
Introduction to Image Processing

Professor Deepa Kundur

University of Toronto

Professor Deepa Kundur (University of Toronto) Introduction to Image Processing 1 / 51

Introduction to Image Processing Images as Signals

Analog Intensity Images

The image shown is "Dixie Queens" (two schoolgirls at lunch from Hadleyville, 
Oregon, circa 1911), Roy C. Andrews collection, PH003-P954, Special Collections 
and University Archives, University of Oregon, Eugene, Oregon 97403-1299.
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Introduction to Image Processing Images as Signals

Analog Intensity Images

I continuous-space and continuous-amplitude image consisting of
intensity (grayscale) values

I I (x , y) is a two-dimensional signal representing the grayscale
value at location (x , y) where:

I 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly

I I (x , y) = 0 represents black

I I (x , y) = 1 represents white

I 0 < I (x , y) < 1 represents proportional gray-value 0.0
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Introduction to Image Processing Images as Signals

Analog Intensity Images

I I (x , y) can be displayed as an intensity image or as a mesh graph
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Introduction to Image Processing Images as Signals

Discrete-Space Intensity Images

I discrete-space and continuous-amplitude image consisting of
intensity (grayscale) values

I I (m, n) is a two-dimensional signal representing the grayscale
value at location (m, n) where:

I m = 0, 1, . . . ,Nx − 1 and n = 0, 1, . . . ,Ny − 1

I I (m, n) = 0 represents black

I I (m, n) = 1 represents white

I 0 < I (m, n) < 1 represents proportional gray-value 0.0
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Introduction to Image Processing Images as Signals

Discrete-Space Intensity Images

Example: 4× 4 Checkerboard
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Introduction to Image Processing Images as Signals

Digital Images

I discrete-space and discrete-amplitude

I m = 0, 1, . . . ,Nx − 1 and n = 0, 1, . . . ,Ny − 1

I image consisting of grayscale colors from a finite set C and
indexed via the set: {0, 1, 2, . . . ,NC − 1}

I Example: NC = 8 and grayscale values linearly distributed in
intensity between black (0) and white (NC − 1)
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Introduction to Image Processing Images as Signals

Digital Images: Common Format

I I (m, n) is a two-dimensional signal representing the grayscale
value at location (m, n) where:

I I (m, n) ∈ {0, 1, 2, . . . ,NC − 1}; NC = no. of colors
I I (m, n) = 0 represents black
I I (m, n) = NC − 1 represents white
I I (m, n) ∈ {1, 2, . . . ,NC − 2} represents proportional gray-value
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Introduction to Image Processing Images as Signals

Digital Images: Common Format

I NC is usually of the form 2N , so that the 2N different colors are
efficiently represented with N-bit binary notation; Example:
N = 3
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Introduction to Image Processing Images as Signals

Digital Images: 8-Bit Grayscale Images

I Standard 8-bit images use color indices from 0 through 255 to
cover shades of gray ranging from black to white (inclusive).

I convenient for programming: color representation occupies a
single byte

I perceptually acceptable: barely sufficient precision to avoid
visible banding
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Introduction to Image Processing Images as Signals

Digital Images: Color
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Introduction to Image Processing Images as Signals

Digital Images: Color
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Introduction to Image Processing Images as Signals

Color Spaces

I Color space: model describing a way to represent colors as
mathematical vectors

I usually three or four numbers are needed to represent any color;
common color spaces include:

I red (R), green (G), blue (B) popular for LCD displays
I cyan (C), magenta (M), yellow (Y), key (K) popular for print
I YCbCr, HSV, . . .
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Introduction to Image Processing Images as Signals
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Introduction to Image Processing Images as Signals

Digital Images: Additive Color Theory
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Introduction to Image Processing Images as Signals
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Introduction to Image Processing Images as Signals

Digital Images: Truecolor Images

I From Wiki (March 18, 2013): method of representing and storing graphical
image information (especially in computer processing) in an RGB color
space such that a very large number of colors, shades, and hues can be
displayed in an image, such as in high quality photographic images or
complex graphics

I usually at least 256 shades of each red, green and blue are employed

resulting in at least 2563 = 16, 777, 216 (16 million) color variations

I human eye can discern as many as ten million colors, so representation
should exceed human visual system (HVS) capabilities!
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Introduction to Image Processing Images as Signals

RGB versus Grayscale
I RGB to grayscale conversion:

I (m, n) = 0.299R(m, n) + 0.587G (m, n) + 0.114B(m, n)
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Introduction to Image Processing Images as Signals

RGB versus Grayscale
I RGB to grayscale conversion:

I (m, n) = 0.299R(m, n) + 0.587G (m, n) + 0.114B(m, n)

I Note: 0.299 + 0.587 + 0.114 = 1.
I The luminance compensates for the eye’s distinct sensitivity to

different colors.
I The human eye is most sensitive to green, then red, and last

blue.
I There are evolutionary justifications for this difference.
I A color with more green is brighter to the eye than a color with

more blue.
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Introduction to Image Processing Images as Signals

RGB versus Grayscale
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Introduction to Image Processing Images as Signals

RGB versus Grayscale
I RGB to grayscale conversion:

I (m, n) = 0.299R(m, n) + 0.587G (m, n) + 0.114B(m, n)

black = [0 0 0] = [R G B]

red = [1 0 0]

green = [0 1 0]

blue = [0 0 1]

yellow = [1 1 0]

magenta = [1 0 1]

cyan = [0 1 1]

white = [1 1 1]
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Introduction to Image Processing Image Transformations

Image Parameters

I The following parameters have an effect on the image quality:

I sampling rate: spatial resolution or dimension of image
I color depth: number of colors or number of bits to represent

colors
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Introduction to Image Processing Image Transformations

Sampling Rate and Subsampling
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Introduction to Image Processing Image Transformations

Color Depth and Amplitude Quantization
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Introduction to Image Processing Image Transformations

Lowpass Filtering

H =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



IH(m, n) = I (m, n) ∗ H(m, n)
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Introduction to Image Processing Image Transformations

Lowpass Filtering

I (m, n) and IH(m, n):
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Introduction to Image Processing Image Transformations

Highpass Filtering

H =

 0 −1 0
−1 4 −1
0 −1 0



IH(m, n) = I (m, n) ∗ H(m, n)
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Introduction to Image Processing Image Transformations

Highpass Filtering

I (m, n) and IH(m, n):
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Introduction to Image Processing Image Transformations

Edge Enhancement

H =

 0 −1 0
−1 4 −1
0 −1 0


IH(m, n) = I (m, n) ∗ H(m, n)

IE (m, n) = IH(m, n) + I (m, n)
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Introduction to Image Processing Image Transformations

Edge Enhancement

I (m, n) and IE (m, n):
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Introduction to Image Processing Image Transformations

2-D Discrete Fourier Transform

IF (U ,V ) =
∞∑

m=−∞

∞∑
n=−∞

I (m, n)e−j2π(Um+Vn)

I (m, n):
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Introduction to Image Processing Image Transformations

2-D Discrete Fourier Transform

IF (U ,V ):
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Introduction to Image Processing Image Transformations

2-D Discrete Fourier Transform

IF (U ,V ) on log-scale:
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Introduction to Image Processing Image Transformations

2-D Discrete Cosine Transform

Consider an Nx × Ny -dimensional digital image I (m, n):

IDCT (k , l) =
Nx−1∑
m=0

Ny−1∑
n=0

I (m, n) cos

[
π

N

(
n +

1

2

)
k

]
cos

[
π

M

(
m +

1

2

)
l

]

Professor Deepa Kundur (University of Toronto) Introduction to Image Processing 35 / 51

Introduction to Image Processing Image Transformations

2-D Discrete Cosine Transform
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Introduction to Image Processing Image Transformations

2-D Discrete 8× 8 Cosine Transform
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Introduction to Image Processing Image Transformations

2-D Discrete 8× 8 Cosine Transform

IBDCT (k, l) =
7∑

m=0

7∑
n=0

IB(m, n) cos

[
π

8

(
n +

1

2

)
k

]
cos

[
π

8

(
m +

1

2

)
l

]

IB(m, n) =
7∑

k=0

7∑
l=0

α(k)α(l)IBDCT (k , l) cos

[
π

8

(
n +

1

2

)
k

]
cos

[
π

8

(
m +

1

2

)
l

]
where

α(k) =


√

1
8 for k = 0√
2
8 for k = 1, 2, . . . , 7
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Introduction to Image Processing Image Transformations

2-D Discrete 8× 8 Cosine Transform

For k , l ∈ {0, 1, 2, . . . , 7},

cos

[
π

8

(
n +
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2

)
k

]
cos

[
π

8

(
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2

)
l

]
:
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Introduction to Image Processing Image Transformations

2-D Discrete 8× 8 Cosine Transform

IB(m, n) =
7∑

k=0

7∑
l=0

α(k)α(l)IBDCT (k , l) cos
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Introduction to Image Processing Compression

Lossy versus Non-lossy Compression for Digital

Images

I Lossy compression: remove signal components to reduce storage
requirements

I often exploits perceptual irrelevancy to shape the signal in order
to reduce storage size

I process is not reversible

I Non-lossy compression: exploit statistical redundancy to employ
efficient codes (on average) to reduce storage requirements

I process is reversible
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Introduction to Image Processing Compression

Lossy Compression via the DCT
Consider removing (i.e., zeroing) signal components from 8× 8-DCT
domain outside a pre-defined mask.
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Note: this is only an instructive example and there are multitudes of other ways

to achieve this.
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 1: Compute the 8× 8-block DCT on I (m, n).

IBDCT (k, l) =
7∑

m=0

7∑
n=0

IB(m, n) cos

[
π

8

(
n +

1

2

)
k

]
cos

[
π

8

(
m +

1

2

)
l

]
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 1: Compute the 8× 8-block DCT on I (m, n).

I (m, n) and IB(m, n):
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 1: Compute the 8× 8-block DCT on I (m, n).

IB(m, n) and IBDCT (k , l):
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 2: Remove high-frequency components via R × R mask.
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 2: Remove high-frequency components via R × R mask.

IBDCT (k , l) and compressed version ĨBDCT (k , l) for R = 4:
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Note:

images displayed on log-amplitude scale.
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 3: Compute the 8× 8-block IDCT on compressed DCT
coefficients.

ĨB(m, n) =
7∑

k=0

7∑
l=0

α(k)α(l)ĨBDCT (k , l)cos

[
π

8

(
n +

1

2

)
k

]
cos

[
π

8

(
m +

1

2

)
l

]
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Introduction to Image Processing Compression

Lossy Compression via the DCT

Step 3: Compute the 8× 8-block IDCT on compressed DCT
coefficients.

ĨBDCT (k , l) and Ĩ (m, n) for R = 4:
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Introduction to Image Processing Compression

Lossy Compression Results
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Introduction to Image Processing Compression

Further Compression Gains
I coefficients within the mask can be quantized with a factor

determined by tests on human perception
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I compressed coefficients are passed through a non-lossy
arithmetic coder for additional compression efficiency
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