ECE462 – Lecture 21

VIDEO COMPRESSION TECHNIQUES H.261 / H.263 Standards

10.4 H.261

- H.261: An earlier digital video compression standard, its principle of MC-based compression is retained in all later video compression standards.
 - The standard was designed for videophone, video conferencing and other audiovisual services over ISDN.
 - The video codec supports bit-rates of $p \times 64$ kbps, where p ranges from 1 to 30 (Hence also known as p * 64).
 - Require that the delay of the video encoder be less than 150 msec so that the video can be used for real-time bidirectional video conferencing.

ITU Recommendations & H.261 Video Formats

- H.261 belongs to the following set of ITU recommendations for visual telephony systems:
 - H.221 Frame structure for an audiovisual channel supporting 64 to 1,920 kbps.
 - H.230 Frame control signals for audiovisual systems.
 - 3. H.242 Audiovisual communication protocols.
 - 4. H.261 Video encoder/decoder for audiovisual services at $p \times 64$ kbps.
 - 5. H.320 Narrow-band audiovisual terminal equipment for $p \times 64$ kbps transmission.

Table 10.2 Video Formats Supported by H.261

Video	Luminance	Chrominance Bit-rate (Mbps)		H.261
format	image	image	(if 30 fps and	support
	resolution	resolution	uncompressed)	
QCIF	176 × 144	88 × 72	9.1	required
CIF	352 × 288	176 × 144	36.5	optional

QCIF: Quarter Common Intermidiate Format

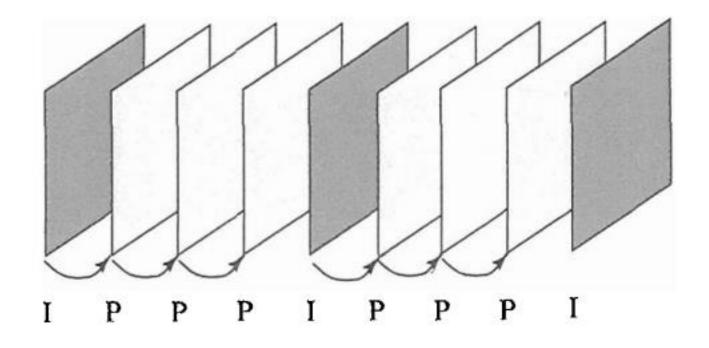


Fig. 10.4: H.261 Frame Sequence.

H.261 Frame Sequence

- Two types of image frames are defined: Intra-frames (I-frames) and Inter-frames (P-frames):
 - I-frames are treated as independent images. Transform coding method similar to JPEG is applied within each I-frame, hence "Intra".
 - P-frames are not independent: coded by a forward predictive coding method (prediction from a previous P-frame is allowed — not just from a previous I-frame).
 - Temporal redundancy removal is included in P-frame coding, whereas
 I-frame coding performs only spatial redundancy removal.
 - To avoid propagation of coding errors, an I-frame is usually sent a couple of times in each second of the video.
- Motion vectors in H.261 are always measured in units of full pixel and they have a limited range of ± 15 pixels, i.e., p = 15.

Intra-frame (I-frame) Coding

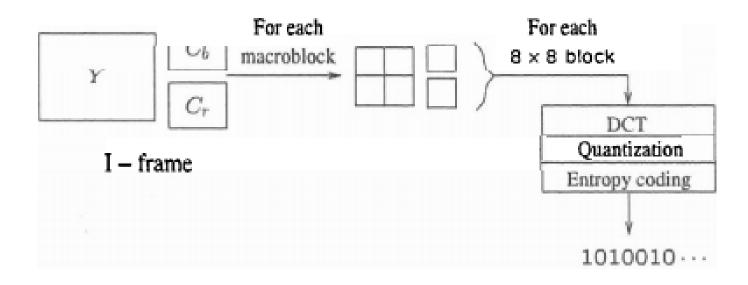


Fig. 10.5: I-frame Coding.

- Macroblocks are of size 16 x 16 pixels for the Y frame, and 8 x 8 for Cb and Cr frames, since 4:2:0 chroma subsampling is employed. A macroblock consists of four Y, one Cb, and one Cr 8 x 8 blocks.
- For each 8 x 8 block a DCT transform is applied, the DCT coefficients then go through quantization zigzag scan and entropy coding.

Inter-frame (P-frame) Predictive Coding

- Figure 10.6 shows the H.261 P-frame coding scheme based on motion compensation:
 - For each macroblock in the Target frame, a motion vector is allocated by one of the search methods discussed earlier.
 - After the prediction, a difference macroblock is derived to measure the prediction error.
 - Each of these 8 x 8 blocks go through DCT, quantization, zigzag scan and entropy coding procedures.

- The P-frame coding encodes the difference macroblock (not the Target macroblock itself).
- Sometimes, a good match cannot be found, i.e., the prediction error exceeds a certain acceptable level.
 - The MB itself is then encoded (treated as an Intra MB) and in this case it is termed a non-motion compensated MB.
- For motion vector, the difference MVD is sent for entropy coding:

$$MVD = MV_{Preceding} - MV_{Current}$$
 (10.3)

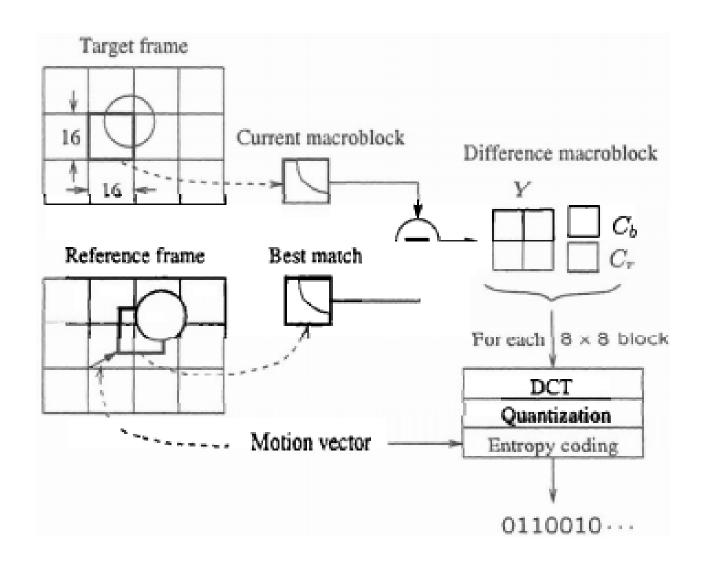


Fig. 10.6: H.261 P-frame Coding Based on Motion Compensation.

Quantization in H.261

- The quantization in H.261 uses a constant step_size, for all DCT coefficients within a macroblock.
- If we use DCT and QDCT to denote the DCT coefficients before and after the quantization, then for DC coefficients in Intra mode:

$$QDCT = round\left(\frac{DCT}{step_size}\right) = round\left(\frac{DCT}{8}\right)$$
 (10.4)

for all other coefficients:

$$QDCT = \left| \frac{DCT}{step_size} \right| = \left| \frac{DCT}{2 * scale} \right|$$
 (10.5)

scale — an integer in the range of [1, 31].

H.261 Encoder and Decoder

 Fig. 10.7 shows a relatively complete picture of how the H.261 encoder and decoder work.

A scenario is used where frames I, P_1 , and P_2 are encoded and then decoded.

- Note: decoded frames (not the original frames) are used as reference frames in motion estimation.
- The data that goes through the observation points indicated by the circled numbers are summarized in Tables 10.3 and 10.4.

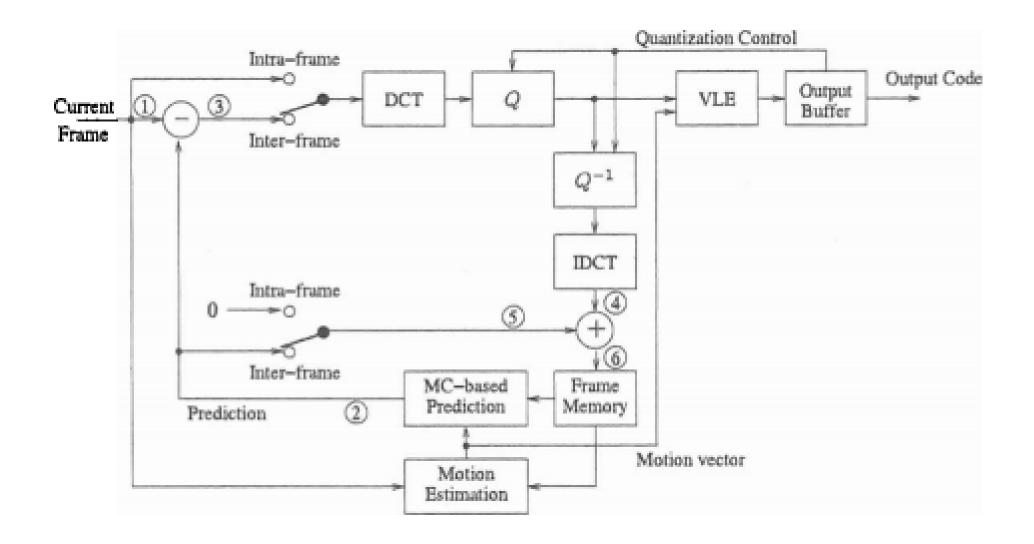
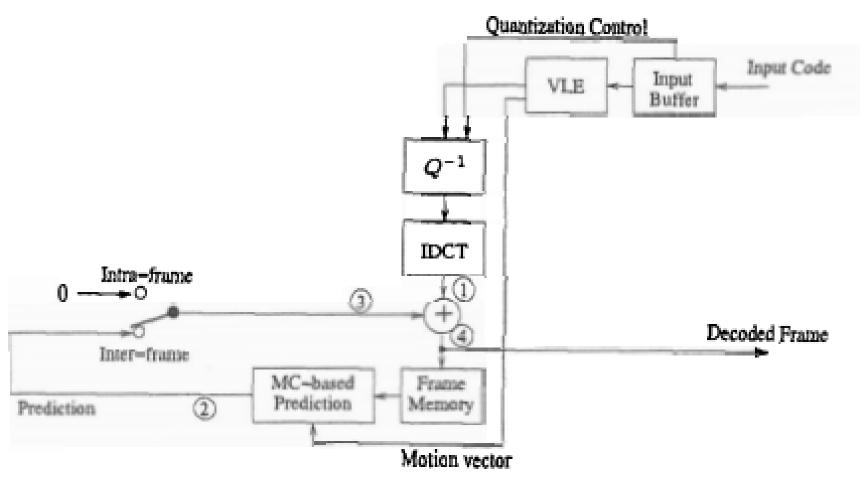



Table 10.3: Data Flow at the Observation Points in H.261 Encoder

Current Frame	Observation Point					
	1	2	3	4	5	6
I	I			Ĩ	0	Ĩ
P_1	P_1	P_1'	D_1	$\tilde{D_1}$	P_1'	$ ilde{P_1}$
P_2	P_2	P_2'	D_2	$\tilde{D_2}$	P_2'	\tilde{P}_2

Table 10.4: Data Flow at the Observation Points in H.261 Decoder

Current Frame	Observation			Point
	1	2	3	4
I	Ĩ		0	Ĩ
P_1	$ ilde{D_1}$	P_1'	P_1'	$ ilde{P_1}$
P_2	$\tilde{D_2}$	P_2'	P_2'	$ ilde{P_2}$

(b) Decoder

The H.263 Standard

- ➤ Similar to H.261
 - > It supports a few more video formats (QCIF, CIF, GCIF, 16CIF)
 - ➤ Motion compensation slightly different than H.261
 - >Supports half pixel prediction based on bilinear interpolation
 - ➤ Supports forward and backward prediction (PB frames)

Motion Compensation H.263

- MV(u,v): Motion vector for current macroblock
- MV₁(u₁,v₁), MV₂(u₂,v₂), MV₃(u₃,v₃) are motion vector for neighboring macroblocks
- \triangleright Obtain MV,MV₁,MV₂,MV₃ as in H.261
- \triangleright Calculate: $u_p = median (u_1, u_2, u_3)$

$$v_p$$
=median $(v_{1,}v_2,v_3)$

For MV code $\Delta u = u - up$, $\Delta v = v - vp$

- ➤ Half pixel based motion prediction
 - ➤ Upscale image by 2 using bilinear interpolation before you calculate motion vectors

C.9 -	
C.g. A a B D: on soul	
b. c d	
1 1 - 2 - 11	1
c e D volves.	•
$a = \frac{A+B}{2} + 0.5$ $d = \frac{B+D}{2} + 0.5$	
$b = \underbrace{\frac{A+C}{2}}_{2} + 0.5 \qquad e = \underbrace{\frac{C+D}{2}}_{2} + 0.5$ $C = \underbrace{\frac{A+B+C+D}{2}}_{4} + 0.5$	
2 4+8+C+D	
$C = \frac{4+8+C+D}{4} + 0.5$	
- PB traves Pr Pfromer / Polivard prediction	_
TasP 1 B / B frames / forward and	
boutward preside	ا
- PB travers P from us / Forward prediction I or P B	י ניסן