3.4 Costas Receiver

Coherent Demodulation Output

\[v_0(t) = \frac{1}{2} A_c A'_c \cos(\phi) m(t) \]

- To maximize \(v_0(t) \), would like \(\phi \approx 0 \).

- For \(v_0(t) \) to be proportional to \(m(t) \), \(\phi \) should be constant.

Thus, we wish to synchronize the local oscillator. Let \(A'_c = 1 \) for simplicity.
3.4 Costas Receiver

Costas Receiver

Coherent Demodulation

\[
\begin{align*}
\text{DSB-SC wave} & \quad A, \cos(2\pi f_c t + \phi) \\
\text{Product Modulator} & \quad A, \cos(2\pi f_c t + \phi) \\
\text{Low-pass filter} & \quad \text{Voltage-controlled Oscillator} \\
\text{Phase Shifter} & \quad -90^\circ \\
\sin(2\pi f_c t + \phi) & \quad \cos(2\pi f_c t + \phi) \\
\text{Product Modulator} & \quad \text{Low-pass filter} \\
\text{Low-pass Filter} & \quad \text{Phase Discriminator} \\
\text{Demodulated Signal} & \quad \text{Local oscillator output}
\end{align*}
\]

Goals: (1) Coherent demodulation of DSB-SC input signal.
(2) Tweak the local oscillator phase such that \(\phi = 0 \).

Costas Receiver: Phase Lock Circuit

\[
\begin{align*}
\text{DSB-SC wave} & \quad A, \cos(2\pi f_c t + \phi) \\
\text{Product Modulator} & \quad \text{Voltage-controlled Oscillator} \\
\text{Low-pass filter} & \quad \text{Phase Discriminator} \\
-90^\circ & \quad \sin(2\pi f_c t + \phi) \\
\text{Product Modulator} & \quad \text{Low-pass filter} \\
\text{Low-pass Filter} & \quad \text{Phase Discriminator}
\end{align*}
\]

Goals: (1) Coherent demodulation of DSB-SC input signal.
(2) Tweak the local oscillator phase such that \(\phi = 0 \).
3.4 Costas Receiver

Costas Receiver: Phase Lock Circuit

$\phi < 0$: Freq of local oscillator needs to temporarily increase

local oscillator phase lags behind carrier and must increase its frequency to catch up.
Costas Receiver: In-Phase Coherent Detector

\[V_I(f) = \frac{e^{j\phi}}{2} S(f - f_c) + \frac{e^{-j\phi}}{2} S(f + f_c) \]

\[= \frac{\cos(\phi) + j \sin(\phi)}{2} S(f - f_c) + \frac{\cos(-\phi) + j \sin(-\phi)}{2} S(f + f_c) \]

\[= \frac{\cos(\phi) + j \sin(\phi)}{2} S(f - f_c) + \frac{\cos(-\phi) - j \sin(\phi)}{2} S(f + f_c) \]

\[= \frac{\cos(\phi) + j \sin(\phi)}{2} [S(f - f_c) + S(f + f_c)] + \frac{\cos(\phi) - j \sin(\phi)}{2} [S(f - f_c) - S(f + f_c)] \]

\[\approx \frac{1}{2} \left[S(f - f_c) + S(f + f_c) \right] + j \sin(\phi) \frac{1}{2} \left[S(f - f_c) - S(f + f_c) \right] \]

for \(\phi \ll 1 \).

The closer \(\phi \) is to zero, the more significant the baseband term of \(V_I(t) \) and vice versa.
Costas Receiver: In-Phase Coherent Detector

\[s(t) = A_c \cos(2\pi f_c t) m(t) \]

\[v_Q(t) = s(t) \cdot \sin(2\pi f_c t + \phi) \]

Recall

\[\sin(2\pi f_c t + \phi) = \frac{e^{i\phi}}{2j} e^{2\pi f_c t} - \frac{e^{-j\phi}}{2j} e^{-2\pi f_c t} = \frac{e^{i\phi}}{2j} \delta(f - f_c) - \frac{e^{-j\phi}}{2j} \delta(f + f_c) \]

\[V_Q(f) = S(f) \ast \left[\frac{e^{i\phi}}{2j} \delta(f - f_c) - \frac{e^{-j\phi}}{2j} \delta(f + f_c) \right] \]

\[= \frac{e^{i\phi}}{2j} S(f) \ast \delta(f - f_c) - \frac{e^{-j\phi}}{2j} S(f) \ast \delta(f + f_c) \]

\[= \frac{e^{i\phi}}{2j} S(f - f_c) - \frac{e^{-j\phi}}{2j} S(f + f_c) \]

\[\approx \frac{1}{2} \mathrm{f}_{\text{small}} \left[S(f - f_c) + S(f + f_c) \right] \]

For \(\phi \) small.

Costas Receiver: Quadrature-Phase Detector

\[V_Q(f) = \frac{e^{i\phi}}{2j} S(f - f_c) - \frac{e^{-j\phi}}{2j} S(f + f_c) \]

\[= \frac{\cos(\phi) + j \sin(\phi)}{2j} S(f - f_c) - \frac{\cos(-\phi) + j \sin(-\phi)}{2j} S(f + f_c) \]

\[= \frac{\cos(\phi) + j \sin(\phi)}{2j} S(f - f_c) - \frac{\cos(\phi) - j \sin(\phi)}{2j} S(f + f_c) \]

\[= \cos(\phi) \left[S(f - f_c) - S(f + f_c) \right] + j \sin(\phi) \left[S(f - f_c) + S(f + f_c) \right] \]

for \(\phi \ll 1 \).
Costas Receiver: Quadrature-Phase Detector

\[V_Q(f) = \frac{e^{j\phi}}{2j} S(f - f_c) - \frac{e^{-j\phi}}{2j} S(f + f_c) \]
\[= \frac{\cos(\phi) + j \sin(\phi)}{2j} S(f - f_c) - \frac{\cos(\phi) - j \sin(\phi)}{2j} S(f + f_c) \]
\[= \frac{\cos(\phi)}{2j} \left[S(f - f_c) - S(f + f_c) \right] + \frac{\sin(\phi)}{2j} \left[S(f - f_c) + S(f + f_c) \right] \]

For \(\phi \ll 1 \), the closer \(\phi \) is to zero, the more negligible the baseband term of \(v_Q(t) \) and vice versa.

For \(\phi \) small.

\[v_I(t) \quad \text{and} \quad v_Q(t) \]

\[v_I(t) = \frac{A_c}{2} \cos(2\pi f_c t + \phi) \]
\[v_Q(t) = \frac{A_c}{2} \sin(2\pi f_c t + \phi) \]
3.4 Costas Receiver

Costas Receiver: \(v_I(t)\) and \(v_Q(t)\)

\[
A_c \cos(2\pi f_c t + \phi) m(t) = \frac{A_c}{2} \cos(\phi m(t)) + \frac{A_c}{2} \cos(\phi m(t))
\]

- **Product Modulator**
- **Low-pass Filter**
- **Phase Shifter**
- **Voltage-controlled Oscillator**
- **Phase Discriminator**

DSB-SC wave

\[
A_c \cos(2\pi f_c t) m(t)
\]

Demodulated Signal

Spectrum

Costas Receiver: Low-Pass Filter

\[
A_c \cos(2\pi f_c t + \phi) m(t) = \frac{A_c}{2} \cos(\phi m(t)) + \frac{A_c}{2} \cos(\phi m(t))
\]

- **Product Modulator**
- **Low-pass Filter**
- **Voltage-controlled Oscillator**
- **Phase Shifter**
- **Phase Discriminator**

DSB-SC wave

\[
A_c \cos(2\pi f_c t) m(t)
\]

Demodulated Signal

Spectrum

Costas Receiver: Local Oscillator Control

\[
A_c \cos(2\pi f_c t + \phi) m(t) = \frac{A_c}{2} \cos(\phi m(t)) + \frac{A_c}{2} \cos(\phi m(t))
\]

- **Product Modulator**
- **Low-pass Filter**
- **Voltage-controlled Oscillator**
- **Phase Shifter**
- **Phase Discriminator**

DSB-SC wave

\[
A_c \cos(2\pi f_c t) m(t)
\]

Demodulated Signal

Spectrum
Costas Receiver: Phase Discriminator

Two components in sequence:

(1) multiplier

\[v_0(t) \cdot v'_0(t) = \frac{A_c}{2} \cos(\phi) m(t) \cdot \frac{A_c}{2} \sin(\phi) m(t) \]

\[= \frac{A_c^2}{4} \cos(\phi) \sin(\phi) m^2(t) \approx \frac{A_c^2}{4} \phi m^2(t) \]

for \(\phi \ll 1 \).

Costas Receiver: Voltage-controlled Oscillator

▶ If \(g(t) > 0 \) (or \(\phi > 0 \)), then the local oscillator will decrease from \(f_c \) proportional to the value of \(g(t) \) (or \(\phi \)).

▶ If \(g(t) < 0 \) (or \(\phi < 0 \)), then the local oscillator will increase from \(f_c \) proportional to the value of \(g(t) \) (or \(\phi \)).
3.4 Costas Receiver

Costas Receiver: Voltage-controlled Oscillator

- $\phi > 0$: Freq of local oscillator needs to temporarily decrease
- $\phi < 0$: Freq of local oscillator needs to temporarily increase

![Diagram of Costas Receiver](image)

3.5 Quadrature-Carrier Multiplexing

Multiplexing and QAM

Multiplexing: to send multiple message simultaneously

Quadrature Amplitude Multiplexing (QAM): (a.k.a quadrature-carrier multiplexing) amplitude modulation scheme that enables two DSB-SC waves with independent message signals to occupy the same channel bandwidth (i.e., same frequency channel) yet still be separated at the receiver.
3.5 Quadrature-Carrier Multiplexing

QAM: Transmitter

Message signal \(m_1(t) \)

Product Modulator

\[s(t) = A_c m_1(t) \cos(2\pi f_c t) + A_c m_2(t) \sin(2\pi f_c t) \]

-90 degree Phase Shifter

Product Modulator

Message signal \(m_2(t) \)

QAM: Receiver

Product Modulator

Low-pass filter

\[\frac{1}{2} A_c A'_c m_1(t) \]

-90 degree Phase Shifter

Product Modulator

Low-pass filter

\[\frac{1}{2} A_c A'_c m_2(t) \]

Costas receiver may be used to synchronize the local oscillator for demodulation.