ECE462 – Lecture 30

• Let x[n[be a discrete signal with DTFT X(f) . Then let

• x[n] is quantized using B bits -> $x_q[n] = x[n] + e[n]$

Then, SQNR =
$$10 \log_{10} \frac{1}{2} \frac{A^2}{\sigma_e^2}$$

Now consider interpolating x[n[by a factor of M, then quantize to B bits and then decimate by a factor of M. That is

- Notice that σ_e^2 is the same whether you quantize x[n] or y[n] since the number of bits/sample is the same in both cases.
- Observe that the desired signal spectrum is between $-\frac{1}{2M} \le f \le \frac{1}{2M}$

• Thus we can use a digital low pass filter to extract the desired signal

- Note that x[n] and $\hat{x}[n]$ have the same rate
- So in this case

• SQNR₁ = 10 log₁₀
$$\frac{\frac{1}{2}A^2}{\frac{\sigma_e^2}{M}} = 10 \log_{10} \frac{A^2 M}{2\sigma_e^2} dB$$

- The gain in dB is
- SQNR₁=SQNR=10 log₁₀ $\frac{A^2 M}{2\sigma_e^2} 10 \log_{10} \frac{A^2}{2\sigma_e^2} = 10 \log_{10} M dB$
- In terms of bits $10 \log_{10} M = 6.01 B$ that is for B=1 and M=4