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Chapter 7: Digital Band-Pass Modulation
Techniques
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Binary Modulation Schemes

c(t) = Ac cos(2πfct + φc)

I Binary amplitude-shift keying (BASK): carrier amplitude is keyed between

two possible values (typically
√
Eb and 0 to represent 1 and 0, respectively);

carrier phase and frequency are held constant.

I Binary phase-shift keying (BPSK):carrier phase is keyed between two
possible values (typically 0 and π to represent 1 and 0, respectively); carrier
amplitude and frequency are held constant.

I Binary frequency-shift keying (BFSK): carrier frequency is keyed between
two possible values (typically f1 and f2 to represent 1 and 0, respectively);
carrier amplitude and phase are held constant.
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Preliminaries

c(t) = Ac cos(2πfct + φc)

I Tb represents the bit duration

I Eb represents the energy of the transmitted signal per bit

I In digital communications the carrier amplitude is normalized to have unit
energy in one bit duration; thus we set

Ac =

√
2

Tb

I The carrier frequency fc = k
Tb

for k ∈ Z to ensure an integer number of
carrier cycles in a bit duration.
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Carrier for Digital Communications

Therefore

c(t) =

√
2

Tb
cos(2πfct + φc).

For k = 4

0
t
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Binary Amplitude-Shift Keying (BASK)

Let φc = 0 and the carrier frequency is fc .

b(t) =

{ √
Eb for binary symbol 1

0 for binary symbol 0

c(t) =

√
2

Tb
cos(2πfct + φc) =

√
2

Tb
cos(2πfct)

s(t) = b(t) · c(t)

=

{ √
2Eb

Tb
cos(2πfct) for symbol 1

0 for symbol 0
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Binary Phase-Shift Keying (BPSK)

si(t) =


√

2Eb

Tb
cos(2πfct) for symbol 1 (i = 1)√

2Eb

Tb
cos(2πfct + π) for symbol 0 (i = 2)

=


√

2Eb

Tb
cos(2πfct) for symbol 1 (i = 1)

−
√

2Eb

Tb
cos(2πfct) for symbol 0 (i = 2)
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BPSK Transmitter and Receiver
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BPSK Transmitter and Receiver
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BPSK Transmitter and Receiver
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BPSK Transmitter and Receiver
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DPSK

DPSK = Differential Phase Shift Keying

Differential Phase Shift Keying = Differential Encoding + PSK

I To send “0”, we advance the carrier phase by π

I To send a “1”, we leave the carrier phase unchanged

Consequence: DPSK detector must measure the relative phase
difference between waveforms received in two consecutive intervals.
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Differential Encoding

dk = dk−1 ⊕ bk

To produce dk , need:

1. dk−1 (previous differentially encoded bit)

2. bk (current input bit)

Logic
Network

Delay
Tb

0011100010

10111101001

1011110100
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Differential Encoding

Logic
Network

Delay
Tb

0011100010

10111101001

1011110100

bk 0 0 1 1 1 0 0 0 1 0
dk−1 1 0 1 1 1 1 0 1 0 0

dk = dk−1 ⊕ bk 1 0 1 1 1 1 0 1 0 0 1

Professor Deepa Kundur (University of Toronto) Final Exam Review 18 / 103

DPSK Transmitter and Receiver

DPSK Transmitter
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DPSK Transmitter and Receiver

DPSK Receiver

Delay
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Threshold
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Sample
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DPSK Transmitter and Receiver

DPSK Receiver

Delay
Tb

Low-pass
Filter

Threshold

Decision-
Making Device

Sample
at time

Case 1: No phase difference (note: γ ∈ {0, 1})

v(t) = LPF

[
2

Tb
cos(2πfc t + γπ) · cos(2πfc t + γπ)

]
= LPF

[
2

Tb
cos2(2πfc t + γπ)

]
= LPF

[
1

Tb
[1 + cos(4πfc t + γπ)]

]
= +

1

Tb
> 0

Case 2: Phase difference of π

v(t) = LPF

[
2

Tb
cos(2πfc t) · cos(2πfc t + π)

]
= LPF

[
[−

2

Tb
cos2(2πfc t)

]
= LPF

[
−

1

Tb
[1 + cos(4πfc t)]

]
= −

1

Tb
< 0
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DPSK Transmitter and Receiver
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Delay
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Sample
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bk 0 0 1 1 1 0 0 0 1 0
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dk = dk−1 ⊕ bk 1 0 1 1 1 1 0 1 0 0 1
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vk − − + + + − − − + −
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DPSK Transmitter and Receiver

DPSK Receiver

Delay
Tb

Low-pass
Filter

Threshold

Decision-
Making Device

Sample
at time

bk 0 0 1 1 1 0 0 0 1 0
dk−1 1 0 1 1 1 1 0 1 0 0

dk = dk−1 ⊕ bk 1 0 1 1 1 1 0 1 0 0 1
φc 0 π 0 0 0 0 π 0 π π 0
vk − − + + + − − − + −
b̂k 0 0 1 1 1 0 0 0 1 0
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Binary Frequency-Shift Keying (BFSK)

Let φc = 0, |f1 − f2| = 1
Tb

and fi = ki
Tb

(integer number of cycles in a

bit duration).

si(t) =


√

2Eb

Tb
cos(2πf1t) for symbol 1 (i = 1)√

2Eb

Tb
cos(2πf2t) for symbol 0 (i = 2)

0
t

0 1 0 1 1 0 0 0

4 cycles 4 cycles 4 cycles 4 cycles 4 cycles5 cycles 5 cycles 5 cycles
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BFSK Transmitter and Receiver
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BFSK Transmitter and Receiver
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BFSK Transmitter and Receiver
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Receiver

Envelope
Detector

Envelope
Detector

Band-pass
�lter, f1

Comparator

Band-pass
�lter, f2

v1

v2

{ 1     if   v1 > v2
0     if   v2 > v1

Output of Lower Envelope Detector and Sampler (v2)

0
t

0 1 0 1 1 0 0 0

4 cycles 4 cycles 4 cycles 4 cycles 4 cycles

Professor Deepa Kundur (University of Toronto) Final Exam Review 29 / 103

BFSK Transmitter and Receiver
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Summary

BASK s1(t) =
√

2Eb

Tb
cos(2πfct) for symbol 1

s2(t) = 0 for symbol 0

BPSK s1(t) =
√

2Eb

Tb
cos(2πfct + 0) for symbol 1

s2(t) =
√

2Eb

Tb
cos(2πfct + π) for symbol 0

BFSK s1(t) =
√

2Eb

Tb
cos(2πf1t) for symbol 1

s2(t) =
√

2Eb

Tb
cos(2πf2t) for symbol 0
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Summary: Phasor Diagrams

BASK

BPSK

BFSK

symbol
1

symbol
1

symbol
1

symbol
0

symbol
0

symbol
0
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Summary: Phasor Diagrams

BASK

BPSK (antipodal)

BFSK (orthogonal)

symbol
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symbol
0

symbol
0

symbol
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M-ary Digital Modulation Schemes
For M = 2m and T = mTb,

I M-ary Phase-Shift Keying

si (t) =

√
2E

T
cos

(
2πfct +

2π

M
i

)
i = 0, 1, . . . ,M − 1, 0 ≤ t ≤ T .

I M-ary Quadrature Amplitude Modulation

si (t) =

√
2E0

T
ai cos(2πfct)−

√
2E0

T
bi sin(2πfct)

i = 0, 1, . . . ,M − 1, 0 ≤ t ≤ T .

I M-ary Frequency-Shift Keying

si (t) =

√
2E

T
cos
( π
T

(n + i)t
)

i = 0, 1, . . . ,M − 1, 0 ≤ t ≤ T .
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Chapter 2: Fourier Representation of
Signals and Systems
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Communication Systems: Foundational Theories

I Modulation Theory: piggy-back information-bearing signal on a
carrier signal

I Detection Theory: estimating or detecting the
information-bearing signal in a reliable manner

I Probability and Random Processes: model channel noise and
uncertainty at receiver

I Fourier Analysis: view signal and system in another domain to
gain new insights

information
consumption

information
source transmitter receiver

channel
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The Fourier Transform (FT)

G (f ) =

∫ ∞
−∞

g(t)e−j2πft

g(t) =

∫ ∞
−∞

G (f )e+j2πft

Notation:

g(t) 
 G (f )

G (f ) = F [g(t)]

g(t) = F−1 [G (f )]
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FT Synthesis Equation

g(t) =

∫ ∞
−∞

G (f )e j2πftdt

I g(t) is the sum of scaled complex sinusoids

I e j2πft = cos(2πft) + jsin(2πft) ≡ complex sinusoid
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e j2πft = cos(2πft) + j sin(2πft)

cos(2πft)

0

t

sin(2πft)

0

t
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FT Analysis Equation

G (f ) =

∫ ∞
−∞

g(t)e−j2πftdt

I The analysis equation represents the inner product between g(t)

and e j2πft .

I The analysis equation states that G (f ) is a measure of similarity

between g(t) and e j2πft , the complex sinusoid at frequency f Hz.

Professor Deepa Kundur (University of Toronto) Final Exam Review 40 / 103



|G (f )| and ∠G (f )

g(t) =

∫ ∞
∞

G (f )e j2πf tdf

=

∫ ∞
∞
|G (f )|e j(2πf t+∠G(f ))df

I |G (f )| dictates the relative presence of the sinusoid of frequency
f in g(t).

I ∠G (f ) dictates the relative alignment of the sinusoid of
frequency f in g(t).
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Low, Mid and High Frequency Signals

Q: Which of the following signals appears higher in frequency?

1. cos(4× 106πt + π/3)

2. sin(2πt + 10π) + 17 cos2(10πt)

A: cos(4× 106πt + π/3).
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Importance of FT Theorems and Properties

I The Fourier transform converts a signal or system representation
to the frequency-domain, which provides another way to
visualize a signal or system convenient for analysis and design.

I The properties of the Fourier transform provide valuable insight
into how signal operations in the time-domain are described in
the frequency-domain.
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FT Theorems and Properties
Property/Theorem Time Domain Frequency Domain
Notation: g(t) 
 G(f )

g1(t) 
 G1(f )
g2(t) 
 G2(f )

Linearity: c1g1(t) + c2g2(t) 
 c1G1(f ) + c2G2(f )

Dilation: g(at) 
 1
|aG

(
f
a

)
Conjugation: g∗(t) 
 G∗(−f )
Duality: G(t) 
 g(−f )
Time Shifting: g(t − t0) 
 G(f )e−j2πft0

Frequency Shifting: e j2πfc tg(t) 
 G(f − fc )
Area Under G(f ): g(0) =

∫∞
−∞ G(f )df

Area Under g(t):
∫∞
−∞ g(t)dt = G(0)

Time Differentiation: d
dt
g(t) 
 j2πfG(f )

Time Integration :
∫ t
−∞ g(τ)dτ 
 1

j2πf
G(f )

Modulation Theorem: g1(t)g2(t) 

∫∞
−∞ G1(λ)G2(f − λ)dλ

Convolution Theorem:
∫∞
−∞ g1(τ)g2(t − τ) 
 G1(f )G2(f )

Correlation Theorem:
∫∞
−∞ g1(t)g∗2 (t − τ)dt 
 G1(f )G∗2 (f )

Rayleigh’s Energy Theorem:
∫∞
∞ |g(t)|2dt =

∫∞
∞ |G(f )|2df
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Time-Bandwidth Product

time-duration of a signal × frequency bandwidth = constant

0 1/T

2/T

3/T

4/T

AT

-1/T

-2/T
-3/T

-4/T

AT sinc(fT)

T /2-T/2

A

Arect(t/T)

t f

T larger

duration
null-to-null
bandwidth

Note: the constant depends on the definitions of duration and
bandwidth and can change with the shape of signals being considered
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LTI Systems and Filtering
LTI System

impulse response

LTI System

frequency response

I For systems that are linear time-invariant (LTI), the Fourier transform
provides a decoupled description of the system operation on the input signal
much like when we diagonalize a matrix.

I This provides a filtering perspective to how a linear time-invariant system
operates on an input signal.

I The LTI system scales the sinusoidal component corresponding to frequency
f by H(f ) providing frequency selectivity.
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Dirac Delta Function

Definition:

1. δ(t) = 0, t 6= 0

2. The area under δ(t) is
unity:∫ ∞

−∞
δ(t)dt = 1

Note: δ(0) = undefined

t t

Professor Deepa Kundur (University of Toronto) Final Exam Review 47 / 103

Dirac Delta Function

I can be interpreted as the limiting case of a family of functions of
unit area but that become narrower and higher

t t

all functions have
unit area

T1

T2

T3

T1

T2

T3

1 1
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Dirac Delta Function

I Sifting Property: ∫ ∞
−∞

g(t)δ(t − t0)dt = g(t0)

I Convolution with δ(t):

g(t) ? δ(t − t0) = g(t − t0)

Professor Deepa Kundur (University of Toronto) Final Exam Review 49 / 103

The Fourier Transform and the Dirac Delta
δ(t) 
 1

1 
 δ(f )

e j2πf0t 
 δ(f − f0)

cos(2πf1t) =
e j2πf1t

2
+

e−j2πf1t

2



1

2
δ(f − f1) +

1

2
δ(f + f1)

sin(2πf1t) =
e j2πf1t

2j
− e−j2πf1t

2j



1

2j
δ(f − f1)− 1

2j
δ(f + f1)

0

t

0

t

f

1/2 1/2

f

-0.5/j

0.5/jsine

-f1

-f1
f1

f1
1

f1
1

cosine

f1
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Fourier Transforms of Periodic Signals

g(t) =
∞∑

n=−∞

cne
j2πnf0t 
 G (f ) =

∞∑
n=−∞

cnδ(f − nf0)
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t

g(t)

A

sinc

k

k
c

10 2-1-2

-3 3 4 5-4-5

sinc

0 2-1-2

-3 3 4 5-4-5
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Chapter 3: Amplitude Modulation
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Amplitude Modulation

I In modulation need two things:

1. a modulated signal: carrier signal: c(t)
2. a modulating signal: message signal: m(t)

I carrier:
I c(t) = Ac cos(2πfct); phase φc = 0 is assumed.

I message:
I m(t) (information-bearing signal)
I assume bandwidth/max freq of m(t) is W
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Amplitude Modulation

Three types studied:

1. Amplitude Modulation (AM)
(yes, it has the same name as the class of modulation techniques)

2. Double Sideband-Suppressed Carrier (DSB-SC)

3. Single Sideband (SSB)
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Amplitude Modulation

sAM(t) = Ac [1 + kam(t)] cos(2πfct)
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Amplitude Modulation Techniques
AM: For:

1. 1 + kam(t) > 0 (envelope is always positive); and

2. fc �W (message moves slowly compared to carrier)

m(t) can be recovered with an envelope detector.

AM
wave

Output
+

-
+

-
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Amplitude Modulation Techniques
AM:

sAM(t) = Ac [1 + kam(t)] cos(2πfct)

SAM(f ) =
Ac

2
[δ(f − fc) + δ(f + fc)] +

kaAc

2
[M(f − fc) + M(f + fc)]

f

S  (f )

f

S   (f )

f

S    (f )

f

S    (f )

2W 2W

2W 2W

W W

W W

AM

USSB

LSSB

DSB

I highest power

I BT = 2W

I lowest complexity
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Amplitude Modulation Techniques
DSB-SC:

sDSB(t) = Ac cos(2πfct)m(t)

SDSB(f ) =
Ac

2
[M(f − fc) + M(f + fc)]

f

S  (f )

f

S   (f )

f

S    (f )

f

S    (f )

2W 2W

2W 2W

W W

W W

AM

USSB

LSSB

DSB

I lower power

I BT = 2W

I higher complexity
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Amplitude Modulation Techniques

DSB-SC:

I An envelope detector will not be able to recover m(t); it will
instead recover |m(t)|.

I Coherent demodulation is required.

Product
Modulator

Low-pass
�lter

Local 
Oscillaor

Demodulated
Signal

v  (t)0s(t)
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Amplitude Modulation Techniques
QAM:

sQAM(t) = Acm1(t) cos(2πfct) + Acm2(t) sin(2πfct)

SQAM(f ) =
Ac

2
[M1(f − fc) + M1(f + fc)] +

Ac

2
[jM2(f − fc)− jM2(f + fc)]

f

S   (f )

2W 2W

QAM

I lower power (no carrier)

I BT = 2W /2 messages = W per message.

I higher complexity
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Amplitude Modulation Techniques

QAM Transmitter:

-90 degree
Phase Shifter

Product
Modulator

Product
Modulator

Multiplexed
Signal

Message
signal

Message
signal

s(t) = Acm1(t) cos(2πfct) + Acm2(t) sin(2πfct)
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Amplitude Modulation Techniques

QAM Receiver:

s(t) = Acm1(t) cos(2πfct) + Acm2(t) sin(2πfct)

Product
Modulator

Low-pass
Filter

Product
Modulator

Low-pass
�lter

Multiplexed
Signal

-90 degree
Phase Shifter
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Amplitude Modulation Techniques
SSB:

sUSSB(t) =
Ac

2
m(t) cos(2πfct)− Ac

2
m̂(t) sin(2πfct)

SUSSB(f ) =

{
Ac

2 [M(f − fc) + M(f + fc)] |f | ≥ fc
0 |f | < fc

sLSSB(t) =
Ac

2
m(t) cos(2πfct) +

Ac

2
m̂(t) sin(2πfct)

SLSSB(f ) =

{
0 |f | > fc
Ac

2 [M(f − fc) + M(f + fc)] |f | ≤ fc

Hilbert Transform:

H(f ) = -j sgn(f )M(f ) M(f )

f

H(f )
j

-j

h(t) = 1/(  t)m(t) m(t)
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Amplitude Modulation Techniques
SSB:

upper SSB

lower SSB

f

S  (f )

f

S   (f )

f

S    (f )

f

S    (f )

2W 2W

2W 2W

W W

W W

AM

USSB

LSSB

DSB

I lowest power

I BT = W

I highest complexity
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Amplitude Modulation Techniques

SSB:

I Coherent demodulation works here as well.

Product
Modulator

Low-pass
�lter

Local 
Oscillaor

Demodulated
Signal

v  (t)0s(t)
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Costas Receiver

-90 degree
Phase Shifter

Voltage-controlled
Oscillator

Product
Modulator

Low-pass
Filter

Phase
Discriminator

Product
Modulator

Low-pass
�lter

DSB-SC wave

Demodulated
Signal

Coherent Demodulation

Circuit for Phase Locking

v  (t)0local oscillator output
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Costas Receiver

-90 degree
Phase Shifter

Voltage-controlled
Oscillator

Product
Modulator

Low-pass
Filter

Phase
Discriminator

Product
Modulator

Low-pass
�lter

DSB-SC wave

Demodulated
Signal

Q-Channel (quadrature-phase coherent detector)

I-Channel (in-phase coherent detector)

v  (t)I

v  (t)Q
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Chapter 4: Angle Modulation
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Angle Modulation
I Phase Modulation (PM):

θi (t) = 2πfct + kpm(t)

fi (t) =
1

2π

dθi (t)

dt
= fc +

kp
2π

dm(t)

dt
sPM(t) = Ac cos[2πfct + kpm(t)]

I Frequency Modulation (FM):

θi (t) = 2πfct + 2πkf

∫ t

0

m(τ)dτ

fi (t) =
1

2π

dθi (t)

dt
= fc + kfm(t)

sFM(t) = Ac cos

[
2πfct + 2πkf

∫ t

0

m(τ)dτ

]
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carrier

message

amplitude
modulation

phase
modulation

frequency
modulation
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Angle Modulation

PM and FM:

Integrator Phase
Modulator

m(t) s   (t)FM

Di�erentiator Frequency
Modulator

m(t) s   (t)PM
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Properties of Angle Modulation

1. Constancy of transmitted power

2. Nonlinearity of angle modulation

3. Irregularity of zero-crossings

4. Difficulty in visualizing message

5. Bandwidth versus noise trade-off
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Narrowband FM

I Suppose m(t) = Amcos(2πfmt).

fi (t) = fc + kf Amcos(2πfmt) = fc + ∆f cos(2πfmt)

∆f = kf Am ≡ frequency deviation

θi (t) = 2π

∫ t

0

fi (τ)dτ

= 2πfct +
∆f

fm
sin(2πfmt) = 2πfct + βsin(2πfmt)

β =
∆f

fm
sFM(t) = Ac cos [2πfct + βsin(2πfmt)]

For narrow band FM, β � 1.
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Narrowband FM

Modulation:

sFM(t) ≈ Ac cos(2πfct)︸ ︷︷ ︸
carrier

−β Ac sin(2πfct)︸ ︷︷ ︸
−90oshift of carrier

sin(2πfmt)︸ ︷︷ ︸
2πfm
Am

∫ t
0 m(τ)dτ︸ ︷︷ ︸

DSB-SC signal

Modulating
wave

Integrator
Narrow-band

FM wave
Product

Modulator

-90 degree
Phase Shifter carrier

+
-
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Carson’s Rule

A significant component of the FM signal is within the following
bandwidth:

BT ≈ 2∆f + 2fm = 2∆f

(
1 +

1

β

)
where ∆f is the maximum frequency deviation and fm is the highest
frequency in the modulating signal.

I For β � 1, BT ≈ 2∆f = 2kfAm

I For β � 1, BT ≈ 2∆f 1
β

= 2∆f
∆f /fm

= 2fm
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Carson’s Rule
Example: Find the bandwidth of the following signal:

s(t) = 17 cos

[
4× 106πt − 4π cos(25t − 3π

8
) + 2π sin(5000πt − π

7
)

]

= 17︸︷︷︸
Ac

cos

4× 106πt︸ ︷︷ ︸
2πfc t

−4π cos(25t − 3π

8
) + 2π sin(5000πt − π

7
)︸ ︷︷ ︸

+kpm(t)


θi (t) = 4× 106πt − 4π cos(25t − 3π

8
) + 2π sin(5000πt − π

7
)

fi (t) =
1

2π

dθi (t)

dt
= 2× 106︸ ︷︷ ︸

fc

+ 50 sin(25t − 3π

8
) + 5000π cos(5000πt − π

7
)︸ ︷︷ ︸

related to frequency deviation ∆f

∆f ≈ 5000π and fm =
5000π

2π
= 2500

BT ≈ = 2∆f + 2fm = 2 · 5000π + 2 · 2500 ≈ 41415 Hz.
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Generation of FM Waves: Armstrong Modulator

Narrow band
Modulator

Frequency
Multiplier

m(t) s(t) s’(t)
Integrator

Crystal
Controlled
Oscillator

frequency is
very stable

Narrowband FM modulator

wideband
FM wave
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Demodulation of FM Waves

Ideal Envelope
Detector

d
dt

I Frequency Discriminator: uses positive and negative slope
circuits in place of a differentiator, which is hard to implement
across a wide bandwidth

I Phase Lock Loop: tracks the angle of the in-coming FM wave
which allows tracking of the embedded message
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Chapter 5: Pulse Modulation

Professor Deepa Kundur (University of Toronto) Final Exam Review 80 / 103



Pulse Modulation

I the variation of a regularly spaced constant amplitude pulse
stream to superimpose information contained in a message signal

t
T

Ts
Note: T < Ts

A

I Three types:

1. pulse amplitude modulation (PAM)
2. pulse duration modulation (PDM)
3. pulse position modulation (PPM)
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Pulse Amplitude Modulation (PAM)

t
T

Ts

t

m(t)
m(0)m(-T )s

m(T )s

m(2T )   s

t

m(t)

s(t)

T

Ts

m(0)m(-T )s
m(T )s

m(2T )   s
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Pulse Duration Modulation (PDM)

t
T

Ts

t

m(t)
m(0)m(-T )s

m(T )s

m(2T )   s

t

m(t) s(t)
m(0)m(-T )s

m(T )s

m(2T )   s

PDM
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Pulse Position Modulation (PPM)
s

t

m(t)
m(0)m(-T )s

m(T )s

m(2T )   s

t

m(t) s(t)
m(0)m(-T )s

m(T )s

m(2T )   s

PDM

m(t) s(t)

PPM
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Summary of Pulse Modulation
Let g(t) be the pulse shape.

I PAM:

sPAM(t) =
∞∑

n=−∞
kam(nTs)g(t − nTS)

where ka is an amplitude sensitivity factor; ka > 0.

I PDM:

sPDM(t) =
∞∑

n=−∞
g

(
t − nTs

kdm(nTs) + Md

)
where kd is a duration sensitivity factor; kd |m(t)|max < Md .

I PPM:

sPPM(t) =
∞∑

n=−∞
g(t − nTs − kpm(nTs))

where kp is a position sensitivity factor; kp |m(t)|max < (Ts/2).
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Pulse-Code Modulation

I Most basic form of digital pulse modulation

PCM Data 
Sequence

Channel
Output

Transmitter ReceiverTranmission
PathSO

U
RC

E

D
ES

TI
N

AT
IO

N
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PCM Transmitter

PCM Data 
Sequence

Anti-aliased
Cts-time
Signal

Discrete-time
Signal

Digital
signal

Continuous-time
Message
Signal

Source Sampler Quantizer EncoderLow-pass
Filter { {

Anti-aliasing
Filter

Sampling above
Nyquist with

Narrow Rectangular
PAM Pulses

Maps Numbers
to Bit Sequences

{ {
Using a

Non-uniform
Quantizer
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PCM Transmitter: Sampler

PCM Data 
Sequence

Anti-aliased
Cts-time
Signal

Discrete-time
Signal

Digital
signal

Continuous-time
Message
Signal

Source Sampler Quantizer EncoderLow-pass
Filter { {

Anti-aliasing
Filter

Sampling above
Nyquist with

Narrow Rectangular
PAM Pulses

Maps Numbers
to Bit Sequences

{ {

Using a
Non-uniform

Quantizer

t
s(t)

T

Ts

m(0)m(-T )s
m(T )s

m(2T )   s
m(t)

t

m(0)m(-T )s
m(T )s

m(2T )   s
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PCM Transmitter: Non-Uniform Quantizer

PCM Data 
Sequence

Anti-aliased
Cts-time
Signal

Discrete-time
Signal

Digital
signal

Continuous-time
Message
Signal

Source Sampler Quantizer EncoderLow-pass
Filter { {

Anti-aliasing
Filter

Sampling above
Nyquist with

Narrow Rectangular
PAM Pulses

Maps Numbers
to Bit Sequences

{ {

Using a
Non-uniform

Quantizer

Amplitude
Compressor

v 

m2 3-2-3 -

2
3

-2

-3

-

Uniform
Quantizer

-1 10-2-3 2 3
n

1

v[n] m[n]

0 0.25 0.5 0.75 1.0

0.25

0.5

0.75

1.0

Normalized input |m|

N
or

m
al

iz
ed

 o
ut

pu
t |

v| large mu
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PCM Transmitter: Encoder

PCM Data 
Sequence

Anti-aliased
Cts-time
Signal

Discrete-time
Signal

Digital
signal

Continuous-time
Message
Signal

Source Sampler Quantizer EncoderLow-pass
Filter { {

Anti-aliasing
Filter

Sampling above
Nyquist with

Narrow Rectangular
PAM Pulses

Maps Numbers
to Bit Sequences

{ {

Using a
Non-uniform

Quantizer

Quantization-Level Index Binary Codeword (R = 3)

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
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PCM: Transmission Path

PCM Data 
Sequence

Channel
Output

Transmitter ReceiverTranmission
PathSO

U
RC

E

D
ES

TI
N

AT
IO

N

Channel
Output

Tranmission
Line

Regenerative
Repeater

Tranmission
Line

Regenerative
Repeater

Tranmission
Line

...PCM Data 
Shaped for 
Transmission

Decision-making

Device
Ampli�er-
Equalizer

Timing
Circuit

Distorted
PCM
Wave

Regenerated
PCM
Wave
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PCM: Regenerative Repeater
Decision-making

Device
Ampli�er-
Equalizer

Timing
Circuit

Distorted
PCM
Wave

Regenerated
PCM
Wave

t

t

t

t

t

THRESHOLD

BIT ERROR

“0” “0” “0”“1” “1” “1”

Original PCM Wave
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PCM: Receiver

Two Stages:

1. Decoding and Expanding:

1.1 regenerate the pulse one last time
1.2 group into code words
1.3 interpret as quantization level
1.4 pass through expander (opposite of compressor)

2. Reconstruction:

2.1 pass expander output through low-pass reconstruction filter
(cutoff is equal to message bandwidth) to estimate original
message m(t)
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Chapter 6: Baseband Data Transmission
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Baseband Transmission of Digital Data

Threshold
Binary input 
sequence

Line
Encoder

0011100010
Source

Threshold

Decision-
Making Device

Sample
at time

Destination
Transmit-
Filter G(f )

Channel
H(f )

Receive-
�lter Q(f )

Output
binary data

Threshold

Decision-
Making Device

Sample
at time

Pulse Spectrum 
P(f )

bk = {0, 1} and ak =

{
+1 if bk is symbol 1
−1 if bk is symbol 0

s(t) =
∞∑

k=−∞

akg(t − kTb)

x(t) = s(t) ? h(t)

y(t) = x(t) ? q(t) = s(t) ? h(t) ? q(t)

=
∞∑

k=−∞

akg(t − kTb) ? h(t) ? q(t) =
∞∑

k=−∞

akp(t − kTb)
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Baseband Transmission of Digital Data

Threshold
Binary input 
sequence

Line
Encoder

0011100010
Source

Threshold

Decision-
Making Device

Sample
at time

Destination
Transmit-
Filter G(f )

Channel
H(f )

Receive-
�lter Q(f )

Output
binary data

Threshold

Decision-
Making Device

Sample
at time

Pulse Spectrum 
P(f )

∴ y(t) =
∞∑

k=−∞

akp(t − kTb)

where p(t) = g(t) ? h(t) ? q(t)

P(f ) = G (f ) · H(f ) · Q(f ).
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Baseband Transmission of Digital Data

Threshold

Decision-
Making Device

Sample
at time

Transmit-
Filter G(f )

Channel
H(f )

Receive-
�lter Q(f )

Threshold
Binary input 
sequence

Line
Encoder

0011100010
Source Destination

Output
binary data

Threshold

Decision-
Making Device

Sample
at time

Pulse Spectrum 
P(f )

P(f ) = G(f )H(f )Q(f )
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Baseband Transmission of Digital Data

Threshold

Decision-
Making Device

Sample
at time

Pulse Spectrum 
P(f )

P(f ) = G(f )H(f )Q(f )

yi = y(iTb) and pi = p(iTb)

yi =
√
Eai︸ ︷︷ ︸

signal to detect

+
∞∑

k=−∞,k 6=i

akpi−k︸ ︷︷ ︸
intersymbol interference

for i ∈ Z

To avoid intersymbol interference (ISI), we need pi = 0 for i 6= 0.
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The Nyquist Channel

I Minimum bandwidth channel

I Optimum pulse shape:

popt(t) =
√
E sinc(2B0t)

Popt(f ) =

{ √
E

2B0
−B0 < f < B0

0 otherwise
, B0 =

1

2Tb

Note: No ISI.

pi = p(iTb) =
√
E sinc(2B0iTb)

√
E sinc

(
2 · 1

2Tb
iTb

)
=
√
E sinc(i) = 0 for i 6= 0.

Disadvantages: (1) physically unrealizable (sharp transition in freq domain); (2)

slow rate of decay leaving no margin of error for sampling times.
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Raised-Cosine Pulse Spectrum
I has a more graceful transition in the frequency domain

I more practical pulse shape:

p(t) =
√
E sinc(2B0t)

(
cos(2παB0t)

1− 16α2B0
2t2

)

P(f ) =


√
E

2B0
0 ≤ |f | < f1

√
E

4B0

{
1 + cos

[
π(|f |−f1)
(B0−f1)

]}
f1 < f < 2B0 − f1

0 2B0 − f1 ≤ |f |

α = 1− f1
B0

BT = B0(1 + α) where B0 =
1

2Tb
and fv = αB0

Note: No ISI. ∵ pi = 0 for i 6= 0.
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Raised-Cosine Pulse Spectrum

f (kHz)

A= sqrt(E)/2B

A/2

0

0B0-B 02B0-2B
0B  /2 0B  /2 0B  /2 0B  /2

Raised-Cosine,
α=0.5

Raised-Cosine,
α=1

Nyquist
Pulse, α=0

Nyquist Pulse
Bandwidth

Trade-off: larger bandwidth than Nyquist pulse.
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The Eye Pattern

Slope dictates sensitivity
to timing error

Best sampling
time

Distortion at 
sampling time

N
O

IS
E 

M
A

RG
IN

Time interval over which wave
is best sampled.

ZERO-CROSSING
DISTORTION

Note: an “open” eye denotes a larger noise margin, lower
zero-crossing distortion and greater robustness to timing error.
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Important Identities

cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

cos(A) cos(B) =
1

2
cos(A + B) +

1

2
cos(A− B)

cos(A) sin(B) =
1

2
sin(A + B)− 1

2
sin(A− B)

cos(A) = sin
(
A +

π

2

)
cos(A + π) = − cos(A)

cos(A) = cos(−A) sin(A) = − sin(−A)

cos2(A) =
1

2
+

1

2
cos(2A)

cos2(A) + sin2(A) = 1

cos(A) ≈ 1 for |A| � 1

sin(A) ≈ A for |A| � 1

�
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