Digital Signal Processing: Course Review

Professor Deepa Kundur

University of Toronto

Course Review

References:

Sections:

1.1,12,13,14

21,22,23,24,25

3.1,32 33,34

41,42,43,44,51,52,54,55

71,72, 81

11.2, 11.3, 11.4 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, 4th edition, 2007,

and supplementary audio, image and video processing notes.

Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 2/97

Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 1/97
Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 3/97

Sampling Theorem

If the highest frequency contained in an analog signal x,(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2F,.x =2B

then x,(t) can be exactly recovered from its sample values using the
interpolation function

sin(2w Bt)
t)y=>2"""/
g(t) 2w Bt

Note: Fy = 2B = 2F,,.. is called the Nyquist rate.
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Sampling Theorem

1 1
Sampling Period = T = — =
ampling FPerio Fs  Sampling Frequency

Therefore, given the interpolation relation, x,(t) can be written as

x(t)= > x(nT)g(t—nT)
x(t)= Y x(n) g(t—nT)

where x,(nT) = x(n); called bandlimited interpolation.
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Digital-to-Analog Conversion

original/bandlimited x(n)
interpolated signal

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Bandlimited Interpolation

X(n) samples
bandlimited interpolation () P

function -- sinc

N

4
T
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Digital-to-Analog Conversion

hold

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

linear
interpolation

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Chapter 2: Discrete-Time Signals and
Systems

Terminology: Input-Output Description

x(n) ) ) y(n)
input/ Discrete-time output/
excitation System response
Discrete-time Discrete-time
signal signal

» Input-output description (exact structure of system is unknown
or ignored):

y(n) =T [x(n)]

» “black box" representation:

x(n) L y(n)
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Classification of Discrete-Time Systems
Common System Properties:
static VS. dynamic
time-invariant  vs. time-variant
linear VS. nonlinear
causal VS. non-causal
stable vs. unstable systems
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The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit

sample input d(n) be h(n).

5(n) - h(n)
s(n—k) —Ls h(n— k)
a 6(n— k) T a h(n — k)
x(k) 6(n—k) L x(k) h(n — k)
ST x(k)o(n—k) T ST x(k)h(n — k)
x(n) = y(n)

The Convolution Sum

Therefore,

for any LTI system.
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Finite vs. Infinite Impulse Response
Implementation: Two classes
Finite impulse response (FIR):
M—1
y(n) = E h(k)x(n — k) nonrecursive systems
k=0
Infinite impulse response (IIR):
o0
y(n) = E h(k)x(n — k) recursive systems
k=0
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System Realization

General expression for Nth-order LCCDE:

N M
Zaky(n—k) = Zbkx(n—k) =1
k=0 k=0

Initial conditions: y(—1),y(—2),y(-=3),...,y(—N).

Need: (1) constant scale, (2) addition, (3) delay elements.
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Building Block Elements

x1(n)

Adder: ) y(n) = z1(n) + x2(n)

Unit delay: z(n) P y(n) ==z(n -1)
Constant multiplier: x(n) a a x(n)
Unit advance: z(n) z y(n) = z(n 4 1)
Signal multiplier: _'(ml(n) f—%(n) S a1(n)ez(n)
xa(n)
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Direct Form | vs. Direct Form |l Realizations

y(n) =— Z ary(n—k)+ Z bix(n — k)

is equivalent to the cascade of the following systems:

M
v(n) = E by x(n — k) nonrecursive
k= . v
output 1 input 1
N
y(n) = - g ary(n— k) + v(n) recursive
k=1 v
output 2 input 2
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Direct Form | [IR Filter Implementation

z(n) bo ~ | vin)| ~ y(n)
x2 ) U 82

LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form Il IR Filter Implementation

o(n) N B u(n)
k2 o/
—1
z

b
l—>1—><+>
-1
Zl—b>2—><+>
271

b3
: bapy A
L1

bar

LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form Il lIR Filter Implementation

b
x(n) ) - & O y(n)
2’71
O—a == b
Z—l
O—2 = B g
Z_l
b3

() ese >

bar—1

.
<
I3
X
L B e ®

by

For N>M
—an

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory
locations
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The Direct z-Transform
» Direct z-Transform:
[e.@]
X(z) = Z x(nm)z™"
n=—o00
» Notation:
X(z) = Z{x(n)}
Z
x(n) +— X(2)
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Chapter 3: The z-Transform and lts
Applications
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Region of Convergence

» the region of convergence (ROC) of X(z) is the set of all values
of z for which X(z) attains a finite value

» The z-Transform is, therefore, uniquely characterized by:

1. expression for X(z)
2. ROC of X(z)
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ROC Families: Finite Duration Signals

Im(z)

ROC Families: Infinite Duration Signals
Im(2) Im(z)

r /r
Re(z) >Re(z)
<&

Anticausal: z(n) =0 n >0

Causal: z(n) =0 n<0

Im(z)

T
—«*———»Re(z)
/]

ROC: 1 < |z| < ro
Two-sided = Causal + Anticausal
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Re(z)
entire z-plane
except possibly
z =0 and/or z = 00
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z-Transform Properties
Property Time Domain z-Domain ROC
Notation: x(n) X(z2) ROC: n < |zl < n
xi(n) Xi(2) ROC,
x2(n) Xo(2) ROC
Linearity: aixi(n) + axxa(n)  a1X1(z) + a2Xa2(z) At least ROCiN ROC,
Time shifting: x(n — k) z7kX(z) At least ROC, except
z=0 (if k >0)
and z = oo (if k < 0)
z-Scaling: a"x(n) X(a=1z) lalr < |z] < |a|ln
Time reversal x(—n) X(z™h) T <lzI< %
Conjugation: x*(n) X*(z*) ROC
z-Differentiation:  n x(n) —z d)fjgz) n<l|zl<n
Convolution: x1(n) * x2(n) X1(z)Xa2(z) At least ROC;N ROC,
among others ...
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Convolution using the z-Transform

Basic Steps:

1. Compute z-Transform of each of the signals to convolve (time
domain — z-domain):

Xi(z) = Z{a(n)}
X(2) = Z{x(n)}

2. Multiply the two z-Transforms (in z-domain):
X(z) = X1(2)Xa(2)
3. Find the inverse z-Transformof the product (z-domain — time

domain):
x(n) = 2 HX(2))
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Common Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 d(n) 1 All z
2 u(n) 1712_1 |z| > 1
3 a"u(n) ?12,1 |z| > |a|
4 na"u(n) % |z| > |a|
5 —=a"u(—n-1) ?12,1 |z| < |a]
6 —na"u(—n-—1) % |z| < |a]
7 cos(won)u(n)  AEELER 7 >1
8  sin(won)u(n) ﬁ |z| > 1
9 a"cos(won)u(n) 1_23;_‘912;153)5f;22_2 |z| > |a|
10 a"sin(won)u(n) 1_2‘;12_7311:):221)22272 |z| > |a|
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Common Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 d(n) 1 All z
2 u(n) — |z| > 1
3 a"u(n) ?12_1 |z| > |a|
4 na"u(n) ﬁ |z| > |a]
5 —a"u(—n-1) e |z| < |a]
6 —na"u(—n-1) m |z| < |a|
7 cos(won)u(n)  AEELER 7 >1
8  sin(won)u(n) ﬁ |z| > 1
9 a"cos(won)u(n) 1_23;_"12;13)5f§22_2 |z| > |a|
10 a"sin(won)u(n) 1_23121511;:321’222,2 |z| > |a|
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Common Transform Pairs

» z-Transform expressions that are a fraction of polynomials in
z71 (or z) are called rational.

» z-Transforms that are rational represent an important class of
signals and systems.
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The System Function

h(n) <> H(z)
time-domain @ z-domain
PN

impulse response system function

y(n) =x(n) x h(n) «— Y(z) = X(2)- H(2)

Therefore,
Y(2)
H(z) =
X(2)
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The System Function of LCCDEs

y(n) = — Z ary(n—k)+ Z bix(n — k)
Z{y(n)} = Z{=) ay(n—k) +)_bx(n—k)}
Z{y(m} = =Y aZ{y(n—k)}+ Y bZ{x(n—k)}

Y(z) = =) az "Y(2)+)) bz "X(2)

The System Function of LCCDEs

Y(2)+ Y az V() = ) bz *X(2)
UOIRDY akz_k] = X@Y bzt
zZ) = @ — ZQ/IZO ka_k

H2) =X [1 N akrk]

LCCDE <+— Rational System Function

Many signals of practical interest have a rational z-Transform.
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Inversion of the z-Transform
Three popular methods:
1. Contour integration: 1
x(n) = — ¢ X(2)z" 'dz
() = 5= § X(@)
2. Expansion into a power series in z or z~1:
oo
X(z)= > x(k)z™*
k=—00
and obtaining x(k) for all k by inspection.
3. Partial-fraction expansion and table look-up.
Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 35 /97

Chapter 4: Frequency Analysis of Signals
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CTFT: Intuition

x / X(Q)eMMdQ

2T

x(t) =

» We may consider x(t) as a linear combination of /%t for Q € R.

> The larger | X(Q)], the more x(t) will look like a sinusoid with Q.

WWM\/\A/\/\/VW
SV NAVANY,
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CTFT: Duality

1 o0

x(t) = = X(Q)eMdQ

27

—00

X(Q) = /Oo x(t)e It dt

Shape A
Shape B
Operation A
Operation B

—0o0

PN Shape B
PN Shape A
PN Operation B
PN Operation A
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CTFT: Magnitude and Phase

1 oo

x(H) = o X(Q)eHdQ
™ — 00
_ 1 = i£X(Q) LjQt
= o _OO\X(Q)\e/ et dQ
— /OO |X(Q)|ej(Qt+4X(Q))df

> | X(9)| dictates the relative presence of the sinusoid of frequency Q in x(t).

> /X(Q) dictates the relative alignment of the sinusoid of frequency Q in

x(t).
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Complex Sinusoids: Di

screte- Time

e/“" = cos(wn) + jsin(wn) = dst-time complex sinusoid

cos(2mfn)

0

sin(2mfn)

0
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H

Classification of Fourier Pairs

CTS-TIME

|

DST-TIME

Continuous-Time

Discrete-Time

(CTFT)

PERIODIC Fourier Series Fourier Series
(CTES) (DTFS)
Continuous-Time Discrete-Time
APERIODIC || Fourier Transform | Fourier Transform

(DTFT)
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Discrete-Time Fourier Series (DTFS)

For discrete-time periodic signals with period N:

» Synthesis equation:

N—

[ay

Ch ej27rkn/N

k=0

» Analysis equation:

1 N-1
C = N Zx(n)e—jZﬂ-kn/N

n=0

Convergence conditions: None due to finite sums.

Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review

43 /97

Duality
| CTS-TIME \ DST-TIME
PER X(t) _ Ziozfoo CkeijkFot ( ) Nfl Cx e,j27rl<n/N
k= Tiprp X(t) —j2mkFot 43 — N Zn o x(n) —j2mwkn/N
APER || x(t) = 5= [ X(Q)&/dQ | x(n) = 5 [, X(w)e*"dw
X(Q) = ff‘;o x(t)e /P dt X(w) = Zn—_oo (n)e e
periodic <L discrete
discrete <7 periodic
aperiodic <~ continuous
continuous 7 aperiodic
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DTFS: Example Pair
x(n)
l IHH “\HA l““ l
N R N N "
Cx
C
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Discrete-Time Fourier Transform (DTFT)

For discrete-time aperiodic signals:

» Synthesis equation:

1 ,
x(n) = oy /QWX(w)e"”"dw
» Analysis equation:
X(w)= > x(n)er

Convergence conditions:

> Ix(n)] < o0

n=—0oo

DTFT: Example Pair

TN T O T N
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x(t) Sk
A CTFS
-~
—| | | | | |_l i 1oy 5'4'3/]] [l 171
-1, T T T, 1 11
2 2
x(t) ( Q)
X
R CTFT 0
|——| -— sinc
| | . =27 /7 27 /T 9
2 2
x(n) Sk
A DTFS
SO 1 1T o 11 s
N T N
X(n) X(w)
A DTFT
L] — _/\
T " 7T \J U J = \
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DTFT Theorems and Properties

Property Time Domain Frequency Domain
Notation: x(n) X(w)
x1(n) X1(w)
Xz(n) Xl(w)
Linearity: arxi(n) + axxz(n) a1 X1(w) + a2 Xo(w)
Time shifting: x(n— k) eIk X(w)
Time reversal x(—=n) X(—w)
Convolution: x1(n) * xo(n) X1(w)Xo(w)
Correlation: Faxo (1) = x1(1) * x2(—1) Sy (w) = X1 (w)Xa(—w)

= X1(w) X5 (w) [if x2(n) real]

Wiener-Khintchine:  r (1) = x(I) * x(—/) S(w) = [ X(w)?

among others . ..
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DTFT Symmetry Properties

Time Sequence DTFT
x(n) X(w)
x*(n) X*(-w)
x*(—n) X*(w)
x(—n) X(—w)
xg(n) Xe(w) = %[X(W) + X" (—w)]
Jxi(n) Xo(w) = 3[X(w) = X*(=w)]
X(w) = X*(-w)
Xr(w) = Xr(—w)
x(n) real Xi(w) ==X/(—w)
X ()] = [X(—)
/X(w) = —£/X(~w)
AOEHEORFIED) Xn()
xa(n) = L[x(n) - x*(~n)] Xi(w)
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Linear Time-Invariant (LTI) Systems
LTI
z(n) =  hn) > y(n)=2(n)*h(n)
h(n) <— H(w)
LTI
X(w)—» Hw) pb—>Y(w) =X(w)Hw)
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LTI Systems
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Chapter 5: Frequency Domain Analysis of
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Linear Time-Invariant (LTI) Systems

z(n) =Ae!V" — h(n) p—>

real h(n) ~—— H(w)

imaginary

vy
ylylyly

Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review

52 / 07




Linear Time-Invariant (LTI) Systems

—> y(n) =Ae’“"H(w)

real h(n) ~—— H(w) real
WA

imaginary

|

imaginary
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Frequency Response of LTI Systems
z-Domain w-Domain

Hiz) =2 H(w)

. z
system function = frequency response

Y(2) = X(2)H(z) 22 Y(w) = X(w)H(w)
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imaginary

wl= /2

imaginary

complex plane
" real

imaginary

complex plane

complex plane

real
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LTI Systems as Frequency-Selective Filters

the input, what passes through it

» For LTI systems, given Y(w) = X(w)H(w)
» H(w) acts as a kind of weighting function or spectral shaping
function of the different frequency components of the signal

LTI system <= Filter
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» Filter: device that discriminates, according to some attribute of
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Ideal Filters

Classification:

Sharp [Hpp(w)]

Transition

Passtyand
Stopband

Stopband

Ideal Lowpass Filter

—T

—We We

sherp [Hrrp(w)]

Transitign
i4

Passband
Stop|

Ideal Highpass Filter
Passband e
and

Invertibility of Systems

» Invertible system: there is a one-to-one correspondence between

its input and output signals

» the one-to-one nature allows the process of reversing the
transformation between input and output; suppose

y(n) = T][x(n)] where T is one-to-one
w(n) = T 'ly(n)] =T [Tx(n)]] = x(n)

Identity System
y(n)
z(n) T 71 w(n) = z(n)
Direct Inverse
System System

—T —We We 7T
> lowpass
> highpass N
Ideal Bandpass Filter
Passband Passband
» bandpass orpene I
—m TWe2 —Wel Wel  We2 s
> bandstop
[Hps(w)]
Passband Passband Ideal Badstop Filter
> a“_pass Stopband Passhand Stopband
—m  ~We2 —Wel Wel  We2 ™
[Hap(w)]
— Ideal All-pass Filter
T ™
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Invertibility of LTI Systems
Identity System
y(n)
z(n) T 71 w(n) = z(n)
Direct Inverse
System System
Impluse response = §(n)
LTI ( ) LTI
yn
2(n) h(n) hi(n) Hw(n) = a(n)
Direct Inverse
System System
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Invertibility of LTI Systems
» Therefore,
h(n) * h;(n) = §(n)
» For a given h(n), how do we find h;(n)?
» Consider the z—domain
H(z)H(z) = 1
1
H =
/(Z) H(Z)
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Invertibility of Rational LTI Systems

» Suppose, H(z) is rational:

o - 3

poles of H(z) = zeros of H,(z)
zeros of H(z) = poles of H,(z)

Chapter 7: The Discrete Fourier

Transform
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Intuition
aperiodic 4 dst in time D(ET cts + periodic in freq
J periodic repetition J} sampling
periodic + dst in time QES dst + periodic in freq
. . DFT .
one period of dst-time samples &—  one period of dst-freq samples
n=0,1,....N—-1 k=0,1,..., N—-1
Therefore, we define the Discrete Fourier Transform (DFT) as being a
computable transform that approximates the DTFT.
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Intuition

Example

z(n)
4 4 n
-N 1234 N-1N
DTFT
X(w)
A G A Y/ O O 2
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Intuition

Example
z(n)
[PEEEEEEE N E DI ! —n
-N 1234 N-1N
DTFT
%
ﬁ ‘ / \ i \\
| \ /z\\ 4 //\\ ] K
/o~ \ [V N\ |/ EENVZEER WV
7 - - g
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Intuition
Example
z(n)
4 - e n
N 1234 N-1N
DFT
X (k)
) . | l 4 111 I I R K
R EERNR! T v
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Intuition
Example
z(n)

—~ ... 1 —n

-N 1234 N-TN

DFT
X (k)
_|_%7/4\ —t 1 4 k
N 123 N-IN
- -
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DTFT, DTFS and DFT

x(n) for all n

J periodic repetition
o0

Xxp(n) = Z x(n+ IN) for all n

|=—0c0
where

and

—  X(w) for all w

J} sampling
T X (k) = X(@)]yezz i for all &
L X(k)

otherwise
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The Discrete Fourier Transform Pair

» DFT and inverse-DFT (IDFT):

N—-1
X(k) = > x(nje?™ %, k=0,1,...,N—1
n=0
1 N—-1
x(n) = N X(k)e?™ %, n=0,1,...,N—1
k=0

Note: we drop the * notation from now on.
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Frequency Domain Sampling and Reconstruction
N=4

[I=2] [I=1] [I=0] [I=1] [I=2]
x (n+N)

(n-N)
x (n+2N) x (n)
I Ithh Ih]
+ +
n 717;015345",%—_;

76 5 4 3 2

n

no overlap

support length=4=N  x(n)
A
‘

76 5 4 3 2 -l 2 3 4 5 6 1

1
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=x(n)

Frequency Domain Sampling

» Recall, sampling in time results in a periodic repetition in
frequency.

x(n) = xa(O)|eenr ¢ X(w) = z Z Xa(w + 2%/()

k=—o00

» Similarly, sampling in frequency results in periodic repetition in

time.
oo
F
o) = 32 x4 V) X(K) = X,z
|=—00
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Frequency Domain Sampling and Reconstruction
N=4

[=2] [i=1] [1=0] [=1] [I=2]
X (n+N) x (n-N)
x(n)

x(n) x (n+2N)

..fUIIIJI"”UfIUT_T_ :

N
76 5 4 3 2 - 0 1 506 7 ’n
overlap
supportlength=6>N X (n)

A

@2
1

n
76 -5 4 3 2 - 1 2 3 4 5 6 7
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Frequency Domain Sampling and Reconstruction
N =4

no temporal aliasing
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Important DFT Properties

Property Time Domain Frequency Domain
Notation: x(n) X(k)

Periodicity: x(n) = x(n+ N) X(k) = X(k + N)
Linearity: aixi1(n) + axxo(n) a1 Xi(k) + a2 Xa(k)

Time reversal
Circular time shift:

Circular frequency shift:

Complex conjugate:
Circular convolution:
Multiplication:
Parseval’s theorem:

x(N — n)
x((n - N
X(n)ej27rln/N
x*(n)

x1(n) ® x2(n)
x1(n)xa(n)

Sso x(n)y*(n)

X(N = k)
X(k)e—jQﬂ'kI/N
X((k=N)n
X*(N — k)
X1(k)Xa(k)

FX1(k) ® Xa(k)

N ko X (k)Y (k)

Chapter 8: The Fast Fourier Transform
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Radix-2 FFT
Two strategies:
» Decimation in time (our focus in the lecture)
» Decimation in frequency
» Note: We assume that N is a power of two; i.e., N = 2".
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Radix-2 FFT: Decimation-in-time Radix-2 FFT: Decimation-in-time
For N = 8. For N = 8.
Stage 1 Stage 2 Stage 3
x0)—  2-point | X >< \/ \ // @
x(4) — DFT —| Combine | | X(4) —» E X(1)
2-point | | — X(0) " "o ><>< \V/
X2/  2-point [ DFTs | | — X(1) x@) >< /\ \><></ X2
x(6)— DFT — Combine : ig X6) — . Wi . XG)
4-point ° o W
— X(4 ) Wa
0 zpore |- o D VAN,
X(5)— DFT —| Combine | | — X(6) X5) —; . b —— X(5)
gl B XTI
x3)—  2-point }—  DFTs | | @ >< /\ / \\ Xe
x7—  DFT |  — . w Ny AU
Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 77 )97 Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 78 /97
FFT Complexity
a A=a+Wyb
Wr
b ! A=a-W/b

Chapter 11: Multirate Digital Signal

» Each butterfly requires: PrOCGSSIHg

» one complex multiplication
» two complex additions

» |In total, there are:
% butterflies per stage
» log N stages

» Order of the overall DFT computation is: O(N log V).

Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 79 /97 Professor Deepa Kundur (University of TorontoPigital Signal Processing: Course Review 80 / 97




Sampling Rate Conversion

» Goal: Given a discrete-time signal x(n) sampled at period T
from an underlying continuous-time signal x,(t), determine a
new sequence X(n) that is a sampled version of x,(t) at a
different sampling rate T,.

x(n) = x,(nT) x(n) = x,(nTy)

x(n)
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Sampling of Discrete-Time Signals

Suppose a discrete-time signal x(n) is sampled by taking every Dth
sample as follows:

xq4(n) = x(nD), for all n

Decimation example: D = 2: x(n)

xz(n)
A
Tg=2T
P 2 /K | \_ > P A » 7
—_— 0 =
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Decimation example: D = 2, 4:

x(n)

x,(n)
£ Ta-or

o 2 / 2 e A
AL/ -
(n)
i Tg=4T

A
AN / AN .
2 \l/ \l_/ 2 3
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Decimation example: D = 2, 4:

(F)

n J"L/ M -

>
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Downsampling with Anti-Alaising Filter

Decimator
LTI Filter Downsampler
z(n) v(n) y(m)
/ > hd(n) » | D \:
1 A H(w,) F.
ate T 4/'17__#'/13 - Rate F), i)

» The anti-aliasing filter Hy(w) should have effective
continuous-time frequency cutoff of Fy = 55= Hz, which is
equivalent to a normalized cutoff of:

1 1 1 1

f; Fo 2
= —=" — 0 — = — r g _— =
T F "7 F. 20 & T 5p

Ol 2

—7m/D <w < 7/D is expanded into -7 <w <7

Xw)
ANTI-ALIASEDVERSION A ;1
N j‘ﬁk/ M
A
—or 7;1' _T K ™ 2ITr 3I7r ” w
D D
X W)
A
IRIAIRIAIATE'IRIRIAIRIAGY
—27 —T T 2w 37
X W)
A
: : : : : I\/I : ; t } > W
-2 - m 2m 3m ”
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—7m/D <w < 7w/D is expanded into -7 <w <7
ANTI-ALIASED VERSION
J L J L > (1
! om A ; T 7 7 PP 3 4
i a \ m - — 7r ! 2m \ 3
1 \ lD D\ 1 \
/ \ ! \ ! \
1 \ 1 \ 1 \
! \ / \ / \
! \ ! \ ! \
! \ { \ { \
i \ ! \ ! \
1 \ 1 \ 1 \
! \ i \ i \
1 \ I \ I \
! \ ! \ ! \
1 1 1 1 1 1
i \ / \ / \
! \ ! \ ! \
! \ ! \ ! \
! \ ! \ ! \
1 \ I \ I \
! \ ! \ ! \
1 1 1 1 1 1
i \ ! \ ! \
1 \ 1 \ 1 \
i \ / \ / \
! \ ! \ ! \
! \ ! \ ! \
! \ ! \ ! \
! \ { \ { \
1 \ 1 \ 1 \
! L X, w oy \
‘l \\ ‘I \\ ‘I \\
| \ ] A \ { \
! \ | \ | \
! v v \
1 \ 1 \ 1 \
! v v \
1 \ 1 \ 1 \
! \ g \ g \
1 v v 1
! Vi Vi \
/ \/ \/ \
»
; ; ; i ; 1 ; ; ; » W
—27 - ™ 2 3
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Interpolation of Discrete-time Signals

To achieve this, consider a two-stage process:
» Stage 1: Upsample to appropriately compress the spectrum.

» Stage 2: Then filter with an appropriate lowpass filter.

» We will consider upsampling by a factor of /.

» Note: we change here the interpolation factor from D to [ to
distinguish our results from decimation.
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Interpolation by a Factor /

Interpolator

z(n)

/

Rate F, = —

Upsampler LTI Filter
< > hu(m) \
1 , A Hy(wy)
T Rate Iy = IF,
x —r/I /I > wy

» Interpolation only increases the visible resolution of the signal.

No new information is gained.

Interpolation of Discrete-time Signals

» Upsampling (without filtering) can be represented as:

x(m/1) m=0,£/,£2/,...
0 otherwise
X(wl)
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Interpolation example: | = 4: upsampling + lowpass filtering
x(n)
A
2!
1 1 1 1 »
; > ] ] > : »h
v(n)
A
2!
1 1 )
l 3 02 T2 3 l »n
y(n)
A
3
11 I | I I - .
¢ ll-3-z-1 12311 3 ”
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Interpolation example: | = 4: upsampling + lowpass filtering
A (W)
,I27r 77T 1 7r 2‘7( 3 ; w
’%(‘W)
—277 E E 7 3lrr »w
I 7
Y(w)
—or — 1 T 2I7r 3ITr »w
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—m <w < 7 is compressed into -7/l <w < 7/l
X(w
\ —27 —+ 1 s 27 3 ”
1 (Y (Y I
\ /A /A !
\ ;oA\ ;oA\ /
‘I‘ 'I‘ ‘\‘ 'I‘ ‘\‘ 'I‘
\ ! \ ! \ !
\ / \ / \ /
‘I I‘ ‘\ I‘ ‘\ I‘
\ ! \ ! \ !
\ / \ / \ /
\ ! \ ! \ !
‘\ II ‘\ II ‘\ II
\ ! \ ! \ !
\ / \ / \ /
| / LA W) /
‘I I' ‘\ I' ‘\ I'
\ ! \ ! \ !
Lo/ W Lo/
‘\ I’ ‘\ I’ ‘\ I’
) ﬂ { ; L ; ) ﬂ { ; > W
—27 - ‘? ™ 27 3T
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Sampling Rate Conversion by //D
Interpolator Decimator
Upsampler LTI Filter LTI Filter Downsampler
/ < / > hy (k) / > hq(k) / > | D / >
1 : 7 ’ I
Rate F, = — Rate = IF, Rate = —F, = F,
T, D
Upsampler LTI Filter Downsampler
z(n) v(k) w(k y(m)
1 I
Rate F, = — Rate = IF, Rate = =F, = F),
x
(k) = hu(k) * ha(k)
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Sampling Rate Conversion by //D

Interpolator

» x(n): original samples at sampling rate F,

: new samples at sampling rate F,
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Decimator
Upsampler LTI Filter LTI Filter Downsampler
/ < B /: hu (k) /: hq(k) / > | D /ﬁ
1 ’ ' I
Rate F, = i Rate = IF, Rate = BFI = Fy

94 / 97

Alla(wy)
T .

/D D 2w

{1 0<|w| < min(x/D,x/l)
Hy(w)Hy(w) = { 0 otherwise
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Sampling Rate Conversion by //D

Interpolator Decimator
Upsampler LTI Filter LTI Filter Downsampler
< B > hy(k) > ha(k) > | D >

I/D Rate Converter

Upsampler LTI Filter Downsampler

< B » H(w) > | D >
\H (w)
.
> W
— min (§L> min (;5)
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