need by providing the opportunity of selecting an
appropriate set. Even though this type of adaptability is also
available from BEMD by means of selecting different types of
interpolation, the associated problems of interpolation may
not render the utilization of this method successfully.

Although various possibility of OSFW provides adapt-
ability, sometimes it may impose some difficulty in applying
the FABEMD algorithm; because, to achieve the desired
decomposition, a trial and error selection procedure may
have to be performed to find the required value for OSFW.
On the other hand, the requirement for manipulation of
wen for a BIMF, when the calculated value does not appear
larger than the previous BIMF mode, may impose addi-
tional complexity. Hence, reducing the above-mentioned
difficulties can be worked out in future. Also, applying the
FABEMD algorithm for various real image processing tasks
and reporting the methodologies and the corresponding

results individually with comparison to the results employing
other BEMD approaches will be interesting.

5. CONCLUSION

BEMD is a potential image processing algorithm. To boost
increased application of this algorithm for image processing
applications, a fast, time efficient, and effective method
is essential. This fact motivated the formulation of a fast
and adaptive BEMD, abbreviated as FABEMD, described in
this paper. In FABEMD, the envelope estimation method
of regular BEMD is modified by replacing the 2D surface
interpolation by an order-statistics-based filtering followed
by a smoothing operation. A number of window sizes can be
selected for the order statistics and smoothing filters, all of
which are data driven and thus making the process adaptive.
The simple change in the envelope estimation procedure
provides a tremendous enhancement of the algorithm in
terms of computation time. The proposed FABEMD has
been tested for decomposing various images, some of
which have been reported in this paper. Simulation results
demonstrate the usefulness of this novel FABEMD approach
for BEMD-based image decomposition. FABEMD enables
the decomposition of images with any dimensions in a very
short period of time, while the application of BEMD is still
limited to smaller images. Beside reducing the computation
time, this novel approach also ensures a more accurate
estimation of the BIMFs in some cases. It is believed that
FABEMD can be a perfect alternative to the regular BEMD
and will play a very significant role in this area.
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decomposition and its algorithms,” in Proceedings of IEEE-
EURASIP Workshop on Nonlinear Signal and Image Processing
(NSIP ’03), Grado, Italy, June 2003.

[14] C. Junsheng, Y. Dejie, and Y. Yu, “Research on the intrinsic
mode function (IMF) criterion in EMD method,” Mechanical
Systems and Signal Processing, vol. 20, no. 4, pp. 817–824, 2006.

[15] M. Shen, H. Tang, and B. Li, “The modified bidimensional
empirical mode decomposition for image denoising,” in
Proceedings of the 8th IEEE International Conference on Signal
Processing (ICSP ’06), vol. 4, Beijing, China, November 2007.

[16] Y. Washizawa, T. Tanaka, D. P. Mandic, and A. Cichocki,
“A flexible method for envelope estimation in empirical
mode decomposition,” in Proceedings of the 10th International
Conference on Knowledge-Based Intelligent Information and
Engineering Systems (KES ’06), B. Gabrys, R. J. Howlett, and
L. C. Jain, Eds., pp. 1248–1255, Bournemouth, UK, October
2006.

[17] R. Srinivasan, R. Rengaswamy, and R. Miller, “A modified
empirical mode decomposition (EMD) process for oscillation

characterization in control loops,” Control Engineering Prac-
tice, vol. 15, no. 9, pp. 1135–1148, 2007.

[18] Z. K. Peng, P. W. Tse, and F. L. Chu, “An improved Hilbert-
Huang transform and its application in vibration signal
analysis,” Journal of Sound and Vibration, vol. 286, no. 1-2, pp.
187–205, 2005.

[19] B. Xuan, Q. Xie, and S. Peng, “EMD sifting based on
bandwidth,” IEEE Signal Processing Letters, vol. 14, no. 8, pp.
537–540, 2007.

[20] Z. Liu, “A novel boundary extension approach for empirical
mode decomposition,” in Proceedings of the International
Conference on Intelligent Computing (ICIC ’06), D. Huang,
K. Li, and G. W. Irwin, Eds., pp. 299–304, Kunming, China,
August 2006.

[21] B. Shen, “Estimating the instantaneous frequencies of a
multicomponent AM-FM image by bidimensional empirical
mode decomposition,” in Proceedings of IEEE International
Workshop on Intelligent Signal Processing (WISP ’05), pp. 283–
287, Faro, Portugal, September 2005.

[22] S. Kizhner, K. Blank, T. Flatley, N. E. Huang, D. Petrick, and P.
Hestnes, “On certain theoretical developments underlying the
Hilbert-Huang transform,” in Proceedings of IEEE Aerospace
Conference, p. 14, Big Sky, Mont, USA, March 2006.

[23] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Pearson Education, Upper Saddle River, NJ, USA, 2nd edition,
2002.

[24] P. Brodatz, Textures: A Photographic Album for Artists and
Designers, Dover, New York, NY, USA, 1966.


	Introduction
	BEMD Overview
	Properties of IMF/BIMF
	Steps of BEMD
	Issues related to BEMD

	FABEMD algorithm details
	Detection of local extrema
	Generating upper and lower envelopes
	Determining window size for order-statistics filters
	Applying order statistics and smoothing filters
	Illustration of upper and lower envelopes estimation


	Simulation results
	Analysis with synthetic texture image
	Analysis with real images

	Conclusion
	References

