
ECE462 – Lecture 14



Wavelet Transform

• Brief review of orthogonal signal expansion

Often, a function f(t) can be better analyzed if it is expressed as 

𝑓 𝑡 =෍

𝑘

𝑎𝑘𝜓(𝑡)

𝑎𝑘: set of coefficients

𝜓(𝑡): set of “basis” functions

Orthogonal set of basis: 

න 𝜓𝑘 𝑡 𝜓𝑙 𝑡 𝑑𝑡 = 0, 𝑘 ≠ 𝑙



Wavelet Transform

• Orthogonal set if in additional to orthogonality:

න 𝜓𝑘 𝑡 𝜓𝑙 𝑡 𝑑𝑡 = 1, 𝑘 = 𝑙

Then, 𝑎𝑘= ׬ 𝑓 𝑡 𝜓𝑘 𝑡 𝑑𝑡

Note: Similar relations hold for discrete signals where summation may 
replace integration



Wavelet Transform

Examples: 

IDFT: 𝑓 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝐹 𝑘 𝑒

𝑗2𝜋𝑘𝑛

𝑁 , 𝑛 = 0,… , 𝑁 − 1

IDCT: 𝑥 𝑛 = 𝑐 𝑘 σ𝑘=0
𝑁−1𝑋 𝑘 cos

2𝑛+1 𝑘𝜋

2𝑁
, 𝑛 = 0,… , 𝑁 − 1

It is easy to show that

σ𝑛=0
𝑁−1 cos

2𝑛+1 𝑘𝜋

2𝑁
cos

2𝑛+1 𝑙𝜋

2𝑁
= 0 ,  k≠l

Similarly, for the exponential basis of IDFT above



Wavelet Transform

• C(k) and 1/N makes the basis orthonormal. 

• Even though the DFT and DCT provide an orthonormal expansion that is 
useful in applications nevertheless do not provide sufficient time frequency 
localization. 

• In other words: A local change in the time or frequency affects all 
frequencies or times respectively. 

• A better time-frequency localization is provided by the wavelet transform. 

𝑓 𝑡 =෍

𝑘

෍

𝑗

𝑎𝑗,𝑘𝜓𝑗,𝑘(𝑡)

Where, the basis, 𝜓𝑗,𝑘 𝑡 = 2
𝑗

2𝜓(2𝑗𝑡 − 𝑘) is called a wavelet and it is 

generated by “scaling” and “translation” of the mother wavelet 𝜓 𝑡



Wavelet Transform

• Wavelet transform provides a multiresolution expansion that allows 
to new the signal in various times and scales (like zooming in a map).

• Actually, the expansion takes the form: 

𝑓 𝑡 = ෍

𝑘=−∞

∞

𝐶𝑘𝜙 𝑡 − 𝑘 + ෍

𝑘=−∞

∞

෍

𝑗=0

∞

𝑑𝑗,𝑘 . 𝜓(2
𝑗𝑡 − 𝑘)



Wavelet Transform

• Ex: Haar scaling function and wavelet

• Example: Consider a discrete pulse



Wavelet Transform

• 8-DFT: F k = σ𝑛=0
7 𝑓 𝑛 𝑒−

𝑗2𝜋𝑘𝑛

8 , 𝑘 = 0,… , 7

F k = σ𝑛=2
5 𝑒−

𝑗2𝜋𝑘𝑛

8 = 𝑒−
𝑗2𝜋𝑘.2

8 σ𝑛=0
3 𝑒−

𝑗2𝜋𝑘𝑛

8 = 𝑒−
𝑗𝜋𝑘

2
1− 𝑒−𝑗𝜋𝑘

1−𝑒^(−
𝑗𝜋𝑘

4
)
=

𝑒−
𝑗𝜋𝑘

8 . sin(
𝜋𝑘

2
)/ sin

𝜋𝑘

8
,  k=0,1,…..,7

Then,

k    =         0,   1,    2,    3,    4 ,     5,      6 ,   7

|F(k)|=     4,  2.61,0, 1.08, 0,   1.08,   0,  2.61



Wavelet Transform

• Similarly the DCT will give 

• So once again we witness the better energy compaction for the DCT. 

• However, we do not get information regarding the localization of the 
pulse in time. 



Implementation of Wavelet transform 
(dyadic)
• Given two filters: 

• low pass - ℎ0 𝑛
• high pass - ℎ1 𝑛 = −1𝑛ℎ0 1 − 𝑛
Obtain a single level wavelet decomposition as follows: 

Where, x[n], n=0,1,…, N-1 is the signal
Ck , k=0,1,…,N/2-1 is the “approximation”
dk , k=0,1,…,N/2-1 is the “detail” signal

Thus, the 1-level wavelet decomposition {C0, C1,…., CN/2 -1,d0,d1,….dN/2 - 1}

ck

dk
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Implementation of Wavelet transform 
(dyadic)
• For example using the Haar Wavelet functions 

𝐶𝑘 =
1

2
𝑋 2𝑘 + 1 + 𝑋 2𝑘 , 𝑑𝑘 =

1

2
(𝑥 2𝑘 + 1 − 𝑥(2𝑘))

So in our previous example with the discrete pulse 

k = 0,1,2,3

Ck=0,1,1,0

dk=0,0,0,0

So the wavelet transform is 

{Ck,dk} = {0,1,1,0,0,0,0,0}
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Implementation of Wavelet transform 
(dyadic)
Notice that k above corresponds to the downsampled rate so the 
values of 1 in Ck correspond to the edges of the pulse (better 
localization)

In general if N=2q, a q-level wavelet decomposition is possible. We 
proceed as follows: 
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Implementation of Wavelet transform 
(dyadic)
And so on. Then, reconstruction of x[n] is based on reverse operations, 
that is: 

Thus, a q-level wavelet decomposition (where N=2q) takes the following 
form. 
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Implementation of Wavelet transform 
(dyadic)

Rate:              
1

𝑁
,
1

𝑁
,
2

𝑁
,
4

𝑁
, … . . ,

𝑁

2

𝑁
= 1/2

Samples :       1   1     2    4  …..   N/2=   N samples

So we observe that for high frequencies we have low frequency 
resolution but high time resolution while for low frequencies high 
frequency resolution but low time resolution. 

{C0,k,   d0,k,   d1,k,   d2,k  ,….,   dq-1,k}



• Back to the discrete pulse example where N=8

Level 3 decomposition

{C2,k,d2,k} = {0,1,1,0,0,0,0,0}

Level 2 decomposition

{C1,k,d1,k,d2,k} = {1/2,1/2,1/2,-1/2,0,0,0,0}

Level 1 decomposition

{C0,k,d0,k, d1,k ,d2,k} = {1/2,0,1/2,-1/2,0,0,0,0}



• Once again: high frequency -> high time resolution

• Low frequency -> low time resolution



Let us repeat the example with a signal of length 16 samples



2-D Wavelet Decomposition

Given an image of NxN pixels N=2q

For orthogonal wavelet analysis specify four filters

ℎ0,0 𝑥, 𝑦 2-D low pass

ℎ0,1 𝑥, 𝑦 LP vertically, HP horizontally

ℎ1,0 𝑥, 𝑦 HP vertically, LP horizontally

ℎ1,1 𝑥, 𝑦 HP vertically, HP horizontally



2-D Wavelet Decomposition

• Convolve the image with each filter

• Downsample by 2 vertically and horizontally

• Form the first level decomposition as follows: 
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2-D Wavelet Decomposition

• For two level decomposition repeat the process with the LL 
component

and so on: 



Separable Wavelet transforms

Scaling functions 𝜙 𝑥, 𝑦 = 𝜙 𝑥 𝜙(𝑦)

Wavelet functions 𝜓 𝑥, 𝑦 = 𝜓 𝑥 𝜓 𝑦

So similarly for the filters 
ℎ00 𝑥, 𝑦 = ℎ0 𝑥 ℎ0 𝑦

ℎ0𝑙 𝑥, 𝑦 = ℎ0 𝑥 ℎ𝑙(𝑦)

Etc.



Separable Wavelet transforms 
Implementation

• Convolve each row of the image with h0(n) and hl(n) discard the odd 
number columns and concatenate them. 

• Convolve each column of the result with h0(n) and hl(n) discard the 
odd number rows and concatenate. 








