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Bivariate Empirical Mode Decomposition
Gabriel Rilling, Patrick Flandrin, Fellow, IEEE, Paulo Gonçalves, and Jonathan M. Lilly

Abstract—The empirical mode decomposition (EMD) has been
introduced quite recently to adaptively decompose nonstationary
and/or nonlinear time series [1]. The method being initially limited
to real-valued time series, we propose here an extension to bivariate
(or complex-valued) time series that generalizes the rationale un-
derlying the EMD to the bivariate framework. Where the EMD
extracts zero-mean oscillating components, the proposed bivariate
extension is designed to extract zero-mean rotating components.
The method is illustrated on a real-world signal, and properties
of the output components are discussed. Free Matlab/C codes are
available at http://perso.ens-lyon.fr/patrick.flandrin.

Index Terms—Bivariate time series, complex-valued signals, em-
pirical mode decomposition.

I. INTRODUCTION

I N its original formulation [1], the empirical mode decompo-
sition (EMD) can only be applied to real-valued time series.

The purpose of this letter is to introduce a new extension of the
EMD destined to handle bivariate (or complex-valued) time se-
ries. Note however that not all bivariate time series can be pro-
cessed by this new method but only those where the two com-
ponents can be assimilated to Cartesian coordinates of a point
moving in a two-dimensional space. In particular, the meaning
of the signal should not depend on the choice of such Cartesian
coordinates. It is worth noticing that two other bivariate exten-
sions have been introduced very recently [2], [3]. The first one
is very different from the one we propose here since it clev-
erly uses the original EMD to decompose bivariate time series,
based on properties of the complex field, while the second one
and ours directly adapt the rationale underlying the EMD to the
bivariate framework and might be extensible to more dimen-
sions. As will be seen later, the algorithm in [3] turns out to
be a simplified version of one of the algorithms proposed in this
letter. The communication is organized as follows. The bivariate
extension is introduced in Section II. Section III is about the
components of the resulting decomposition, and an illustration
is proposed in Section IV. Additionally, free Matlab/C codes
corresponding to the proposed algorithms are made available at
http://perso.ens-lyon.fr/patrick.flandrin along with small scripts
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aimed at reproducing the figures and other EMD-related soft-
ware.

II. FROM UNIVARIATE EMD TO BIVARIATE EMD

A. Classical EMD

Basically, the EMD considers a signal at the scale of its local
oscillations. The main idea of EMD is then to formalize the idea
that, locally: “signal fast oscillations superimposed on slow
oscillations.” Looking at a single oscillation (defined, e.g., as
the signal between two consecutive local minima), the EMD is
designed to define a local “low frequency” component as the
local trend , supporting a local “high frequency” compo-
nent as a zero-mean oscillation or local detail , so that we
can express as

(1)

By construction, is an oscillatory signal, and, if it is fur-
thermore required to be locally zero-mean everywhere, it corre-
sponds to what is referred to as an intrinsic mode function (IMF)
[1]. Practically, this primarily implies that all its maxima are
positive and all its minima are negative. On the other hand, all
we know about is that it locally oscillates more slowly
than . We can then apply the same decomposition to it,
leading to , and, recursively applying
this on the , we get a representation of of the form

(2)

The discrimination between “fast” and “slow” oscillations is
obtained through an algorithm referred to as the sifting process
[1], which iterates a nonlinear elementary operator on the
signal until some stopping criterion is met. Given a signal ,
the operator is defined by the following procedure.

1) Identify all extrema of .
2) Interpolate (using a cubic spline) between minima (resp.

maxima), ending up with some “envelope” (resp.
).

3) Compute the mean .
4) Subtract from the signal to obtain .
If the stopping criterion is met after iterations of the sifting

process, the local detail and the local trend are defined as
and .

B. Envelopes in Three Dimensions

The EMD is based on the intuitive notion of “oscillation” that
naturally relates to local extrema. However, the notion of oscil-
lation is much more confusing when the analyzed data are in-
trinsically bivariate, and it is unclear how to define and interpret
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local extrema. What is rather clear, on the other hand, is the no-
tion of rotation, which moreover is arguably a two-dimensional
extension of the usual notion of a univariate oscillation. There-
fore, the basic idea underlying the proposed bivariate EMD is
to formalize the following idea: “bivariate signal fast rotations
superimposed on slower rotations.” As with the classical EMD,
it is clear that the adopted viewpoint is a priori rather restric-
tive as, e.g., a white noise signal is not meaningfully treated as
a sum of oscillations (or rotations). Still this does not prevent
the algorithm from producing a decomposition for any signal,
as with the univariate EMD.

In order to separate the more rapidly rotating component from
slower ones, the idea is once again to define the slowly rotating
component as the mean of some “envelope.” Yet the envelope
is now a three-dimensional tube that tightly encloses the signal
[see Fig. 1(b)]. Given this, the slowly rotating portion of the
signal at any point in time can then be defined as the center of
the enclosing tube. To this end, only a given number of points on
the tube’s periphery are considered, each one being associated
with a specific direction. If only four points are used, these can
be the extreme points in the directions top, bottom, left, and right
(see Fig. 2). In practice, the top point, for example, is uniquely
defined only when the signal reaches a local maximum in the
vertical direction and is therefore tangent to the top of the tube.
Between such characteristic moments in time, the top point is
then simply defined using interpolation, ending up with the “en-
velope” associated with the upwards direction [cf the black thick
lines in Fig. 1(b)]. Now, given some set of points on the tube pe-
riphery at a given instant in time, there are at least two ways to
define their mean:

1) barycenter of the four points, considering each to have unit
mass [see Fig. 2(a)];

2) intersection of two straight lines, one being halfway
between the two horizontal tangents and the other one
halfway between the vertical ones [see Fig. 2(b)].

In practice, however, the second scheme may be preferred be-
cause it is naturally more robust to sampling errors. More pre-
cisely, the reason for this is that the envelope points are defined
up to an uncertainty that is not isotropic. Indeed, the order of
magnitude of this uncertainty can be estimated through a Taylor
expansion, which results in an uncertainty jointly proportional
to and to the sampling period. Thus, the uncertainty is
greatest in the direction locally tangent to the signal and much
smaller (of second order) in the orthogonal direction. As the
second scheme only uses information from the orthogonal di-
rection, it is naturally more accurate, especially when the signal
is sampled sparsely with respect to its period. Note that sampling
effects shall not be overlooked since the original EMD has been
shown to be very sensitive to sampling [4].

The desired goal concerning the interpolation is the same
as for the classical EMD: a smooth interpolation with as few
“spurious bumps” as possible. Among common interpolation
schemes, this calls for cubic spline as it is well known for its
minimum curvature property, and, in practice, it is still consid-
ered the best interpolation scheme for the EMD [5].

In the preceding discussion, we have limited ourselves to four
directions for the sake of simplicity, but there is of course no
such limitation in practice. Moreover, a large number of direc-
tions may be interesting insofar as it reduces the dependence of

Fig. 1. Principle of the bivariate extensions. (a) Composite rotating signal. (b)
Signal enclosed in its 3-D envelope. The black thick lines stand for the envelope
curves that are used to derive the mean. (c) Rapidly rotating component. (d)
More slowly rotating component corresponding to the mean of the tube in (b).

Fig. 2. Definition of the mean of the envelope for each algorithm. The accura-
cies of the estimation of the sampling points and of their mean are represented
schematically as the thick lines of variable length under each point (the provided
script allows to easily test other configurations).

the final decomposition with respect to rotations of the spatial
coordinates. For convenience of the presentation, the bivariate
time series in the following will be treated as complex-valued
time series. Given a set of directions ,
the proposed bivariate extensions are defined by the same al-
gorithm as the basic EMD, only with new sifting elementary
operators and corresponding, respectively, to the al-
gorithms Algo. 1 and Algo. 2. The algorithm proposed in [3] is
the same as Algo. 1 with directions.
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Furthermore, the second algorithm can be greatly simplified
if we notice that the set that is interpolated at step 4 is in fact
included in the plane containing the time axis and direction .
Thus, the interpolation that is performed is very similar to that
in the original EMD sifting. Hence, if the number of considered
directions is an even number, the second algorithm can be ex-
pressed in terms of the sifting operator for the univariate EMD
(see Algo. 3). From a theoretical viewpoint, this is interesting as
it allows to study the behavior of the algorithm in light of what
is already known about the classical EMD.

III. BIVARIATE INTRINSIC MODE FUNCTIONS

The proposed EMD bivariate extensions have been designed
so that signals rotating around zero are admissible outputs. As
this is a rather vague notion, the purpose of this section is to
clarify what signals the algorithms actually consider admissible
outputs, that is, we ask what sort of signal is nearly a fixed
point of the sifting operator

or (3)

For the sake of simplicity, we will only address the case of
simple periodic solutions, which are convenient to describe
while still being rather general. Indeed, the method operating
at a local scale, its behavior on signals whose properties evolve
slowly with respect to the local period is very similar to its
operation on exactly periodic signals of constant amplitude.
Moreover, signals will here also be considered infinitely con-
tinuously differentiable, since the purpose of this section is
to provide insight into some possible solutions rather than to
make an exhaustive study.

What we find from various simulations is that both algo-
rithms generally accept two types of solutions, the first one cor-
responding to rotating signals as intended and the second one to
cases where the method actually fails to extract rotating compo-
nents and therefore outputs signals that wander around zero in

a more complicated way. It is worth noting that examples of the
second type of solutions are generally encountered when the an-
alyzed signal does not clearly contain rotating components, as
in, e.g., a complex-valued white Gaussian noise signal. More-
over, it seems that these non-rotating solutions almost never
occur when the analyzed signal is analytic (or anti-analytic). On
the other hand, solutions from the first type are signals in which
the local sense of rotation never changes. The sense of rotation
can be defined, e.g., from the sense of the vector product of the
velocity and acceleration vectors

(4)

Alternatively, if the signal rotates in a counterclockwise fashion
(and ), this exactly means that the signal’s
derivative can be expressed as

(5)

Finally, periodic signals satisfying (5) are not necessarily fixed
points of the sifting operators (3). One of the reasons for this is
that there is no condition specifying that they are rotating around
zero yet. In order to clarify what is meant by “around zero,” we
can consider the very simple case in which the signal performs
only one full rotation around zero per period (

, where is the period). This property simplifies greatly the
study, as one can easily show that it implies there is only one
maximum per period at step 2 in the algorithms. Therefore, all
envelope curves are in fact constants with respect to time, which
allows one to derive the mean analytically. The envelope curve
associated with the direction is then equal to the
maximum signal value in that direction, where the phase of the
signal’s derivative is . Thus, the mean for
the first algorithm reads

(6)

In the limit where the number of directions tends to infinity, this
results in

(7)

which is simply the mean of the signal over a period weighted
by , where the weighting conveys the fact that
the distribution of sampling points on the tube section is denser
where the curvature is larger. Likewise, the same reasoning for
the second algorithm results in

(8)
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Fig. 3. A signal and its bivariate empirical mode decomposition. The real parts are plotted as solid blue lines, and the imaginary parts as dashed black lines.
The decomposition has been obtained with the second algorithm using 64 directions and 10 iterations to extract each component. Portions where components are
rotating can be identified by a constant phase shift between the real and imaginary parts: if these are in quadrature, then the signal is rotating circularly; other phase
shifts correspond to elliptic rotations.

and hence, since

(9)

Thus, in this very simple case, the mean is in fact the same for
both algorithms, and therefore, such a simple signal is a fixed
point of both sifting operators iff the integral (7) is close to zero.

More generally, the outputs of the two proposed algorithms
are very similar when the data clearly contain rotating compo-
nents, but they may differ significantly when they fail to extract
rotating components. Notice, though, that rarely one method
succeeds in retrieving rotating components when the other one
fails.

IV. ILLUSTRATION

A typical application of the proposed algorithms is proposed
in Fig. 3. The data are a position record from an acoustically
tracked, neutrally buoyant subsurface oceanographic float,
one of a number deployed in the eastern subtropical North
Atlantic Ocean in order to track the motion of dense salty water
flowing out from the Mediterranean Sea during the “Eastern
Basin” experiment [6]. The data are available online from the
World Ocean Circulation Experiment Subsurface Float Data
Assembly Center (WFDAC) at http://wfdac.whoi.edu. Looping
trajectories are indicative of intense swirling currents around
an isolated packet of Mediterranean Sea water. Such structures,
called “coherent vortices,” are frequently observed in the ocean
[7] and are more generally a ubiquitous feature of rotating tur-
bulent fluids [8]. Applied to such signals that a priori contain
meaningful rotating components, the output of the bivariate

extensions typically provide the given decomposition, where
the rotations that were apparent in the original signal have been
isolated in separate components. As mentioned earlier, though,
not all components are rotating but primarily the first two ones,
which correspond to the presumed coherent vortex. In this
example, however, we do not precisely know what information
can be extracted from the decomposition yet, but we expect
the large-scale non-rotating components to reveal useful infor-
mation regarding the background fluctuations determining the
vortex position while the rotating components can a priori be
used to extract finer informations, such as amplitude, angular
frequency, etc. Such advanced study of the rotating components
has already been performed using wavelet ridges to extract the
coherent vortex signal [9]. A comparative study of the EMD
bivariate extensions for similar purposes is currently under
investigation.
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