Chapter 3 Questions

Question 3.1

Based on the nature of values that each random variable can take, we can have the following classifications:

X: Discrete; since X is essentially count data
Y: Continuous; since Y is measured data
M: Continuous; since M is measured data
N: Discrete; since N is count data
P: Discrete; since P is count data
Q: Continuous; since Q is measured data

Question 3.3

The results could be summarized into the table below:

<table>
<thead>
<tr>
<th>Sample point</th>
<th>HHH</th>
<th>HHT</th>
<th>HTH</th>
<th>HTT</th>
<th>THH</th>
<th>THT</th>
<th>TTH</th>
<th>TTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>3-0 = 3</td>
<td>2-1 = 1</td>
<td>2-1 = 1</td>
<td>1-2 = -1</td>
<td>2-1 = 1</td>
<td>1-2 = -1</td>
<td>1-2 = -1</td>
<td>0-3 = -3</td>
</tr>
</tbody>
</table>

Question 3.5

The principal rule for solving this question is that all probabilities for all sample points within the sample space should add up to 1.

Part (a)

We desire:

\[\sum_{x=0}^{3} c(x^2 + 4) = 1 \]

So:

\[c \times [(0 + 4) + (1 + 4) + (4 + 4) + (9 + 4)] = 1 \]

\[c = \frac{1}{30} \]

Part (b)

Following the similar manner of computation:

\[C(\binom{2}{0} \binom{3}{3} + \binom{2}{1} \binom{3}{2} + \binom{2}{2} \binom{3}{1}) = 1 \]
\[C = \frac{1}{1 + 2 \times 3 + 1 \times 3} = \frac{1}{10} \]

Question 3.8

We first compute the probability associated to each sample point, then add up the corresponding sample points to obtain probability associated with each value of \(W \).

\[P(W=3) = P(TTT) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27} \]

\[P(W=1) = P(HTT) + P(THT) + P(TTH) = 3 \times \left(\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \right) = \frac{2}{9} \]

\[P(W=3) = P(HHT) + P(HTH) + P(THH) = 3 \times \left(\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \right) = \frac{4}{9} \]

\[P(W=3) = P(HHH) = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27} \]

Verify they sum up to one:

\[\frac{1}{27} + \frac{2}{9} + \frac{4}{9} + \frac{8}{27} = 1 \]

Thus, above describes a valid probability distribution on discrete random variable \(W \).

Question 3.9

Part (a)

Integrate over the value of \(X \) to obtain the area under this part of the density function:

\[P(0 < X < 1) = \int_{0}^{1} \frac{12(x+2)}{5} \, dx \]

\[= \left[\frac{x^2 + 4x}{5} \right]_{0}^{1} \]

\[= \frac{1 + 4}{5} - 0 \]

\[= 1 \]

Part (b)

Still use integration over density function to compute the probability:

\[P(1/4 < X < 1/2) = \int_{1/4}^{1/2} \frac{2(x+2)}{5} \, dx \]

\[= \left[\frac{x^2 + 4x}{5} \right]_{1/4}^{1/2} \]

\[= \frac{(1/4 + 2)/5 - (1/16 + 1)/5}{19/80} \]

\[= \frac{19}{80} \]
Question 3.11

First compute probability distribution of discrete random variable X:

Note that the values X could take on are: 0, 1, 2.

\[P(X=0) = \binom{5}{3}/\binom{7}{3} = 10/35 = 2/7 \]

\[P(X=1) = \binom{5}{2}/\binom{7}{3} = (10*2)/35 = 4/7 \]

\[P(X=2) = \binom{5}{1}/\binom{7}{3} = (5*1)/35 = 1/7 \]

Note that they sum up to 1, thus the above distribution is a valid probability distribution.

The probability histogram is as following:

![Probability Histogram](image)

Question 3.13

To obtain the cumulative distribution function, we just need to performing a cumulative running sum of the probability mass function on X.

Thus, the cumulative distribution function is shown as following:

<table>
<thead>
<tr>
<th>X</th>
<th>x < 0</th>
<th>0 ≤ x < 1</th>
<th>1 ≤ x < 2</th>
<th>2 ≤ x < 3</th>
<th>3 ≤ x < 4</th>
<th>x ≥ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(x)</td>
<td>0</td>
<td>0.41</td>
<td>0.41+0.37 =0.78</td>
<td>0.78+0.16=0.94</td>
<td>0.94+0.05=0.99</td>
<td>0.99+0.01 = 1</td>
</tr>
</tbody>
</table>
Note the ending value for the cumulative function always equals to 1.

Question 3.14

Part (a)

We just need to directly plot in the value of x into F(x):

With 12 minutes = 0.2 hours, we have:

\[F(x = 0.5) = 1 - e^{-8 \times 0.2} = 0.7981 \]

Part (b)

First, compute probability density function:

\[f(x) = F'(x) = 8e^{-8x} \]

Then, compute the probability using integration over the density function:

\[p = \int_{0}^{0.2} f(x) dx \]

\[= 8 \int_{0}^{0.2} e^{-8x} dx \]

\[= 8 \times \frac{-1}{8} [e^{-8x}]_{0}^{0.2} \]

\[= 1 - e^{-8 \times 0.2} \]

\[= 0.7981 \]

Question 3.15

First, find the cumulative distribution function F(x):

Note that from question 3.11:

P(X=0) = 2/7

P(X=1) = 4/7

P(X=2) = 1/7

Then the cumulative function for F(x) is shown as following:

<table>
<thead>
<tr>
<th>x</th>
<th>x < 0</th>
<th>0 ≤ x < 1</th>
<th>1 ≤ x < 2</th>
<th>x ≥ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(x)</td>
<td>0</td>
<td>2/7</td>
<td>2/7 + 4/7 = 6/7</td>
<td>6/7 + 1/7 = 1</td>
</tr>
</tbody>
</table>

Then use F(x) for asked quantities.
Part (a)

\[P(X = 1) = F(X = 1) - F(X = 0) = \frac{6}{7} - \frac{2}{7} = \frac{4}{7} \] (since there is no probability mass within (0,1))

Part (b)

\[P(0 < X \leq 2) = P(X \leq 2) - P(X \leq 0) = F(X = 2) - F(X = 0) = 1 - \frac{2}{7} = \frac{5}{7} \]

Question 3.16

The graph is shown as following:

![Graph Image]

Question 3.29

Part (a)

For this density function to be valid, it has to satisfy two conditions:

1. \(f(x) \geq 0 \ \forall x \)
2. $\int_{-\infty}^{+\infty} f(x)dx = 1$

Condition 1 is easily verified as exponential function never takes on negative values.

For condition 2 verification:

$$
\int_{-\infty}^{+\infty} f(x)dx = \int_{1}^{+\infty} 3x^{-4}dx
= -[x^{-3}]_{1}^{+\infty}
= 1
$$

Thus this density function is indeed valid.

Part (b)

F(x) is computed by the integration of f(x):

$$
F(X) = \int_{\infty}^{X} f(a)da
= \int_{1}^{X} 3a^{-4}da
= -[a^{-3}]_{1}^{X}
= 1 - x^{-3} \ (for \ x \geq 1)
$$

For x<1, as f(x)=0 everywhere, F(x)=0.

Part (c)

The probability can be computed using compliment:

$$
P = 1-F(4)
= 1 - \left(1 - 4^{-3}\right)
= 1/64
$$

Question 3.36

Given the questions asked are about probabilities of certain range, compute the cumulative distribution function first:

$$
F(x) = \int_{\infty}^{x} f(a)da
= \int_{0}^{x} 2(1-a)da
$$
\[[-a^2 + 2a]_0^x = -x^2 + 2x \text{ (if } 0 \leq x \leq 1) \]

If \(x < 0 \): trivially \(F(x) = 0 \)

If \(x > 1 \): \(F(x) = 1 \)

Part (a)

Use cumulative function:

\[P(X \leq 1/3) = F(x = 1/3) = -\left(\frac{1}{3}\right)^2 + \frac{2}{3} = \frac{5}{9} \]

Part (b)

Use compliment for computing the desired probability, with cumulative function:

\[P = 1 - P(x = 0.5) \]
\[= 1 - F(x = 0.5) \]
\[= 1 - (-0.5^2 + 2 \times 0.5) \]
\[= 0.25 \]

Part (c)

\[P(x < 0.75 | x \geq 0.5) = \frac{P(0.5 \leq x < 0.75)}{P(x \geq 0.5)} \]
\[= \frac{F(x = 0.75) - F(x = 0.5)}{1 - F(x = 0.5)} \]
\[= \frac{-0.75^2 + 2 \times 0.75 - (-0.5^2 + 2 \times 0.5)}{1 - (-0.5^2 + 2 \times 0.5)} \]
\[= \frac{0.9375 - 0.75}{0.25} \]
\[= 0.75 \]
Problem 3.38

Part (a)

\[p(X \leq 2, Y = 1) = p(X = 0, Y = 1) + p(X = 1, Y = 1) + p(X = 2, Y = 1) = f(0,1) + f(1,1) + f(2,1) \]
\[= \frac{0 + 1}{30} + \frac{1 + 1}{30} + \frac{2 + 1}{30} = \frac{1}{5} \]

Part (b)

\[p(X > 2, Y \leq 1) = p(X = 3, Y = 0) + p(X = 3, Y = 1) = f(3,0) + f(3,1) \]
\[= \frac{3 + 0}{30} + \frac{3 + 1}{30} = \frac{7}{30} \]

Part (c)

\[p(X > Y) = f(1,0) + f(2,0) + f(2,1) + f(3,0) + f(3,1) + f(3,2) \]
\[= \frac{(1 + 0) + (2 + 0) + (2 + 1) + (3 + 0) + (3 + 1) + (3 + 2)}{30} \]
\[= \frac{3}{5} \]

Part (d)

\[p(X + Y = 4) = f(2,2) + f(3,1) \]
\[= \frac{(2 + 2) + (3 + 1)}{30} \]
\[= \frac{4}{15} \]
Part (a)
Integrate the joint density function over all values of Y to get marginal density of X:

$$g(x) = \int_0^1 f(x,y) dy$$

$$= \int_0^1 \frac{2}{3} (x + 2y) dy$$

$$= \frac{2}{3} [xy + y^2]_0^1$$

$$= \frac{2x + 2}{3}$$

Part (b)
Integrate the joint density function over all values of X to get marginal density of Y:

$$h(y) = \int_0^1 f(x,y) dx$$

$$= \int_0^1 \frac{2}{3} (x + 2y) dx$$

$$= \frac{2}{3} \left[\frac{x^2}{2} + 2xy \right]_0^1$$

$$= \frac{4y + 1}{3}$$

Part (c)
This event corresponds to the condition on random variable: $X \leq 0.5$.

As only the drive-through facility is in the picture of the problem, we only need to consider the marginal density function $g(x)$.

Integrate over the density function to get the desired event probability:

$$p(X \leq 0.5) = \int_0^{0.5} g(x) dx$$

$$= \int_0^{0.5} \frac{2x + 2}{3} dx$$
\[
\frac{x^2 + 2x}{3} \bigg|_{0}^{0.5} = \frac{1.25}{3} = \frac{5}{12}
\]

Problem 3.56

Part (a)

Note that for values of \(f(x,y)\), \(Y\)'s range is actually defined based on \(x\), we can have the following observation:

Given a fixed value of \(Y = 0.5\):

Case 1: \(x = 0.3\). Then \(y < 1-x\), and thus \(f(0.3, 0.5) = 6 \times 0.3 = 1.8\) (Note that since it’s density function, so a value greater than 1 is possible).

Case 2: \(x = 0.7\). Then \(y > 1-x\), and thus \(f(0.7, 0.5) = 0\)

Thus we have \(f(0.3, 0.5) \neq f(0.7, 0.5)\), meaning the probability density for \(y = 0.5\) is dependent on \(x\). Thus, \(X\) and \(Y\) are not independent.

Part (b)

Note that for \(Y = 0.5\), when \(X \geq 0.5\), \(y < 1-x\) doesn’t hold and leads to probability density 0. Thus, we only need to consider domains of \(X\) where the density is non-zero.

\[
P(X > 0.3 \mid Y = 0.5)
= \int_{0.3}^{1} f(x, 0.5) dx
= \int_{0.3}^{0.5} f(x, 0.5) dx
= \int_{0.3}^{0.5} 6x dx
= [3x^2]_{0.3}^{0.5}
= 0.48
\]
Problem 3.57

Part (a)

The requirement for probability density function to be valid is that it would be integrated to 1 over all domains.

\[
\int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dx \, dy \, dz
\]

\[
= \int_0^1 \int_0^1 \int_0^1 kxy^2z \, dx \, dy \, dz
\]

\[
= \int_0^1 \int_0^1 \frac{kxy^2}{2} \, dy \, dz
\]

\[
= \int_0^1 \frac{kz}{6} \, dz
\]

\[
= \frac{k}{3}
\]

\[
= 1 \text{ (by definition)}
\]

Thus, \(k = 3 \).

Part (b)

Integrate the corresponding region with respect to each of the variable, we have:

\[
p(X < \frac{1}{4}, Y > \frac{1}{2}, 1 < Z < 2)
\]

\[
= \int_1^2 \int_{\frac{1}{2}}^{\frac{1}{4}} \int_0^1 f(x, y, z) \, dx \, dy \, dz
\]

\[
= \int_1^2 \int_{\frac{1}{2}}^{\frac{1}{4}} \int_0^1 kxy^2z \, dx \, dy \, dz
\]

\[
= \int_1^2 \int_{\frac{1}{2}}^{\frac{1}{4}} \frac{kxy^2}{32} \, dy \, dz
\]

\[
= \int_1^2 \frac{7kz}{768} \, dz
\]

\[
= \left[\frac{7kz^2}{1536} \right]_1^2
\]
\[
\begin{align*}
&= \frac{63}{1536} \\
&= \frac{21}{512}
\end{align*}
\]