Student name:

Student number:

1. An image f(x,y) has the following 1 level orthonormal Haar wavelet transform.

20	10	16	7
-10	5	4	3
17	6	3	-1
-2	0	2	0

You are asked to apply EZW coding in compressing the image under the following assumptions

- We have a budget of 35 bits.
- We can send the initial threshold value T_0 separately without effecting the bit budget
- We use the following codes

Zerotree root zr 00
Significant positive sp 11
Significant negative sn | 21 | 0 |
Isolated zero iz | 20 | 0 |

Show all the required steps of the EZW coding and the final transmitted bitstream. (3 points)

- 2. Continuing question 1, calculate and compare the original and the 16 bit reconstructed images (3 points)
- 3. For the wavelet transform of question 1, allocate bits to the 4 sub-bands in an optimum way so that the overall bit count is Rc=1 bit/pixel. (3 points)
- 4. What are some of the differences between the H.261 and H.263 Video standards? (1 point)
- 5. What forms of redundancies are explored (removed) in most video compression standards?. (1 point)
- 6. In a 5 level 2-D Wavelet transform NxN what is the size (resolution) of the largest subband and what is the size (resolution of the smallest sub-band? What is the overall number of sub-bands? (1 point)
- 7. What is asymmetrical coding in video encoding? Name at least one asymmetrical encoder and one symmetrical encoder. (1 point)
- 8. What is the number of bits per second required by a typical colour video application? Please derive result explicitly. (2 points)