# ECE462 – Lecture 20

# Video Compression Technologies

- Video of data consists of multiple image frames per second (typically 15-30 frames/sec). This corresponds to enormous bit rate requirements → compression is of outmost importance.
- 2. While still image frames exhibit spatial redundancy video frames exhibit significant "temporal redundancy" which can be exploited for compression
- →Code the difference between adjacent video frames (small variations in time)
- → More effective approach: Use motion estimation and compensation between frames

# Motion Compensation (MC)

Three basic steps:

- 1. Motion estimation (motion vector)
- 2. Motion compensation (motion prediction)
- 3. Prediction Error

Process:

→Image is divided into macro blocks of size NxN pixels (usually N=16 for luminance images)

- $\rightarrow$ Reference image: previous or future frame
- → Target frame: current frame
- →Compare each macroblock of the target frame to each macroblock of the reference frame using a "matching criterion"
- → Find best match between two macroblocks and then calculate the displacement between them (motion vector)

 $\rightarrow$ The difference between two "matched macroblocks" is called the prediction error

- $\rightarrow$  Forward prediction: Reference frame in past error
- $\rightarrow$  Backward prediction: Reference frame error in future

<u>EX</u>



### <u>Compression Strategy:</u> Given a number of vide frames

→Code first frame

 $\rightarrow$ Code only motion vectors and difference macroblocks in all subsequent frames

## Matching Criteria

→Mean absolute difference (MAD)

MAD(i,j) =  $\frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |T(k,l) - R(k+i,l+j)|$ 

Where, T(k,l) : Macroblock in Target frame R(k+i, l+j) : " in Reference frame

→ Mean Square Difference Cartesian (MSD)

$$MSD(i,j) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} (T(k,l) - R(k+i,l+j))^2$$

Objective: Find (i,j) so that MAD (i,j) or MSD(i,j) is minimum.

e.g. Let (u,v)={(i,j)/MAD(i,j) is minimum}

Then, the motion vector  $(k,l) \longrightarrow (k+u,l+v)$ 

Note:

To find the minimum each macroblock in the target frame must be compared to all possible macroblocks in Reference frame

<u>Thus:</u>

For frames of size LxL there are approximately L<sup>2</sup> possible macroblock positions.

MAD calculations  $\sim N^2$ /block

So the order of calculations  $O(L^2 N^2)$ 

So for 1 sec of videos at 30 frames /sec we require

# of macroblocks in target frame X # of MAD operations per macroblock X # of frames

$$\sim \qquad \frac{L^2}{N^2} \qquad X \qquad L^2 N^2 \qquad X 30$$
  
~ 0(30.L<sup>4</sup>) This makes real time video encoding very difficult

To reduce the high complexity of full search a number of computationally more efficient procedures are applied in practice such as

➤Logarithmic search approach

➢ Hierarchical search approach

Logarithmic Search



### Logarithmic Search

Specify only 9(nine) macroblocks in interest area of size PxP in reference frame

Find the best matching which now defines the center of a new search area of size  $\frac{P}{2} \times \frac{P}{2}$ 

> Define nine macroblocks in new search area and continue the process ,...

Stop after M steps where

 $M \sim \log_2 P$ 

and the complexity for a search area of PxP is reduced to  $\sim O(\log_2 P \cdot N^2)$  from  $\sim O(P^2N^2)$  that is required by full search.

## Hierarchical Search

> Decompose the image in various resolution levels

- ➤Match macroblocks at a low resolution level
- ➢ Refine matching in progressively higher resolution levels.

### **Example of Motion Estimation Prediction**



### Working example on motion estimation

Work out the following problem of 2D Logarithmic Search for motion vectors in detail (see Figure 10.14).

The target (current) frame is a P-frame. The size of macroblocks is 4 × 4. The motion vector is  $MV(\Delta x, \Delta y)$ , in which  $\Delta x \in [-p, p], \Delta y \in [-p, p]$ . In this question, assume  $p \equiv 5$ .

The macroblock in question (darkened) in the frame has its upper left corner at  $(x_t, y_t)$ . It contains 9 dark pixels, each with intensity value 10; the other 7 pixels are part of the background, which has a uniform intensity value of 100. The reference (previous) frame has 8 dark pixels.





With p=5 the search are (-5,5)x(-5,5) is too large for this size image (incomplete blocks)  $\rightarrow$  For blocks marked 1 in the reference frame

$$MAD(u,v) = \frac{1}{16} \sum_{k=0}^{3} \sum_{l=0}^{3} |T(i,j) - R(u+i,v+j)| = \frac{1}{16} \cdot 9|100-10| = \frac{9x90}{16} = \frac{810}{16}$$
  

$$\Rightarrow \text{ For blocks marked 2, MAD(u,v)} = \frac{9x90}{16} = \frac{810}{16}$$
  

$$\Rightarrow \text{ For blocks marked 3, MAD(u,v)} = \frac{9x90}{16} = \frac{810}{16}$$

So this pass is inconclusive



#### <u>Pass1</u>

Let us reduce P by 2 and consider an area of  $[\frac{P}{2}]x [\frac{P}{2}] = 3x3$  with the same reference point blocks #1  $\rightarrow$  MAD(u,v) =  $\frac{9x90}{16} = \frac{810}{16}$ blocks #2  $\rightarrow$  MAD(u,v) =  $\frac{5x90}{16} = \frac{450}{16}$ So the new reference point is at (x,y) = (10,3)



Reference point at : (x,y) = (10,3)

Search area:  $\left[\frac{P}{4}\right] \times \left[\frac{P}{4}\right] = 2x2$ 

The smallest MAD is obtained for the incomplete block with reference point (12,3)

#### Pass3

Search area:  $\left[\frac{P}{8}\right] \times \left[\frac{P}{8}\right] = 1 \times 1$ 

In this case one of the blocks will be at the correct location, giving MAD =  $\frac{1x90}{16}$  = 5.625 And  $(\Delta x, \Delta y) = (4,3)$