Vector Quantization http://www.geocities.com/mohamedqasem/vectorquantization/vq.html..,

Vector Quantization

This page contains information related to vector quantization (VQ). Currently this page
includes information about VQ with regards to compression. In the future, we will make this
page a more comprehensive VQ page.

In what applications is VQ used?

Vector quantization is used in many applications such as image and voice compression, voice
recognition (in general statistical pattern recognition), and surprisingly enough in volume
rendering (I have no idea how VQ is used in volume rendering!).

What is VQ?

A vector quantizer maps k-dimensional vectors in the vector space R¥ into a finite set of
vectors Y = {yi i =1, 2, ..., N}. Each vector y; is called a code vector or a codeword. and the

set of all the codewords is called a codebook. Associated with each codeword, y;, is a nearest
neighbor region called Voronoi region, and it is defined by:

v, :{XERIE :"x_,y!.”n_:”x—~yj [,fmraﬂjii}

The set of Voronoi regions partition the entire space R¥ such that:

N
v, =R*
=1
N
(Y, =¢ forallizj

f=]

As an example we take vectors in the two dimensional case without loss of generality. Figure
1 shows some vectors in space. Associated with each cluster of vectors is a representative
codeword. Each codeword resides in its own Voronoi region. These regions are separated
with imaginary lines in figure 1 for illustration. Given an input vector, the codeword that is
chosen to represent it is the one in the same Voronoi region.

9' s feudid ol e C=
St

AN B (P P

Q?Q.J" < ! < : FQ [,5/ £, ": W:

Fw. £),," *
(R
}; - (4]

[y £ R *;'m.e Sy / /
1076 e . / 7’ 11/22/2007 2:56 PM

Vector Quantization http://www.geocities.com/mohamedqgasem/vectorquantization/vg.html...

R

Codewords Vectors

Voronoi
Region

Figure 1: Codewords in 2-dimensional space. Input vectors are
marked with an x, codewords are marked with red circles, and the
Voronoi regions are separated with boundary lines.

The representative codeword is determined to be the closest in Euclidean distance from the
input vector. The Euclidean distance is defined by:

k
d(x)= > (%= y)
j1

where x;j is the jth component of the input vector, and yj; is the jth is component of the
codeword y;.

How does VQ work in compression?

A vector quantizer is composed of two operations. The first is the encoder, and the second is
the decoder. The encoder takes an input vector and outputs the index of the codeword that
offers the lowest distortion. In this case the lowest distortion is found by evaluating the
Euclidean distance between the input vector and each codeword in the codebook. Once the
closest codeword is found, the index of that codeword is sent through a channel (the channel
could be a computer storage, communications channel, and so on). When the encoder
receives the index of the codeword, it replaces the index with the associated codeword.
Figure 2 shows a block diagram of the operation of the encoder and decoder.

2of6 11/22/2007 2:56 PM

Vector Quantization http://www.geocities.com/mohamedqasem/vectorquantization/vq.himl...

The Encoder The Decoder
input Vector Output Vector
Search
I:I Engine D
A
Codebook Indices Indices Codebook

of 1 53_”‘?.“."_9'.'..*} :l‘*

LI LI
[_v_l
¥ ¥ v ¥

0| |oHoC

Figure 2: The Encoder and decoder in a vector quantizer. Given an input vector, the
closest codeword is found and the index of the codeword is sent through the channel.
The decoder receives the index of the codeword, and outputs the codeword.

How is the codebook designed?

So far we have talked about the way VQ works, but we haven't talked about how to generate
the codebook. What code words best represent a given set of input vectors? How many
should be chosen?

Unfortunately, designing a codebook that best represents the set of input vectors is NP-hard.,
That means that it requires an exhaustive search for the best possible codewords in space,
and the search increases exponentially as the humber of codewords increases (if you can find
an optimal solution in polynomial time your name will go down in history forever). We
therefore resort to suboptimal codebook design schemes, and the first one that comes to mind
is the simpiest. It is nhamed LBG for Linde-Buzo-Gray, the authors of this idea. This algorithm
is similar to the k-means algorithm,

The algorithm

1. Determine the number of codewords, N, or the size of the codebook.

2. Select N codewords at random, and let that be the initial codebook. The initial
codewords can be randomly chosen from the set of input vectors.

3. Using the Euclidean distance measure, clusterize, the vectors around each
codeword. This is done by taking each input vector and finding the Euclidean distance
between it and each codeword. The input vector belongs to the cluster of the codeword
that yields the minimum distance.

4. Compute the new set of codewords. This is done by obtaining the average of each
cluster. Add the component of each vector and divide by the number of vectors in the
cluster.

Jofe 117222007 2:56 PM

Vector Quantization http://www.geocities.com/mohamedqasem/ veciorquantizanon/vq.nimt...

4 0f 6

m
Vi = — 2%
mj-=1

where i is the component of each vector (X, Y, z, ... directions), m is the number of
vectors in the cluster.

5. Repeat steps 3 and 4 until the either the codewords don't change or the change
in the codewords is small.

This algorithm is by far the most popular, and that is due to its simplicity. Although it is
locally optimal, yet it is very slow. The reason it is slow is because for each iteration,
determining each cluster requires that each input vector be compared with all the codewords
in the codebook (We have programmed this algorithm in C, and for an 512x512 image, a
codebook of 256, and vectors in 4 dimensions, the generation of the codebook took about 20
minutes on an HP machine).

There are many other methods to designing the codebook, methods such as Pairwise Nearest
Neighbor (PNN), Simulated Annealing, Maximum Descent (MD), and Frequency-Sensitive
Competitive Learning (FSCL), etc.

How does the search engine work?

Although VQ offers more compression for the same distortion rate as scalar quantization and
PCM, yet is not as widely implemented. This due to two things. The firstis the time it takes
to generate the codebook, and second is the speed of the search. Mapy algorithms have be
proposed to increase the speed of the search. Some of them reduce the math used to
determine the codeword that offers the minimum distortion, other algorithms preprocess the
codewords and exploit underlying structure.

The simplest search method, which is also the slowest, is full search. In full search an input
vector is compared with every codeword in the codebook. If there were M input vectors, N
codewords, and each vector is in k dimensions, then the number of multiplies becomes kMN,
the number of additions and subtractions become MN((k - 1) + k) = MN(2k-1), and the
number of comparisons becomes MN(k - 1). This makes full search an expensive method.

What is the measure of performance VQ?

How does one rate the performance of a compressed image or sound using VQ? There is no
good way to measure the performance of VQ. This is because the distortion that VQ incurs
will be evaluated by us humans and that is a subjective measure. Don't despair! We can
always resort to good old Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR).
MSE is defined as follows:

1 ¥ . 2
MSE = —S5(% - x;)
where M is the number of elements in the signal, or image. For example, if we wanted to find

11/22/2007 2:56 PM

Vector Quantization http://www.geocities.com/mohamedgasem/vectorquantization/vg.html. ..

the MSE between the reconstructed and the original image, then we would take the difference
between the two images pixel by pixel, square the results, and average the results.

The PSNR is defined as follows:

PSNR =10log, g;{g;—)z

where n is the number of bits per symbol. As an example, if we want to find the PSNR
between two 256 gray level images, then we set n to 8 bits.

Some sites with VQ

Although there are many web pages on VQ, but the majority of them are not generalized.
The majority of these sites describe new ways of implementing VQ or some of its
applications. Unfortunately, most of these sites don't go into the detail of their work. I have
therefore limited the links to those sites that contain useful information or tools.

e For a really brief description of VQ you can visit this FAQ sheet.

e Jim Fowler was a graduate at The Ohio State University. Now he is teaching at the
Department of Electrical & Computer Engineering at Mississippi State University. He has
developed a wonderful package, QccPack, for quantization, data compression and
coding that includes VQ tools. He also worked with video coding using VQ. Heis a
definite VQer.

e Possibilistic Clustering in Kohonen Networks for Vector Quantization. VQ using neural
nets.

+ Light Field Compression using Wavelet Transform and Vector Quantization.

+ Robert Gray teaches at Stanford University, and within his class of Quantization and
Data_compression he devotes a topic to vector guantization. This is an acrobat file of
slides.

¢ Vivek Goyal has some interesting papers on VQ. Check out his publications page.

o Another Neural Network based VQ with code called, Predictive Residual Vector
Quantization {(PRVQ) CODEC.

s Dynamic Learning Vector Quantization (DLVQ).

VQers

This is a list of people, in alphabetical order by last name, who constantly work on VQ. I call
them VQers. They are a must knoew! If you think you are VQer, then send me an email, and I
will include your name in the list.

Stanley Ahalt,
Jim Fowler.

Allen Gersho.
Robert M. Gray.
Batuhan Ulug .

50f6 11/22/2007 2:56 PM

LE G

\—‘(VM l-” i hoducdrtr B2 SH= (éqo/g_f_luu o

l)j bLd] r‘yo"oo// fov g an Ve e Ar arn

268 9 VECTOR QUANTIZATION

_ﬂ/—/’ i
. o . 0 . .
1. Start with an initial set of reconstruction values {Yf ' }# | and a set of training vectors

[X,}_,. Setk = 0, D' = 0. Select threshold e.
2. The quantization regions {Vi{k) ¥ | are given by
V¥ = (X, d(X,, Y) < dX,)V £ i= 12 M

We assume that none of the quantization regions are empty. (Later we will deal with the
case where Vf{k) is empty for some i and &.)

3. Compute the average distortion D) between the training vectors and the representative
reconsiruction value.

If (D(U —ptk=

1y . .
4. B < ¢, stop; otherwise, continue.

5. k = k+ I. Find new reconstruction values {Y,-(k) }# | that are the average value of the
elements of each of the quantization regions Vl.(k_l). Go to Step 2.

This algorithm forms the basis of most vector quantizer designs. It is popularly known
as the Linde-Buzo-Gray or LBG algorithm, or the generalized Lloyd algorithm (GLA) 1139].
Although the paper of Linde, Buzo, and Gray [139] is a starting point for most of the work
on vector quantization, the latter algorithm had been used several years prior by Edward E.
Hilbert at the NASA Jet Propulsion Laboratories in Pasadena, California. Hilbert's starting
point was the idea of clustering, and although he arrived at the same algorithm as described
above, he called it the cluster compression algorithm [103].

In order to see how this algorithm functions. consider the following example of a two-
dimensional vector quantizer codebook design.

Example 9.4.1:

Suppose our training set consists of the height and weight values shown in Table 9.1. The
initial set of output points is shown in Table 9.2. (For case of presentation, we will always
round the coordinates of the output points [0 the nearest integer.} The inputs, outputs, and
quantization regions are shown in Figure 9.7.

The input (44, 41) has been assigned to the first output point: the inputs (56, 91), (57, 28).
(59,119), and {60, 110) have been assigned to the second output point; the inputs {62, 114},
and (65, 120) have been assigned to the third output; and the five remaining vectors from
the training set have been assigned to the fourth output. The distortion for this assignment is
387.25. We now find the new output points. There is only one vector in the first quantization
region, so the first output point is (44, 41). The average of the four vectors in the second quan-
tization region (rounded up) is the vector (38, 102), which is the new second cutput point. Ina
similar manner, we can compute the third and fourth output points as (64, 117) and (69, 168).
The new output points and the corresponding quantization regions are shown in Figure 9.8.
From Figure 9.8, we can see that, while the training vectors that were initially part of the
first and fourth quantization regions are still in the same quantization regions, the training
vectors (59, 115) and (60, 120), which were in quantization region 2, are now in quantization

[}

Lyl
-
- ZJV()
=

ctors

h the

alive

f the

own
39].
vork
d E.
ting
ibed

wo-

ays
and

18),
14),
om
itis
ion

na
i8).
1.8.
the
ing
ion

9.4 The Linde-Buzo-Gray Algorithm 269

TABLE 9.1 Trailning set for designing
vector quantizer codehook.

Height Weight
72 180
65 120
59 Iy
64 150
65 162
57 B8
72 175
44 41
62 114
60 110
56 91
70 172

TABLE 9.2 Initial set of output points
for codebook design.

Height Weight
45 50
75 117
45 117
80 180

region 3. The distortion corresponding to this assignment of training vectors to quantization
regions is 89, considerably less than the original 387.25. Given the new assignments, we can
obtain 2 new set of output points. The first and fourth output points do not change because the
training vectors in the corresponding regions have not changed. However, the training vectors
in regions 2 and 3 have changed. Recomputing the output points for these regions, we get
(57,90) and (62, 116). The finak form of the quantizer is shown in Figure 9.9. The distortion
corresponding to the final assignments is 60.17. L J

The LBG algorithm is conceptually simple, and as we shall see later, the resulting vector
quantizer is remarkably effective in the compression of a wide variety of inputs, both by
itself and in conjunction with other schemes. In the next two sections we will look at some
of the details of the codebook design process. While these details are important to consider
when designing codebooks, they are not necessary for the understanding of the quantization
process. If you are not currently interested in these details, you may wish to proceed directly
to Section 9.4.3.

9.4.1 Initializing the LBG Algorithm

The LBG algorithm guarantees that the distortion from one iteration to the next will not in-
crease. However. there is no guarantee that the procedure will converge to the optimal solution.

270 9 VECTOR QUANTIZATION

Weight (Ib} 130 X .

160 — \ X

120 X

. 2 * x P

X
100
X
X

80
60

o1

x R -
40 T | T I
40 50 60 70 Height (in)

FIGURE 9.7 Initial state of the vector quantizer.

The solution to which the algorithm converges is heavily dependent on the initial condittons.
For example, if our initial set of output points in Example 9.4.1 had been those shown in
Table 9.3 instead of the set in Table 9.2, by using the LBG algorithm we would get the finai
codebook shown in Table 9.4.

The resulting quantization regions and their membership are shown in Figure 9.10. This
is a very different quantizer than the one we had previously obtained. Given this heavy de-
pendence on initial conditions, the selection of the initial codebook is a matter of some im-
portance. We will look at some of the better-known methods of initialization in the following
section.

Linde, Buzo, and Gray described a technique in their original paper [139] called the split-
ting technique for initializing the design algorithm. In this technique. we begin by designing
a vector quantizer with a single output point; in other words, a codebook of size one, or a
one-level vector quantizer. With a one-element codebook, the quantization region is the entire
input space, and the output point is the average value of the entire training set. From this oul-
put point, the initiai codebook for a two-level vector quantizer can be obtained by including
the output point for the one-level quantizer and a second output point obtained by adding a
fixed perturbation vector . We then use the LBG algorithm to obtain the two-leve!l vector
quantizer. Once the algorithm has converged, the two codebook vectors are used to obtain the

R

9.4 The Linde-Buzo-Gray Algorithm 271

3
Weight (lb) 180 X

160 —

140 —

120 - 3

100 = & \

x 2
X
80
\‘\
'\\\
60 — \\
l \

40 = T T | >

30 30 60 70 Height (in)

FIGURE 9.8 The vector quuntizer after one ileration.

initial codebook of a four-level vector quantizer. This initial four-level codebook consists of
the two codebook vectors from the final codebook of the two-level vector quantizer and an-
other two vectors obtained by adding ¢ to the two codebook vectors. The LBG algorithm can
then be used until this four-level quantizer converges. In this manner we keep doubling the
number of levels until we reach the desired number of levels. By including the final codebook
of the previous stage at each “splitting.” we guaraniee that the codebook after splitting will be
at least as good as the codebook prior to splitting.

Example 9.4.2:

Let’s revisit Example 9.4.1. This time, instead of using the initial codewords used in Example
9.4.1, we will use the splitting technigue. For the perturbations, we will use a fixed vector
¢ = (10, 10). The perturbation vector is usually selected randomly: however, for purposes of
explanation it is more useful to use a fixed perturbation vector.

We begin with a single-level codebook. The codeword is simply the average value of the
training set. The progression of codebooks is shown in Table 9.5.

The perturbed vectors are used to initialize the LBG design of a two-level vector quantizer,
The resulting two-level vector quantizer is shown in Figure 9.1 [. The resuiting distortion is

272 9 VECTOR QUANTIZATION

468.38. These two vectors are perturbed to get the initial output points for the four-level
design. Using the LBG algorithm, the final quantizer obtained is shown in Figure 9.12. The
distortion is 156.17. The average distortion for the training set for this quantizer using the
splitting algorithm s higher than the average distortion obtained previously. However, because
the sample size used in this example is rather small, this is no indication of relative merit. @

Weight (Ib) 180 %
X
ox 4
160 — x
X
140 -

120 ~ \ . 3
100 Ny

80 —\ S

60 — \

™~
l N
T -
40 r 1 T T
40 50 60 70 Height (in)

FIGURE 9.9 Final state of the vector quantizer.

TABLE 9.2 An alternate initial set of output points.

Height Weight
75 50
75 117
75 127

80 130

el
1©e
e
e

9.4 The Linde-Buzo-Gray Algorithm 273

TABLE 9.4 Final codebaok ohtained using the
alternative initlal codehook.

Height Weight
44 41
6() 107
64 1503
70 172

A
Weight (Ib) 180 — X
\ X
®
160] \\
2
n X
140
120 —W
X
$ 3
100 —
\)
- .
80 — Iy
60)
1
40 B T T | -

40 50 60 70 Height (i)

FIGURE 9.10 Final state of the vector quaniizar,

If the desired number of leveis is rot a power of two. then in the last step. instead of
generating two initial points from each of the output points of the vector quantizer designed
previously, we can perturb as many vectors as necessary to obtain the desired number of
vectors. For example, if we needed an eleven-level vector quantizer. we would generate a
one-level vector quantizer first, then a two-level, then a four-level, and then an eight-level
vector quantizer. At this stage. we would perturb only three of the eight vectors to get the
eleven initial output points of the eleven-level vector quantizer. The three points should be
those with the largest number of training set vectors, or the largest distortion.

274

9

VECTOR QUANTIZATION

TABLE 9.5 Progression of codebooks using splitting.
Codebook Height Weight
One-level 62 127
Initial two-level 62 127

72 137
Final two-level 58 98
oY 168
[nitial four-tevel 38 98
68 108
69 168
79 178
Final four-level 52 73
62 16
63 156
71 176
A
Weight (lby 80 - X
X
axl
160 —
X
[40 —
120 — g X
X
X
100 —
P
X
X
80 —
60 —
X
40 | | T T >
40 50 60 70 Height {in)

Two-level vector quantizer using splitting approach.

9.4 The Linde-Buzo-Gray Algorithm 275

P

Weight (Ib) 180 X
*X
X

. X
100 ~ ™~
X
X
80
-»
.

60 ~

40 — T T T >

40 50 60 70 Height (in)

FIGURE 9.12 Final design vsing the splitting approach.

The approach used by Hilbert [103] to obtain the initial output points of the vector quan-
tizer was to pick the output points randomly from the tratning set. This approach guarantees
that, in the initial stages, there will always be at least one vector from the training set in each
quantization region. However, we can still get different codebooks if we use different subsets
of the training set as our initial codebook.

Example 9.4.3;

todebook labeled

ok 1." Tr;iC}nemk
t labeled “Initial" Codebook

