FCE462 — Lecture 13

JPEG Hierarchical Mode



JPEG Hierarchical Mode

* An image is broken down into a number of sub-images called
“frames”.

* A frame is a collection of one or more scans.
* The first frame creates a low resolution version of the image.
* The remaining frames refine the image by increasing the resolution.

* High complexity and larger amount of data to be transmitted.
* Not in general use.



JPEG Hierarchical Mode
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JPEG Progressive Mode

* The image is encoded in successive multiple scans and decoded
progressively (quality increases as more and more high frequency content
is added in decoded image)

* Spectral selection example
* Encode DC and first AC coefficients
* Encode a few more AC coefficients
 More AC coefficients etc.
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* Progressive mode is suitable when processing 13536 43 957 50 2]
is faster than the transmission speed of image.

e Rarely used in practice.

* Image files of same size as in sequential JPEG.




JPEG Progressive Mode




Lossless JPEG-LS

* It utilizes spatial prediction and context recognition to compress more
effectively an image.

* However, compression ratios achieved much lower than regular JPEG.
* Interest for applications remains to be seen.



The Karhunen-Loeve Transform (KLT)

Given a vector X = [Xg, X1, Xo, ..., Xy—1]T: N x 1

1. Calculate the autocovariance matrix
C, = E[XXT] — E[X]E[XT]

2. Find the eigenvalues 1, 24, ..., 2y—1 and the eigenvectors
Ug, Uq, ..., Uy_1 Of C,.

Then the KLT is Y = FX
Where F = [ugy, uq, ..., Uy_1]



Important properties of KLT

« FFT =T i.e., orthonormal.

* The KLT is the optimum decorrelation transform.



Ex. 8: Ex. 85, p.221 in text Note: there is an inconsistency in text: they describe the use of the
autocorrelation matrix Ry for deriving the KLT, but then use the autocovariance matrix Cx
in the example. The KLT does in fact use Cx (though, some people define Rx as we define
Cx!), but we often have/assume zero-mean processes (ux = 0), therefore Rx = Cx.

Ex. 8.5 = Let us assume X is a zero-mean process

We have N = 4 sample sequences of length 3 (X(z), : = {0,1,2}):
o = [4v 4, 5]: T = [3:215]’ T2 = [5: 7’6]v Ly = [6a7»7]

X(0)
Rx = E[XXT) = E| | x(1) | [X(0)X(1) X(2)]
X(2)
EX(0)X(0)] E[X(1)X(0)] P[X(2)X(0))
= | EX(0)X(1)] BE[X(1)X(1)] E[X(2)X(1)]
E[X(0)X(2)] E[X(1)X(2)] E[X(2)X(2)]

Note: diagonal of Ry, Rx(i,1) = E[X(i)?] = ai,(i) (when ux = 0)

Ly
Zn(i)zn(d)
N-12&

2867 33  35.67
33 39.33 40.33
35.67 4033 45

= Estimate Rx(i,7) =

Il

Find the eigenvalues of Rx:
= |AI — Rx| =0 = A= {111.2052,1.7485, 0.0463}

where | - | is the determinant operator.



And the eigenvectors:

Rxu=2Mu = u, = [0.5073,0.5870,0.6301]
up = [0.0794, —0.7609, 0.6440]
up = |—0.8581,0.2766,0.4326)

These eigenvectors from Ry are the bases of the KLT, and thus are assembled as the rows of
the transform matrix F'

Up -l
y=Fz = F=| u
us |
Remember:
Ry = E[YY")
= EBFXXTFT
= FEXXT\F'

FRxFT



For KLT:

Ry

i

| 0 AN=1
LA = nrf;m (for py = 0)

Note: Ag is large compared to others = good energy compaction.
We can easily calculate

Croy = T T _ 18.1082

/N
(Hmu "’r{;})
= Grc, = 1.0174

Note: Grey = 1if 0%y, = a% for all i
Also note that the transform is energy preserving ¥ 0% = Yo% (since it is orthonormal).



Probability Definitions
ECE4{62 Multimedia Systems

Defimition Definition .

Name (Continuous r.v.) (Discrete r.v.) Estimate from Samples

oo N-1
Mean (ux) E[X] =f £ fiy (x)dr EX] =Y zpx(z) oLly.

—oo k pl—

0 N-1
Variance (%) | EX —mx) = [ (@ —mx)fx(@)z | BIX —px)’) = >t — () L3 -7

o n=10

o N-1
Correlation E|_3'i'}": = j- ‘/Q Ty fxy (T, y)drdy E[}:}P] = Z Z Typx ¥ (Te, ) v 1 i Z Tnlin
S [ ko1 T =
Cons E[(X — px)(Y —py )] = E[(X — ux)(Y — py)] = = B ~
{,:D;?Enf” f ft (x — px )y — py) fxy(z,y)dedy | 2 2 (= — ux)(y — ny)pxy (ze, ) N1 ;EI" ~ Y —3)
! —o0 of —oo k I
\ . E[X(5)X(5)] = E[X ()X (f)] = =
utocorrelation S N y
(Rx (i, §)) f f Y fx (), x5 (T, y)dzdy ZZIHPH{-'LH&J[Ih’Jd] NV —1 ;I"{I}Ln{j}
1 —o of —oo k i
E[(X (i) — px)(X(F) — px ()] = E[(X(#) — px@ )X [F) — pxn)] =
N-1

Autocovariance

(Cx(i,7))

f f Ty fx iy xi (T, y)dody

where T = (x — px) and
¥ =y — pxg)

3 Fpxwxe)(Te u)
k [

where T = (r — px;) and
¥=(y— pxw)

1

N 2 (i) =2 (D) (zald) —=(5))

=il

See important notes on next page




NOTES:

1. fx(z) 15 the probabihity density function (p.d.f.) of continuous random vanable (r.v.) X; the probabihity that X will take on values in
the range a < < b1s f:_fx{:r]d:c.

2. px(xzg) 158 the probability mass function (p.m.f.) of discrete r.v. X; the probability that X will take on the value © = oy 18 py(z1).
3. All defimtions assume that the random vanables are real-valued.

4. For estimates using sample values (last column in the table), =, refers to the n'® sample. For example, if you are estimating the mean
of a pixel and you have 3 sample pixel values {5,9,2}, you estimate the mean T = (5 + 9+ 2)/3.

5. Many of the estimates using samples are scaled by N — 1 (rather than N). This makes them unbiased estimates of their respective
statistic. In practice you may see either version; in this course either version will be accepted.

6. Correlation and covanance 1s calculated for a pair of random vanables, X and Y, where fx y(z,y) 1= the joint p.d.f (for continuous
random variables), and px y (g, y) 15 the joint p.m.f. (for discrete random vanables).

7. Autocorrelation and autocovanance are calculated for a random process, X(i), where 1 15 the time/position at which the process 1s

k]

sampled. For example, we may consider a row of 5 pixels 1n an 1mage a random process, where () < i < 5 18 the position index from left

to nght. Each X (i) (pixel) can be considered an individual r.v.

8. The estimates for autocorrelation and autocovariance require multiple samples for each of the time/positions i and j. For example, say
we have 3 sample sequences, =g = [1,4,7,10], r; = [2,5,8,11], and =5 = [3,6,9, 12]; to estimate the autocorrelation at time/position
pomnts [ and 2:

N-1
Rx(0,2) ~ =7 3 7a(0)za(?)
n=[

1
g—(1-T+2-8+3.9)
1

~ 5-50-25



