ECE462 – Lecture 27

MPEG Layers

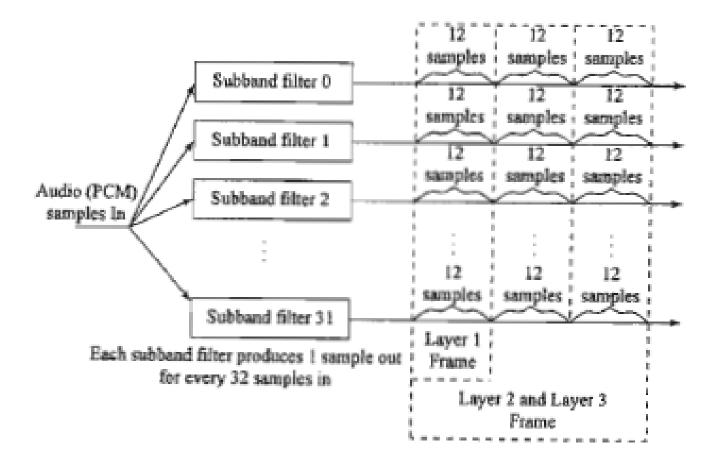
- MPEG audio offers three compatible layers :
 - Each succeeding layer able to understand the lower layers
 - Each succeeding layer offering more complexity in the psychoacoustic model and better compression for a given level of audio quality
 - each succeeding layer, with increased compression effectiveness, accompanied by extra delay
- The objective of MPEG layers: a good tradeoff between quality and bit-rate

MPEG Layers

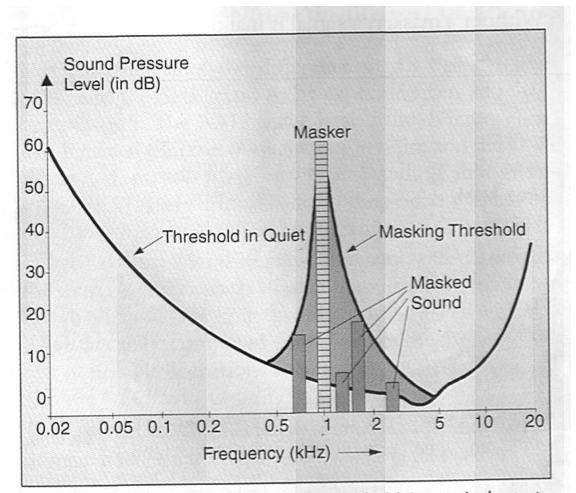
- Layer 1 quality can be quite good provided a comparatively high bit-rate is available
 - Digital Audio Tape typically uses Layer 1 at around 192 kbps
- Layer 2 has more complexity; was proposed for use in Digital Audio Broadcasting
- Layer 3 (MP3) is most complex, and was originally aimed at audio transmission over ISDN lines
- Most of the complexity increase is at the encoder, not the decoder – accounting for the popularity of MP3 players

MPEG Audio Strategy

- MPEG approach to compression relies on:
 - Quantization
 - Human auditory system is not accurate within the width of a critical band (perceived loudness and audibility of a frequency)
- MPEG encoder employs a bank of filters to:
 - Analyze the frequency ("spectral") components of the audio signal by calculating a frequency transform of a window of signal values
 - Decompose the signal into subbands by using a bank of filters (Layer 1 & 2: "quadrature-mirror"; Layer 3: adds a DCT; psychoacoustic model: Fourier transform)


MPEG Audio Strategy

- Frequency masking: by using a psychoacoustic model to estimate the just noticeable noise level:
 - Encoder balances the masking behavior and the available number of bits by discarding inaudible frequencies
 - Scaling quantization according to the sound level that is left over, above masking levels
- May take into account the actual width of the critical bands:
 - For practical purposes, audible frequencies are divided into 25 main critical bands (Table 14.1)
 - To keep simplicity, adopts a uniform width for all frequency analysis filters, using 32 overlapping subbands


Basic Algorithm

- The algorithm proceeds by dividing the input into 32 frequency subbands, via a filter bank
 - A linear operation taking 32 PCM samples, sampled in time; output is 32 frequency coefficients
- In the Layer 1 encoder, the sets of 32 PCM values are first assembled into a set of 12 groups of 32s
 - an inherent time lag in the coder, equal to the time to accumulate 384 (i.e., 12×32) samples
- Fig.14.11 shows how samples are organized
 - A Layer 2 or Layer 3, frame actually accumulates more than 12 samples for each subband: a frame includes 1,152 samples

Basic Algorithm

Basic Algorithm

▲ 1. Threshold in quiet and masking threshold (acoustical events in the gray areas will not be audible).

 A masked signal (below the threshold level may consist of low level signal contributions, quantization noise, aliasing distortion or transmission errors

Bit Allocation Algorithm

- Aim: ensure that all of the quantization noise is below the masking thresholds
- One common scheme:
 - For each subband, the psychoacoustic model calculates the Signalto-Mask Ratio (SMR)in dB
 - Then the "Mask-to-Noise Ratio" (MNR) is defined as the difference (as shown in Fig.14.12):

$$MNR_{dB} \equiv SNR_{dB} - SMR_{dB}$$
 (14.6)

- The lowest MNR is determined, and the number of code-bits allocated to this subband is incremented
- Then a new estimate of the SNR is made, and the process iterates until there are no more bits to allocate.

Bit Allocation Algorithm

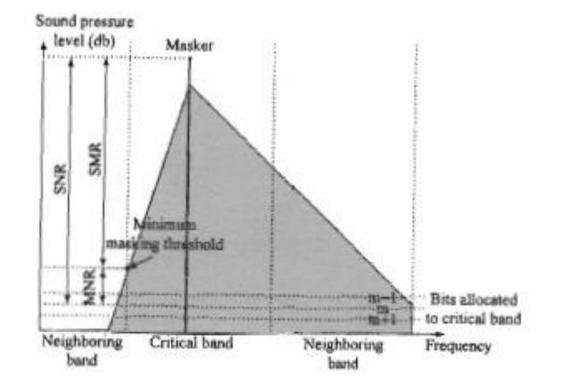
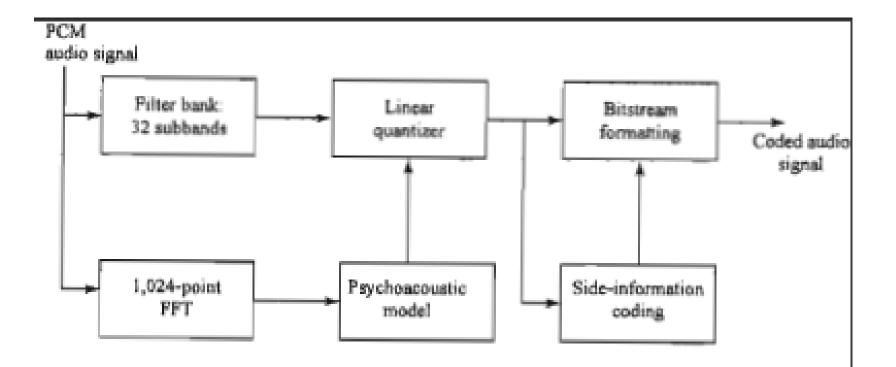
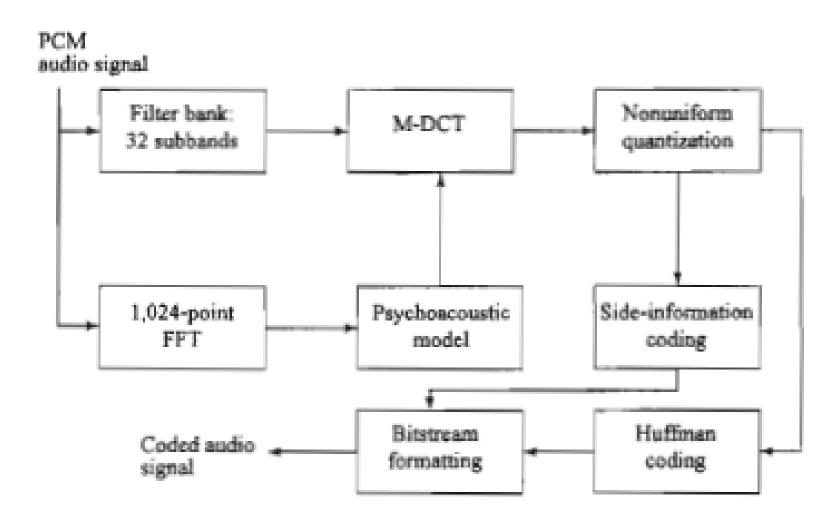




Fig. 14.12: MNR and SMR. A qualitative view of SNR, SMR and MNR are shown, with one dominate masker and *m* bits allocated to a particular critical band.

MPEG-1 Audio Layers 1 and 2

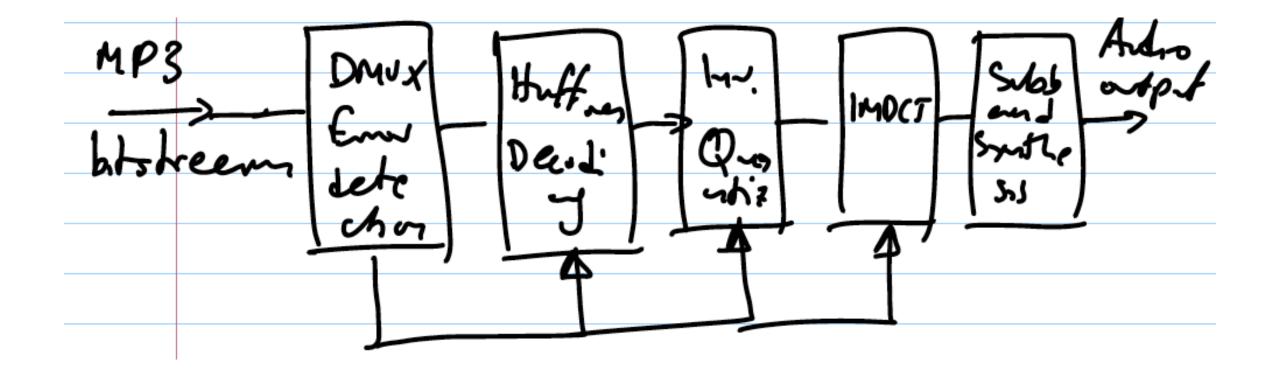

MPEG-1 Audio Layer 3 coding

Table 14.2: MP3 compression performance

Sound Quality	Bandwidth	Mode	Compression
			Ratio
Telephony	3.0 kHz	Mono	96:1
Better than	4.5 kHz	Mono	48:1
Short-wave			
Better than	7.5 kHz	Mono	24:1
AM radio			
Similar to	11 kHz	Stereo	26 - 24:1
FM radio			
Near-CD	15 kHz	Stereo	16:1
CD	> 15 kHz	Stereo	14 - 12:1

MPEG Audio Decoder (MP3)

MPEG Audio Decoder (MP3)

- As already mentioned MPEG-audio standard specifies only the decoder, which need to be as simple as possible.
- The sophistication and complexity of the encoder can be lighter as long as it satisfies the decoding standards
- How do we assess sound quality ?
- In general, there are no satisfactory objective tests.
- Listening tests are conducted with a lot of trained listeners.

MPEG Audio Decoder (MP3)

- Evaluation scores (perceptual) :
- 5 -> transparent
- 4 -> perceptible, but not annoying
- 3 -> slightly annoying
- 2 -> annoying
- 1 -> very annoying

At low bit rates (60-64 Kbps)

Layer 2 scores between 2.1 to 2.6

Layer 3 scores between 3.6 to 3.8

MPEG-2 AAC (Advanced Audio Coding)

- The standard vehicle for DVDs;
 - Audio coding technology for the DVD-Audio Recordable (DVD-AR) format, also adopted by XM Radio
- Aimed at transparent sound reproduction for theaters
 - Can deliver this at 320 kbps for five channels so that sound can be played from 5 different directions: Left, Right, Center, Left-Surround, and Right-Surround
- Also capable of delivering high-quality stereo sound at bitrates below 128 kbps

MPEG-2 AAC (Advanced Audio Coding)

- Support up to 48 channels, sampling rates between 8 kHz and 96 kHz, and bit-rates up to 576 kbps per channel
- Like MPEG-1, MPEG-2, supports three different "profiles", but with a different purpose:
 - Main profile
 - Low Complexity(LC) profile
 - Scalable Sampling Rate (SSR) profile