4.21. A. The impulse-train signal $x_s(t)$ has spectrum $X_s(j\Omega)$ given by

$$X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X \left[j\left(\Omega - k \frac{2\pi}{T_1}\right) \right].$$

An example is shown below.

We will have $x_r(t) = x_c(t)$ provided $T_1 \le \frac{\pi}{\Omega_0}$.

- B. We will have $x_o(t) = x_c(t)$ under any of the following circumstances:
 - 1. As illustrated above, $T_2 \leq \frac{\pi}{\Omega_0}$.
 - 2. As illustrated below, $\frac{1.5\pi}{\Omega_0} \leq T_2 \leq \frac{2\pi}{\Omega_0}$.

3. As illustrated below, $T_2 = \frac{3\pi}{\Omega_0}$.

The frequency response of the filter that is needed to recover $x_c(t)$ is shown below.

4.23. Appears in: Fall04 PS1, Fall02 PS1.

Problem

Note that in OSB and 6.341 Ω denotes continuous-time frequency and ω denotes discrete-time frequency.

Figure 1 shows a continuous-time filter that is implemented using an LTI discrete-time filter with frequency response $H(e^{j\omega})$.

- (a) If the CTFT of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Figure 2 and $\omega_c = \frac{\pi}{5}$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$ for each of the following cases:
 - (i) $1/T_1 = 1/T_2 = 2 \times 10^4$
 - (ii) $1/T_1 = 4 \times 10^4$, $1/T_2 = 10^4$
 - (iii) $1/T_1 = 10^4$, $1/T_2 = 3 \times 10^4$
- (b) For $1/T_1 = 1/T_2 = 6 \times 10^3$, and for input signals $x_c(t)$ whose spectra are bandlimited to $|\Omega| < 2\pi \times 5 \times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which the overall system is LTI? For this maximum choice of ω_c , specify $H_c(j\Omega)$.

Figure 1: Problem.

Figure 2: Problem, part (a).

Solution from Fall04 PS1

(a) (i) $1/T_1 = 1/T_2 = 2 \times 10^4$

 -2π

 2×10^4 $X(e^{j\omega})$

 $\pi/2$

 -2π

 $-\pi/2$

Ω

(ii) $1/T_1 = 4 \times 10^4$, $1/T_2 = 10^4$

 $-6\pi\times10^3$

 $6\pi\times10^3$

(b) From the figure below, it can be seen that the only portion of the spectrum which remains unaffected by the aliasing is $|\omega| < \pi/3$. So if we choose $\omega_c < \pi/3$, the overall system is LTI with a frequency response of

$$H_c(j\Omega) = \begin{cases} 1 & \text{for } |\Omega| < \omega_c \times 6 \times 10^3 \\ 0 & \text{otherwise.} \end{cases}$$

Solution from Fall02 PS1

(a) (i) $1/T_1 = 1/T_2 = 2 \times 10^4$

(ii) $1/T_1 = 4 \times 10^4$, $1/T_2 = 10^4$

 $\pi/4$

 $-\pi/4$

 Ω

(b) From the figure below, it can be seen that the only portion of the spectrum which remains unaffected by the aliasing is $|\omega| < \pi/3$. So if we choose $\omega_c < \pi/3$, the overall system is LTI with a frequency response of

$$H_c(j\Omega) = \begin{cases} 1 & \text{for } |\Omega| < \omega_c \times 6 \times 10^3 \\ 0 & \text{otherwise.} \end{cases}$$

4.31. (a)
$$x_s(t) = x_c(t)s(t) \Rightarrow X_s(j\Omega) * s(j\Omega)$$

(b) Since $H_d(e^{j\omega})$ is an ideal lowpass filter with $\omega_c=\frac{\pi}{4}$, we don't care about any signal aliasing that occurs in the region $\frac{\pi}{4}\leq\omega\leq\pi$. We require:

$$\frac{2\pi}{T} - 2\pi \cdot 10000 \geq \frac{\pi}{4T}$$

$$\frac{1}{T} \geq \frac{8}{7} \cdot 10000$$

$$T \leq \frac{7}{8} \times 10^{-4} \text{sec}$$

Also, once all of the signal lies in the range $|\omega| \le \frac{\pi}{4}$, the filter will be ineffective, i.e., $\frac{\pi}{4} \le T(2\pi \times 10^4)$. So, $T \ge 12.5 \mu \text{sec}$.

(c)

$$\Omega = \frac{\omega}{T} \Rightarrow \Omega_{c} = \frac{\pi}{4T}$$

$$\Omega_{c}$$

$$\text{slope} = \pi/4$$

$$8/7 \times 10^{4}$$

$$8 \times 10^{4}$$

$$1/T$$

4.62. Since we want $W(e^{j\omega})$ to equal $X(e^{j\omega})$, then $H(e^{j\omega})$ must compensate for the drop offs in $H_{aa}(j\Omega)$.

