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Audio Special Effects

Audio Effects

I Q: What is an audio effect?

I A: artificially enhanced sound or sound processes used to
emphasize artistic content in films, television, shows, live
performance, animation, video, games, music or other media.
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Audio Special Effects

Common Audio Special Effects

Two common types:

I Delay-based special effects
I simple echo
I reverberation
I flanging
I chorus

I Rate-conversion special effects
I downsampling (decimation)
I upsampling
I voice gender changers
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Delay-Based Special Effects

Delay-Based Special Effects
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Delay-Based Special Effects

Delay Effects

I Q: What is a delay effect?

I A: audio effect which records an input signal to an audio
storage medium and then plays it back (possibly multiple times)
into the recording again to create the sound of a repeating
decaying echo.

I Q: What is this so popular?

I A: easy to achieve even before the use of computers while
adding an attractive texture to the music.
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Delay-Based Special Effects

Analog and Digital Delays

I Analog delay
I created by recording in a naturally reverberant space
I achieved using tape loops improvised on reel-to-reel magnetic

recording systems
I signal is recorded on analog tape and played back from same

piece of tape through the use of two different record and replay
heads

I adjusting loop length and distance between the read and write
heads enables control over delayed echo

I Digital delay
I first introduced in 1984 by Boss Corporation
I provides great flexibility, portability and programmability
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Delay-Based Special Effects

Examples of Delay Effects

Delay-based special effects:

I simple echo

I reverberation

I flanging

I chorus

Note: Check out course website on Handouts page for an example of a

simple echo.
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Delay-Based Special Effects Echoes

Single Echo

I Q: How can we achieve a single echo from a given sound signal
x(n)?

I A: add a delayed and attenuated version of x(n) to itself.

y(n) = x(n) + αx(n − n0)

Note: The audio example available on the course web page was

generated using α = 0.35 and n0 = 20000 with Fs = 44kHz . Thus

the echo delay is 20000/44000 = 0.45 sec.
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Delay-Based Special Effects Echoes

Single Echo

I Q: How can we characterize this single echo generation system?
Hint: The system is linear time-invariant?

I A: impulse response and frequency response.
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Delay-Based Special Effects Echoes

Single Echo: Impulse Response

y(n) = x(n) + αx(n − n0)

Let x(n) = δ(n) to give y(n) = h(n).

∴ h(n) = δ(n) + αδ(n − n0).
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Delay-Based Special Effects Echoes

Single Echo: Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

LTI Single-zero system

Note: This is also called a delay line in audio applications and is
characterized by n0 and α.
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Delay-Based Special Effects Echoes

Single Echo: Frequency Response

h(n) = δ(n) + αδ(n − n0) FIR system

H(ω) =
∞∑

n=−∞

h(n)e−jωn

=
∞∑

n=−∞

[δ(n) + αδ(n − n0)] e−jωn = 1 + αe−jωn0

|H(ω)| =
√

1 + α2 + 2α cos(ωn0)

Note: 1− α ≤ |H(ω)| ≤ 1 + α.
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Delay-Based Special Effects Echoes

Single Echo: Frequency Response
Note: 1− α ≤ |H(ω)| ≤ 1 + α; α = 0.5 in example.
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Delay-Based Special Effects Echoes

Extended Echo: Impuse Response

Consider an infinite series of echos geometrically decaying in
amplitude and with equally spaced delays:

y(n) = x(n) + αx(n − n0) + α2x(n − 2n0) + · · ·

Let x(n) = δ(n) to give y(n) = h(n).

∴ h(n) = δ(n) + αδ(n − n0) + α2δ(n − 2n0) + · · ·

=
∞∑
k=0

αkδ(n − kn0)
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Delay-Based Special Effects Echoes

Extended Echo: Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

LTI Single-pole system
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Delay-Based Special Effects Echoes

Extended Echo: Frequency Response

h(n) =
∞∑
k=0

αkδ(n − kn0) IIR system

H(ω) =
∞∑

n=−∞
h(n)e−jωn

=
∞∑

n=−∞

[ ∞∑
k=0

αkδ(n − kn0)

]
e−jωn

=
∞∑
k=0

∞∑
n=−∞

αke−jωnδ(n − kn0)

=
∞∑
k=0

αke−jωkn0 =
∞∑
k=0

(αe−jωn0 )k =
1

1− (αe−jωn0 )

for |α| < 1. Instability occurs for α > 1.
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Delay-Based Special Effects Echoes

Extended Echo as Reverberation

I Consider an original sound source x(n) of finite duration in the
order of a few seconds.

I Specifically, let its time duration be Td sec and its sample
duration be Nd = bTd

T
c = bTd · Fsc samples.

I Let the echo generation parameters be |α| < 1 and n0 “small”
such that

n0 · T =
n0

Fs
� 1 (normally in the order of 0.01 - 1 msec)
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Delay-Based Special Effects Echoes

Extended Echo as Reverberation

I When the original sound source is present, the echoes overlap
first building up the overall sound effect.

I For a source that is Td sec in duration,

No. Overlapping Echoes =

⌊
Td

Fs
n0

⌋
=

⌊
Nd

n0

⌋
� 1

I After the original source has stopped, the overall sound decays
due to the echo reflections that eventually die out due to α < 1;
sounds like you are in a music hall.

This overall process is a type of reverberation.
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Delay-Based Special Effects Echoes

Reverberation

Good examples at:

http://www.youtube.com/watch?v=cGBn7sU6m3k
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Delay-Based Special Effects Reverberation

Reverberation

Recall,

I First the echoes overlap with the original source signal building
up the sound effect.

I When the original source has stopped, the sound may
temporarily persist and then eventually die out.

There are other ways to achieve a “richer” reverberation than our
prior example . . .
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Delay-Based Special Effects Reverberation

Reverberation

Example: More realistic reverb using multiple delay lines

I Use multiple delay lines with delays that are relatively prime, so
that the echoes emanating from each lines do not ever overlap
giving a richer sound.

I Single delay line:

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+
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Delay-Based Special Effects Reverberation

Reverberation

Three delay line example:

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

++

+

+

+ where

I n0 > n1 > n2 are
relatively prime
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Delay-Based Special Effects Reverberation

Reverberation

Note: the three delay line is equivalent to the following:

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

LTI All-zero system

3

where

I αi = α′i for i = 0, 1, 2

I n′0 = n0

I n′1 = n1 − n0

n′2 = n2 − n1 − n0
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Delay-Based Special Effects Reverberation

Reverberation

For a more realistic reverb:

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

... ...

+

+

+

+

+

......

... For N>M

where

I feedforward and
feedback present

I poles and zeros provide a
more all-pass spectrum
for realism

I more parameters to tune
or experimentally
estimate
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Delay-Based Special Effects Flanging and Chorus

Flanging

I process of mixing two signal together that are nearly identical
such that one signal is a slightly variably delayed version of the
other

I manifests like a “swooshing” sound

I a variation of this sound often occurs when instruments are
trying to tune to a tuning fork
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Delay-Based Special Effects Flanging and Chorus

Flanging

Good examples at:

http:

//www.youtube.com/watch?v=NAqQvs_WXs8&feature=related
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Delay-Based Special Effects Flanging and Chorus

Flanging

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

Low Freq
Oscillator

Variable
Delay

mix

I The low frequency oscillator (LFO) controls the delay of x(n) which may
change from block to block or even sample to sample.

I The scalar constant mix determines the proportion of the delayed signal
that is added back to the original source.
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Delay-Based Special Effects Flanging and Chorus

Flanging

I Let d(n) be the variable delay for x(n) controlled by the LFO.

I Let the LFO provide the following sinusoidal signal:

d(n) = round(α sin(2πf0n) + β)

y(n) = x(n) + mix · x(n + d(n))

= x(n) + mix · x(n + round(α sin(2πf0n) + β))
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Delay-Based Special Effects Flanging and Chorus

Flanging

y(n) = x(n) + mix · x(n + round(α sin(2πf0n) + β))

I rate is given by f0 and is generally small; typically f0 · Fs should be 0.7 Hz
(classical flange sound) up to 6 Hz (slight whammy effect) or even 20 Hz
(mechanistic warble effect).

I sweep depth is given by 2α; α should be selected so that the temporal (i.e.,
refers to seconds not samples) sweep depth is around a couple of
milliseconds.

I delay is given by β − α and represents the minimum delay reached by the
LFO; typically β should be set so that the delay is 1-10 milliseconds; note:
human ear will perceive an echo (not flange) if the delay is more than 50-70
milliseconds!
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Delay-Based Special Effects Flanging and Chorus

Flanging: Instantaneous “Frequency Response”

Consider fixed delay n0 and mix = 1:

y(n) = x(n) + x(n − n0)

Y (ω) = X (ω) + e−jωn0X (ω)

H(ω) =
Y (ω)

X (ω)
= 1 + e−jωn0

= 2e−jωn0/2 cos(ωn0/2)

∴ |H(ω)| = 2| cos(ωn0/2)|
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Delay-Based Special Effects Flanging and Chorus
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Delay-Based Special Effects Flanging and Chorus

I spectrum nulls occur when argument of the cosine is an odd
multiple of π:

ω
n0

2
= (2k + 1)π or ω =

2(2k + 1)π

n0

for k = 0, 1, 2, . . .

I If the delay n0 varies, then so do the spectrum nulls.
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Delay-Based Special Effects Flanging and Chorus

Flanging: Instantaneous “Frequency Response”

Thus, one can envision flanging as being the result of changing the
position of the nulls of the frequency response.

A cautionary note: the flanging system is not LTI therefore, it’s
frequency response does not fully characterize it, or we may say it
has no frequency response!

Thus, this analysis is just a tool to intuitively explain the flange effect.
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Delay-Based Special Effects Flanging and Chorus

From Flange to Chorus

I Overall a classic flange has a delay ranging between 1 - 10
milliseconds.

I To create a chorus effect, this delay range must be between 30 -
50 milliseconds

I A delay above 50 milliseconds will be perceived as an echo.
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Delay-Based Special Effects Flanging and Chorus

Chorus

I A chorus effect sounds likes more than one instrument is playing.

I Good examples at:

http://www.youtube.com/watch?v=ZSL1w9UeSgc
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Rate-Conversion Special Effects

Rate-Conversion Special Effects
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Rate-Conversion Special Effects

Rate-Conversion Special Effects

I Shifting, stretching and/or expanding spectral information across
frequency bands can provide interesting effects especially for
voice signals.

I Roughly speaking moving spectral content to lower frequencies
adds base making a voice sound more male. Similarly, moving
spectral content to higher frequency adds treble making a voice
sound more female.

I One way to achieve spectral shifts, stretches and expansions is
through sampling rate conversion.
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Rate-Conversion Special Effects

Sampling Rate Conversion

Reference:

Sections 11.2, 11.3 and 11.4 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Rate-Conversion Special Effects

Sampling Rate Conversion
I Goal: Given a discrete-time signal x(n) sampled at period T

from an underlying continuous-time signal xa(t), determine a
new sequence x̂(n) that is a sampled version of xa(t) at a
different sampling rate Td .

x(n) = xa(nT ) x̂(n) = xa(nTd)

-1 10
n

x(n)

-2-3 2 3

1

-1 10
n

x(n)

-2
-3

2
3

1

T

Td
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Rate-Conversion Special Effects

Sampling Rate Conversion for Audio Effects

Two fundamental questions for use in audio effects applications:

I What does sampling rate conversion do to the frequency
spectrum of a signal?

I How is it best to implement sampling rate conversion?
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Rate-Conversion Special Effects

Sampling Rate Conversion

I One Interpretation:

1. Reconstruct the underlying continuous-time signal xa(t) from
samples x(n) = xa(nT ).

2. Resample at the desired sampling rate: x̂(n) = xa(nTd).

I If
T

Td
= rational number

then sampling rate conversion becomes equivalent to sampling
and/or interpolation of discrete-time signals.
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Rate-Conversion Special Effects

Sampling and Interpolation of Discrete-Time

Signals

Let D, I ∈ {1, 2, 3, 4, . . .}

I For Td = DT : called decimation or downsampling

I For Td = T
I

: called interpolation or upsampling
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Rate-Conversion Special Effects Downsampling

Sampling of Discrete-Time Signals
Suppose a discrete-time signal x(n) is sampled by taking every Dth
sample as follows:

xd(n) = x(nD), for all n

Decimation example: D = 2:

-1 10
n

x(n)

-2-3 2 3

1 T

x (n)
T   = 2Td

-1 10
n-2

-3
2

3

1

d

x (n)
T   = 4Td

-1 1
0

n
-2-3 2 3

1
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Rate-Conversion Special Effects Downsampling

Sampling of Discrete-Time Signals

Q: What happens to the signal spectrum during decimation?

Q: What is the relationship between X (F ) and Xd(F )?
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Rate-Conversion Special Effects Downsampling

Sampling of Discrete-Time Signals

Recall when we sample a continuous-time signal x(t) to produce
x(n), we have the following relationships:

x(n) = xa(nT )
F←→ X (F ) =

1

T

∞∑
k=−∞

Xa

(
F − k

T

)
sampling

F←→ periodic extension
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Rate-Conversion Special Effects Downsampling

Suppose

xd(n) = x(nD) = xa( nD︸︷︷︸T )

x(n) = xa(nT )

x(n) = xa(nT )

X (F ) =
1

T

∞∑
k=−∞

Xa

(
F − k

T

)
xd(n) = xa(nDT )

Xd(F ) =
1

DT

∞∑
k=−∞

Xa

(
F − k

DT

)
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Rate-Conversion Special Effects Downsampling

X (F ) =
1

T

∞∑
k=−∞

Xa

(
F − k

T

)

Xd(F ) =
1

DT

∞∑
k=−∞

Xa

(
F − k

DT

)
Decimation example: D = 2:

d1/T

0
F

X  (F)d

......

d1/T

0
F

X  (F)d

......

1/T

0
F

X (F)

......
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Rate-Conversion Special Effects Downsampling

Decimation example: D = 2, 4:

-1 10
n

x(n)

-2-3 2 3

1 T

x (n)
T   = 2Td
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d
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Rate-Conversion Special Effects Downsampling

Decimation example: D = 2, 4:

d1/T

0
F

X  (F)d

......

d1/T

0
F

X  (F)d

......

1/T

0
F

X (F)

......
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Rate-Conversion Special Effects Downsampling

Sampling of Discrete-Time Signals

Therefore, from

X (F ) =
1

T

∞∑
k=−∞

Xa

(
F − k

T

)

Xd(F ) =
1

DT

∞∑
k=−∞

Xa

(
F − k

DT

)
By inspection, we have:

Xd(F ) =
1

D

D−1∑
m=0

X
(
F − m

DT

)
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Rate-Conversion Special Effects Downsampling

Decimation example: D = 4:

d1/T

0
F

X  (F)d

......

1/T

F
......

F
......

F
......

F
......

m=0

m=1

m=2

m=3

ALIASING
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Rate-Conversion Special Effects Downsampling

Aliasing from Decimation

Thus,

Cts-time Sampling ⇐⇒ Xa(F ) repeated infinite times

Dst-time Sampling ⇐⇒ X (F ) repeated finite times

To avoid aliasing when decimating via factor D:

Maximum Frequency ≤ 1

2DT

Thus an anti-aliasing filter is applied prior to decimation.
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Rate-Conversion Special Effects Downsampling

Decimation example: D = 4: no anti-aliasing filter

d1/T

0
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F
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F
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F
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Rate-Conversion Special Effects Downsampling

Decimation example: D = 4: anti-aliasing filter

d1/T

0
F

X  (F)d

......

1/T

0
F

......

F
......

F
......

F
......

m=0

m=1

m=2

m=3

NO ALIASING
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Rate-Conversion Special Effects Downsampling

Downsampling with Anti-Alaising Filter

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

LTI Filter Downsampler
Decimator

I The anti-aliasing filter Hd(ω) should have effective
continuous-time frequency cutoff of F0 = 1

2DT
Hz, which is

equivalent to a normalized cutoff of:

f0 =
F0

Fs
=

1

2DT
· 1

Fs
=

1

2D
or ω0 = 2π

1

2D
=
π

D
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Rate-Conversion Special Effects Downsampling

−π/D ≤ ω ≤ π/D is expanded into −π ≤ ω ≤ π

d1/T

0

X  (  )d

X(  )

......

1/T

0

......

d1/T

0

X  (  )d

......

ANTI-ALIASED VERSION
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Rate-Conversion Special Effects Downsampling

−π/D ≤ ω ≤ π/D is expanded into −π ≤ ω ≤ π

0

X  (  )d

X(  )

......

0

......

ANTI-ALIASED VERSION

Professor Deepa Kundur (University of Toronto) Audio Special Effects 57 / 83

Rate-Conversion Special Effects Downsampling

Interpolation by a Factor I

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

LTI Filter Downsampler
Decimator

I Decimation keeps every Dth point giving a higher rate of change
to the signal.

I The decimation process stretches an anti-aliased signal such that
it contains higher frequency components.

I Thus, decimation generally speeds up an audio signal, making it
appear to have higher tonal characteristics.
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Rate-Conversion Special Effects Upsampling

Interpolation of Discrete-time Signals

-1 10
n

x(n)

-2-3 2 3

1 T

x (n)
T   = 2Td

-1 10
n-2

-3
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d

x (n)
T   = 4Td
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0

n
-2-3 2 3

1

d

d1/T

0
F

X  (F)d

......

d1/T

0
F

X  (F)d

......

1/T

0
F

X (F)

......

I Interpolation for Td = T
D

is possible if no aliasing exists in the
signal to be interpolated.

Note: We will later change D to I to distinguish between the decimation and

interpolation factors. We use D here for simplicity as interpolation is being

described, in part, as the reverse process of decimation.
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Rate-Conversion Special Effects Upsampling

Interpolation of Discrete-time Signals
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Rate-Conversion Special Effects Upsampling

Interpolation of Discrete-time Signals

0
F

X  (F)d

......
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F

X (F)

......

d1/T

1/T
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Rate-Conversion Special Effects Upsampling

Interpolation of Discrete-time Signals

Analysis Strategy:

I We consider the process of discrete-time interpolation; i.e.,
obtaining x(n) from its decimated version xd(n) = x(nD).

I We will assume that no aliasing resulted from the decimation
process.

I We will determine a relationship between x(n) and xd(n) in the
following way:

1. Let us mathematically reconstruct xa(t) from xd(n) assuming a
sampling period of DT .

2. Let us then sample xa(t) with a sampling period of T to
construct x(n).
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Interpolation of Discrete-time Signals

Step 1: xa(t) can be reconstructed from xd(n) as follows:

xa(t) =
∞∑

m=−∞

xd(m)
sin π

DT
(t −mDT )

π
DT

(t −mDT )

Step 2: Sample xa(t) to produce x(n):

x(n) = xa(nT ) =
∞∑

m=−∞

xd(m)
sin π

DT
(nT −mDT )

π
DT

(nT −mDT )

=
∞∑

m=−∞

xd(m)
sin π

D
(n −mD)

π
D

(n −mD)
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Interpolation of Discrete-time Signals

x(n) =
∞∑

m=−∞

xd(m)

[
sin π

D
(n −mD)

π
D

(n −mD)

]

=
∞∑

m=−∞

xd(m)gBL(n −mD)

where

gBL(n) = D
sin(π/D)n

πn
F←→ GBL(ω) =

{
D |ω| ≤ π

D
0 π

D < |ω| ≤ π
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Interpolation of Discrete-time Signals

To achieve this, consider a two-stage process:

I Stage 1: Upsample to appropriately compress the spectrum.

I Stage 2: Then filter with an appropriate lowpass filter.

I We will consider upsampling by a factor of I .
I Note: we change here the interpolation factor from D to I to

distinguish our results from decimation.
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Interpolation of Discrete-time Signals

Upsampler

LTI FilterLTI Filter LTI Filter Downsampler
Interpolator Decimator

Interpolator
LTI Filter

I Upsampling (without filtering) can be represented as:

v(m) =

{
x(m/I ) m = 0,±I ,±2I , . . .
0 otherwise

V (ω) = X (ωI )
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Interpolation example: I = 4: upsampling + lowpass filtering

0
n

y(n)

-1 1-2-3 2 3

1

x(n)

-1 1
0

n
-2-3 2 3

1

-1 1-2-3 2 3

v(n)

0
n

1
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Interpolation example: I = 4: upsampling + lowpass filtering

0
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Interpolation by a Factor I

Upsampler

LTI FilterLTI Filter LTI Filter Downsampler
Interpolator Decimator

Interpolator
LTI Filter

I Interpolation only increases the visible resolution of the signal.
No new information is gained.

I Interpolation generally slows down an audio signal, making it
appear to have lower tonal characteristics.
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Overall,

V (ω) = X (ωI )

Hu(ω) =

{
I 0 ≤ |ω| ≤ π/I
0 otherwise

Y (ω) = Hu(ω)V (ω) =

{
IX (ωI ) 0 ≤ |ω| ≤ π/I
0 otherwise

Y (ω) =

{
IX (ωI ) 0 ≤ |ω| ≤ π/I
0 otherwise

−π ≤ ω ≤ π is compressed into −π/I ≤ ω ≤ π/I
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−π ≤ ω ≤ π is compressed into −π/I ≤ ω ≤ π/I
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−π ≤ ω ≤ π is compressed into −π/I ≤ ω ≤ π/I

0
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Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

I x(n): original samples at sampling rate Fx

I y(n): new samples at sampling rate Fy

Professor Deepa Kundur (University of Toronto) Audio Special Effects 78 / 83

Rate-Conversion Special Effects Rational Rate Conversion

Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

Upsampler LTI Filter Downsampler
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Upsampler LTI Filter Downsampler
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H(ω) = Hu(ω)Hd(ω) =

{
I 0 ≤ |ω| ≤ min(π/D, π/I )
0 otherwise
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Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

Upsampler LTI Filter Downsampler
I/D Rate Converter
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I Thus, a wide variety of sound speed conversions is possible
through a combination of upsampling, LTI filtering and
downsampling.

�
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