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In this problem we will compare LMS and RLS for adaptive linear prediction. MR
MNP 1<t x(n) be a process that is generated according o the difference equation

x(n) = 1.2728x(n — 1) = 0.81x(n — 2) + v(n}

where ¥(s) is unit variance white Ganssian noise. The adaptive lincar predictor will be of
the form

£(n) = wp(x(n — 1) + wy(2)x(n —2)

(2) Implement an RLS adaptive predictor with A = 1 (growing window RLS) and plot
wa (k) versus n for k = 1,2. Compare the convergence of the coefficients w, (k) to
those that are obtained using the LMS algorithm for several different values of the step

size W,

(b) Make a plot of the learning curve for RLS and compare itto the LMS learing curve 398 5(:'{?
Example 9.2.2 on how to plot learning curves). Comment on the excess mean-square
error for RLS and discuss how it compares to that for LMS.

(¢) Repeat part (b) for exponential weighting factors of A = 0.99, 0.95,0.92, 0.90 and
discuss the trade-offs involved in the choice of A.

(d) Modify the m-file for the RLS algotithm to implement a sliding window RLS algorithm.
(e) Letx(n) be generated by the time-varying difference equation
() = a,(Dx{p — )= 0.81x(n ~2) +v(n)

where u(n) Is unit variance white noise and a, (1) is a time-varying coefficient given by

12728 ; O0=<n<30
an(l} = 0 ; 50 <n <100

12728 ; 100 <n =200

Compare the effectiveness of the LMS, growing window RLS, exponentially weighted
RLS, and sliding window RLS algorithms for adaptive linear prediction. What approach
would you propose to use for linear prediction when the process has step changes in its
parameters?
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Example 9.2.2 LMS Misadjustment

In this example, we look at the learning curves for the adaptive linear predictor considerec
in Example 9.2.1, and evaluate the excess mean-square error and the misadjustment for
different step sizes. Since the learning curve is a plot of £(n) = E{|e(n)|*} versus n
we may approximate the learning curve by averaging plots of |e(n)|? that are obtained by
repeatedly implementing the adaptive predictor. For example, implementing the adaptive
predictor K times, and denoting the squared error at time 7 on the kth trial by }e (r2) 12, we
have

K
%O=EWMW}=%§ZMMW
k=1

With K = 200, an initial weight vector of zero, and step sizes of i = 0.02 and p = 0.004,
these estimates of the learning curves are shown in Fig. 9.11. One property of the LMS
algorithm that we are able to observe from these plots is that, when the step size is decreased,
the convergence of the adaptive filter to its steady-state value is slower, but the average
steady-state squared error is smaller.

We may estimate the steady-state mean-square error from these plots by averaging S(n)
over n after the LMS algorithm has reached steady-state. For example, with

| Lo .
§(00) = 75 2 Eflel’}
n=901 .
we find
. 1.1942 ;o for i =0.02
£(c0) =
1.0155 ; for u =0.004

We may compare these results to the theoretical steady-state mean-square error using

Eq. (9.43). With £qin = 1. and eigenvalues A, = 9.7924 and A; = 1.7073 (see Exam-
ple 9.2.1), it follows that

1.1441 ; for u=0.02
§(c0) =
1.0240 ;. for u =0.004

which is in fairly close agreement with the estimated values given above.
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Figure 9.11 Approximations to the learning curves for a

second-order LMS adaptive linear predictor using step sizes
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Example 9.2.1 Adaptive Linear Prediction Using the LMS Algorithm

Let x(n) be a second-order autoregressive process that is generated according to the differ-
ence equation
x(n) =1.2728x(n — 1) — 0.81x(n — 2) + v(n) (9.42)
where u(n) is unit variance white noise. As we saw in Section 7.3.4, the optimum causal
linear predictor for x (i) is
x(n) =12728x(n — 1) — 0.81x(n — 2)
However, in order to design this predictor (i.e., to know that the optimum predictor coeffi-

cients are 1.2728 and —0.81) it is necessary to know the autocorrelation sequence of x(n).
Therefore, suppose we consider an adaptive linear predictor of the form:

) =w,Wxn— 1)+ w,2x(n —2)
as shown in Fig. 9.9. With the LMS algorithm, the predictor coefficients w, (k) are updated
as follows:
Wy+1 (k) = w, (k) + ,Uve(”-)X*(” -k

If the step size w is sufficiently small, then the coefficients w, (1) and w, (2} will converge
in the mean to their optimum values, w(1) = 1.2728 and w(2) = —0.81, respectively. Note
that the prediction error is
e(n) = x(n) — X(m) = [1.2728 = w, (D ]x(n — 1) + [=0.81 = w, () ]x (1 — 2) + v(n)
. Therefore, when w, (1) = 1.2728 and w,, (2) = —0.81. the error becomes ¢(n) = v (1), and
the minimum mean-square error is*
Snin = 0',_-2 =1

Although we might expect the mean-square error E[|e(n)|3} to converge to &nin aS W,
converges (o w. as we will soon discover. this is not the case.

To see how this adaptive linear predictor behaves in practice. suppose that the weight
vector is initialized to zero. wg = 0. and that the step size is ¢t = 0.02. Shown in Fig. 9.10a

3This may also be shown by evaluating the expression for the minimum mean-square error given in Eq, (9.26).
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Figure 9.9 An adaptive filter for linear prediction.
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Figure 9.10 Performance of a two-coefficient LMS adaptive linear predictor. The trajectories of the
predictor coefficients are shown for step sizes of (a) i = 0.02 and (b) . = 0.004 with the correct
values indicated by the dashed lines. A plot of the squared error; ¢*(n), is shown in (c) and (d) for
step sizes of u = 0.02 and u = 0.004, respectively.

are the trajectories of w, (1) and w, (2) versus n. As we see, there is a great deal of fluctuation
in the weights, even after they have converged to within a neighborhood of their steady-state
values. By contrast. shown in Fig. 9.10b are the trajectories of the predictor coefficients for a
step size 4 = 0.004. Compared to a step size of u = 0.02, we see that, although the weights
take longer to converge. the trajectories are much smoother, illustrating the basic trade-off





