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7.2.3 Noise Cancellation

Another application of Wiener filtering is the problem referred to as noise cancellation. As
in the filtering problem, the goal of a noise canceller is to estimate a signal d(n) from a
noise corrupted observation

x(n) =d(n) +vi(n)

that is recorded by a primary sensor. However, unlike the filtering problem, which requires
that the autocorrelation of the noise be known, with a noise canceller this information
is obtained from a secondary sensor that is placed within the noise field as illustrated in
Fig. 7.8. Although the noise measured by this secondary sensor, v2(n), will be correlated
with the noise in the primary sensor, the two processes will not be equal. There may be a
number of reasons for this, such as differences in the sensor characteristics, differences in the
propagation paths from the noise source to the two sensors, and leakage of the signal d(n)
into the measurements made by the secondary sensor. Since v1(n) # vy(n) itis not possible
to estimate d (n) by simply subtracting v, (n) from x (n). Instead, the noise canceller consists
of a Wiener filter that is designed to estimate the noise v;(n) from the signal received by
the secondary sensor. This estimate, 9; (1), is then subtracted from the primary signal x(n),
to form an estimate of d(n), which is given by

d(n) = x(n) — d1(n)

An example of where such a system may be useful is in air-to-air communications between
pilots in fighter aircraft or in air-to-ground communications between a pilot and the control
tower. Since there is often a large amount of engine and wind noise within the cockpit of
the fighter aircraft, communication is often a difficult problem. However, if a secondary
microphone is placed within the cockpit of an aircraft, then one may estimate the noise that
is transmitted when the pilot speaks into the microphone, and subtract this estimate from
the transmitted signal, thereby increasing the signal-to-noise ratio.

The Wiener-Hopf equations for the noise cancellation system in Fig. 7.8 may be derived
as follows. With v,(n) the input to the Wiener filter that is used to estimate the noise vy (n),
the Wiener-Hopf equations are

Ry, w =1y

where R,, is the autocorrelation matrix of v (n) and ry,,, is the vector of cross-correlations
between the desired signal v;(n) and Wiener filter input, v,(n). For the cross-correlation

Signal ) x(n) =dm) +vi(n) - e(n) = x(n) — 01(n)
Source B + ¥
v(n) \
Noise Wiener
Source > Filter
v(n) vy (n) 51(n)

Figure 7.8 Wiener noise cancellation using a secondary sensor to measure the additive noise v, (n).
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between v (n) and vo(n) we have

Fon(®) = E{vi(m)v;(n — b} = E{[x(m - d(m)]v (@ — k)}

= E{x(mui(n — B} — E{d()v;(n — b)) (7.21)

If we assume that vy () is uncorrelated with d(n), then the second term is zero and the
cross-correlation becomes

o () = E{x(m)v;(n — k)} = reu, (%) (7.22)
Therefore, the Wiener-Hopf equations are
Ry, W = Ty, ' (7.23)

We will now look at a specific example.

Example 7.2.6 Noise Cancellation
Suppose that the desired signal d(n) in Fig. 7.8 is a sinusoid
d(n) = sin(nwy + ¢)

with wg = 0.057, and that the noise sequences v1(n) and vo(n) are AR(1) processes that
are generated by the first-order difference equations

vi(n) = 0.8vi(n — 1) + ()
vy (n) = —0.6u(n — 1) +g(n)

where g(n) is zero-mean, unit variance white noise that is uncorrelated with d (). Shown
in Fig. 7.9a is a plot of 200 samples of x(n) = d(n) + v1(n) with the desired signal, d{(n),
indicated by the dashed line, and shown in Fig. 7.9b is the reference signal v, (n) that is
used to estimate vy (n). Estimating r, (k) using the sample autocorrelation

X 1 V=l
Foy) = = Y va(n)va(n — k)
N n=0
and 7y, (k) using the sample cross-correlation

N-1

1
Frn®) =5 2% (mva(n — k)
0

FIR Wiener filters of orders p = 6 and p = 12 were found by solving Eq. (7.23). Using
these filters to estimate vy (n), the sinusoid d(n) was then estimated by subtracting D1(n)
from x (n). The results are shown in Figs. 7.9¢ and d.

In typical applications, d(n) and v (n) are often found to be non-stationary processes.
Therefore, the use of a linear shift-invariant Wiener filter will not be optimum. Howeyver, as
* we will see in Chapter 9, an adaptive Wiener filter that has filter coefficients that are allowed

to vary as a function of time may provide effective noise cancellation in nonstationary
environments.
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Figure 7.9 Noise cancellation example. (a) Noise corrupted sinusoid, (b) Reference signal
used by secondary sensor, (c) Output of sixth-order Wiener noise canceller, (d) Output of
twelth-order Wiener noise canceller.
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C7.2. In thi¢ exercise we look at the noise cancellation problem considered in Exam-
ple 7.2.6. Let :

x(n) =d(n) +gn)
where d (n) is the harmonic process
d(n) = sin(nwy + ¢)

with wy = 0.057 and ¢ is a random variable that is uniformly distributed between —m and
m. Assume that g(n) is unit variance white noise. Suppose that a noise process vz (n) that is
correlated with g(n) is measured b}} a secondary sensor. The noise v, (n) is related to g(n)

by a filtering operation, 0.9 - v {v=i) & 5(‘/\4']

va(n) = 0.8v,(m) -5 t)
(a) Using MATLAB, generate 500 samples of the processes x () and vy (n).

(b) Derive the Wiener-Hopf equations that define the optimum pth-order FIR filter for
estimating g(n) from v, (n).

(c) Using filters of order p = 2, 4, and 6, design and implement the Wiener noise cancella-
tion filters. Make plots of the estimated process g (n) and compare the average squared
errors for each filter.

(d) In some situations, the desired signal may leak into the secondary sensor. In this case,
the performance of the Wiener filter may be severely compromised. To see what effect
this has, suppose the input to the Wiener filter is

vo(n) = v2(n) + eed(n)

where v, (n) is the filtered noise defined above. Evaluate the performance of the Wiener
noise canceller for several different values of & for filter orders of p = 2, 4, and 6.
Comment on your observations.





