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Chapter 1: Introduction

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review 3 / 97

Sampling Theorem

If the highest frequency contained in an analog signal xa(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2Fmax = 2B

then xa(t) can be exactly recovered from its sample values using the
interpolation function

g(t) =
sin(2πBt)

2πBt

Note: FN = 2B = 2Fmax is called the Nyquist rate.

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review 4 / 97



Sampling Theorem

Sampling Period = T =
1

Fs
=

1

Sampling Frequency

Therefore, given the interpolation relation, xa(t) can be written as

xa(t) =
∞∑

n=−∞

xa(nT )g(t − nT )

xa(t) =
∞∑

n=−∞

x(n) g(t − nT )

where xa(nT ) = x(n); called bandlimited interpolation.
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Bandlimited Interpolation

0 
n

bandlimited interpolation
function -- sinc

x(n) samples
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Digital-to-Analog Conversion

0 
n

original/bandlimited
interpolated signal

x(n)
1

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

-T T0 
t

-2T 2T 3T

1 

original/bandlimited
interpolated signal

zero-order
hold

-3T

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

-T T0 
t

-2T 2T 3T

1 

-3T

linear
interpolation

original/bandlimited
interpolated signal

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Chapter 2: Discrete-Time Signals and
Systems
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Terminology: Input-Output Description

Discrete-time
System

x(n)

Discrete-time
signal

y(n)

Discrete-time
signal

input/
excitation

output/
response

I Input-output description (exact structure of system is unknown
or ignored):

y(n) = T [x(n)]

I “black box” representation:

x(n)
T−→ y(n)
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Classification of Discrete-Time Systems
Common System Properties:

static vs. dynamic

time-invariant vs. time-variant

linear vs. nonlinear

causal vs. non-causal

stable vs. unstable systems

...
...
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The Convolution Sum
Let the response of a linear time-invariant (LTI) system to the unit
sample input δ(n) be h(n).

δ(n)
T−→ h(n)

δ(n − k)
T−→ h(n − k)

α δ(n − k)
T−→ α h(n − k)

x(k) δ(n − k)
T−→ x(k) h(n − k)

∞∑
k=−∞

x(k)δ(n − k)
T−→

∞∑
k=−∞

x(k)h(n − k)

x(n)
T−→ y(n)
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The Convolution Sum

Therefore,

y(n) =
∞∑

k=−∞

x(k)h(n − k) = x(n) ∗ h(n)

for any LTI system.
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Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

y(n) =
M−1∑
k=0

h(k)x(n − k)

}
nonrecursive systems

Infinite impulse response (IIR):

y(n) =
∞∑
k=0

h(k)x(n − k)

}
recursive systems
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System Realization

General expression for Nth-order LCCDE:

N∑
k=0

aky(n−k) =
M∑
k=0

bkx(n−k) a0 , 1

Initial conditions: y(−1), y(−2), y(−3), . . . , y(−N).

Need: (1) constant scale, (2) addition, (3) delay elements.
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Building Block Elements

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +
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Direct Form I vs. Direct Form II Realizations

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

is equivalent to the cascade of the following systems:

v(n)︸︷︷︸
output 1

=
M∑
k=0

bk x(n − k)︸ ︷︷ ︸
input 1

nonrecursive

y(n)︸︷︷︸
output 2

= −
N∑

k=1

aky(n − k) + v(n)︸︷︷︸
input 2

recursive
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Direct Form I IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

+

+

+

+

+

LTI All-zero system LTI All-pole system

...... ... ...

v(n)

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

+

+

+

+

+

LTI All-pole system
... ...

LTI All-zero system

......

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

... ...

+

+

+

+

+

......

... For N>M

Requires: M + N + 1 multiplications, M + N additions, max(M,N) memory

locations
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Chapter 3: The z-Transform and Its
Applications
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The Direct z-Transform

I Direct z-Transform:

X (z) =
∞∑

n=−∞

x(n)z−n

I Notation:

X (z) ≡ Z{x(n)}

x(n)
Z←→ X (z)
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Region of Convergence

I the region of convergence (ROC) of X (z) is the set of all values
of z for which X (z) attains a finite value

I The z-Transform is, therefore, uniquely characterized by:

1. expression for X (z)
2. ROC of X (z)
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ROC Families: Finite Duration Signals
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ROC Families: Infinite Duration Signals
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z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X (z) ROC: r2 < |z| < r1

x1(n) X1(z) ROC1

x2(n) X2(z) ROC2

Linearity: a1x1(n) + a2x2(n) a1X1(z) + a2X2(z) At least ROC1∩ ROC2

Time shifting: x(n − k) z−kX (z) At least ROC, except
z = 0 (if k > 0)
and z =∞ (if k < 0)

z-Scaling: anx(n) X (a−1z) |a|r2 < |z| < |a|r1

Time reversal x(−n) X (z−1) 1
r1
< |z| < 1

r2
Conjugation: x∗(n) X∗(z∗) ROC

z-Differentiation: n x(n) −z dX (z)
dz

r2 < |z| < r1

Convolution: x1(n) ∗ x2(n) X1(z)X2(z) At least ROC1∩ ROC2

among others . . .
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Convolution using the z-Transform

Basic Steps:

1. Compute z-Transform of each of the signals to convolve (time
domain → z-domain):

X1(z) = Z{x1(n)}
X2(z) = Z{x2(n)}

2. Multiply the two z-Transforms (in z-domain):

X (z) = X1(z)X2(z)

3. Find the inverse z-Transformof the product (z-domain → time
domain):

x(n) = Z−1{X (z)}
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Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 cos(ω0n)u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 sin(ω0n)u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|
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Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 cos(ω0n)u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 sin(ω0n)u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|
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Common Transform Pairs

I z-Transform expressions that are a fraction of polynomials in
z−1 (or z) are called rational.

I z-Transforms that are rational represent an important class of
signals and systems.
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The System Function

h(n)
Z←→ H(z)

time-domain
Z←→ z-domain

impulse response
Z←→ system function

y(n) = x(n) ∗ h(n)
Z←→ Y (z) = X (z) · H(z)

Therefore,

H(z) =
Y (z)

X (z)
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The System Function of LCCDEs

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

Z{y(n)} = Z{−
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)}

Z{y(n)} = −
N∑

k=1

akZ{y(n − k)}+
M∑
k=0

bkZ{x(n − k)}

Y (z) = −
N∑

k=1

akz
−kY (z) +

M∑
k=0

bkz
−kX (z)
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The System Function of LCCDEs

Y (z) +
N∑

k=1

akz
−kY (z) =

M∑
k=0

bkz
−kX (z)

Y (z)

[
1 +

N∑
k=1

akz
−k

]
= X (z)

M∑
k=0

bkz
−k

H(z) =
Y (z)

X (z)
=

∑M
k=0 bkz

−k[
1 +

∑N
k=1 akz

−k
]

LCCDE ←→ Rational System Function

Many signals of practical interest have a rational z-Transform.
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Inversion of the z-Transform

Three popular methods:

1. Contour integration:

x(n) =
1

2πj

∮
C

X (z)zn−1dz

2. Expansion into a power series in z or z−1:

X (z) =
∞∑

k=−∞

x(k)z−k

and obtaining x(k) for all k by inspection.

3. Partial-fraction expansion and table look-up.
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Chapter 4: Frequency Analysis of Signals
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CTFT: Intuition

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

I We may consider x(t) as a linear combination of e jΩt for Ω ∈ R.

I The larger |X (Ω)|, the more x(t) will look like a sinusoid with Ω.
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CTFT: Duality

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

Shape A
F←→ Shape B

Shape B
F←→ Shape A

Operation A
F←→ Operation B

Operation B
F←→ Operation A
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CTFT: Magnitude and Phase

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

=
1

2π

∫ ∞
−∞
|X (Ω)|e j∠X (Ω)e jΩtdΩ

=

∫ ∞
∞
|X (Ω)|e j(Ωt+∠X (Ω))df

I |X (Ω)| dictates the relative presence of the sinusoid of frequency Ω in x(t).

I ∠X (Ω) dictates the relative alignment of the sinusoid of frequency Ω in
x(t).
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Complex Sinusoids: Discrete-Time
e jωn = cos(ωn) + j sin(ωn) ≡ dst-time complex sinusoid

cos(2πfn)

0

n

sin(2πfn)

0

n
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Classification of Fourier Pairs

CTS-TIME DST-TIME

Continuous-Time Discrete-Time
PERIODIC Fourier Series Fourier Series

(CTFS) (DTFS)
Continuous-Time Discrete-Time

APERIODIC Fourier Transform Fourier Transform
(CTFT) (DTFT)
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Duality

CTS-TIME DST-TIME

PER x(t) =
∑∞

k=−∞ cke
j2πkF0t x(n) =

∑N−1
k=0 cke

j2πkn/N

ck = 1
Tp

∫
Tp

x(t)e−j2πkF0tdt ck = 1
N

∑N−1
n=0 x(n)e−j2πkn/N

APER x(t) = 1
2π

∫∞
−∞ X (Ω)e jΩtdΩ x(n) = 1

2π

∫
2π X (ω)e jωndω

X (Ω) =
∫∞
−∞ x(t)e−jΩtdt X (ω) =

∑∞
n=−∞ x(n)e−jωn

periodic
F←→ discrete

discrete
F←→ periodic

aperiodic
F←→ continuous

continuous
F←→ aperiodic
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Discrete-Time Fourier Series (DTFS)

For discrete-time periodic signals with period N :

I Synthesis equation:

x(n) =
N−1∑
k=0

cke
j2πkn/N

I Analysis equation:

ck =
1

N

N−1∑
n=0

x(n)e−j2πkn/N

Convergence conditions: None due to finite sums.
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DTFS: Example Pair

n

x(n)

A

N-N 0 L-L

k

c
0

k
c

0

k

c
0

k
c

0

n

x(n)

A

N-N 0 L-L
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Discrete-Time Fourier Transform (DTFT)

For discrete-time aperiodic signals:

I Synthesis equation:

x(n) =
1

2π

∫
2π

X (ω)e jωndω

I Analysis equation:

X (ω) =
∞∑

n=−∞

x(n)e−jωn

Convergence conditions:

∞∑
n=−∞

|x(n)| <∞
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DTFT: Example Pair

n

x(n)

A

0 L-L

0

n

x(n)

A

0 L-L

0
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t

x(t)

A sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5

t

x(t)

A sinc

0

X(0)

n

x(n)

A

N-N 0 L-L k

c
0

k
c

0

n

x(n)

A

0 L-L 0

CTFS

CTFT

DTFS

DTFT
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DTFT Theorems and Properties

Property Time Domain Frequency Domain
Notation: x(n) X (ω)

x1(n) X1(ω)
x2(n) X1(ω)

Linearity: a1x1(n) + a2x2(n) a1X1(ω) + a2X2(ω)
Time shifting: x(n − k) e−jωkX (ω)
Time reversal x(−n) X (−ω)
Convolution: x1(n) ∗ x2(n) X1(ω)X2(ω)
Correlation: rx1x2 (l) = x1(l) ∗ x2(−l) Sx1x2 (ω) = X1(ω)X2(−ω)

= X1(ω)X ∗2 (ω) [if x2(n) real]
Wiener-Khintchine: rxx(l) = x(l) ∗ x(−l) Sxx(ω) = |X (ω)|2

among others . . .
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DTFT Symmetry Properties

Time Sequence DTFT

x(n) X (ω)
x∗(n) X ∗(−ω)
x∗(−n) X ∗(ω)
x(−n) X (−ω)
xR(n) Xe(ω) = 1

2 [X (ω) + X ∗(−ω)]
jxI (n) Xo(ω) = 1

2 [X (ω)− X ∗(−ω)]
X (ω) = X ∗(−ω)
XR(ω) = XR(−ω)

x(n) real XI (ω) = −XI (−ω)
|X (ω)| = |X (−ω)|
∠X (ω) = −∠X (−ω)

x ′e(n) = 1
2 [x(n) + x∗(−n)] XR(ω)

x ′o(n) = 1
2 [x(n)− x∗(−n)] jXI (ω)
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Chapter 5: Frequency Domain Analysis of
LTI Systems
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Linear Time-Invariant (LTI) Systems

LTI

LTI

LTI

LTI

LTI

LTI
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Linear Time-Invariant (LTI) Systems

LTI

LTI

???

0

n

0

n

real

imaginary
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Linear Time-Invariant (LTI) Systems

LTI

LTI

???

0

n

0

n

real

imaginary

0

n

0

n

real

imaginary

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review 53 / 97

Frequency Response of LTI Systems

z-Domain ω-Domain

H(z)
z=e jω
=⇒ H(ω)

system function
z=e jω
=⇒ frequency response

Y (z) = X (z)H(z)
z=e jω
=⇒ Y (ω) = X (ω)H(ω)
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complex plane

real

imaginary

complex plane
real

imaginary

complex plane
real

imaginary

complex plane

real

imaginary

complex plane
real

imaginary

complex plane
real

imaginary

complex plane

real

imaginary

complex plane
real

imaginary

complex plane
real

imaginary

complex plane

real

imaginary

complex plane
real

imaginary

complex plane
real

imaginary

complex plane

real

imaginary

complex plane
real

imaginary

complex plane
real

imaginary
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LTI Systems as Frequency-Selective Filters

I Filter: device that discriminates, according to some attribute of
the input, what passes through it

I For LTI systems, given Y (ω) = X (ω)H(ω)
I H(ω) acts as a kind of weighting function or spectral shaping

function of the different frequency components of the signal

LTI system⇐⇒ Filter
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Ideal Filters

Classification:

I lowpass

I highpass

I bandpass

I bandstop

I all-pass

Passband Passband
Stopband

Sharp
Transition

0

Ideal Highpass Filter

Passband

Passband

Passband

Stopband Stopband

0

Ideal Badstop Filter

Passband

0

Ideal All-pass Filter

Passband
StopbandStopband

Sharp
Transition

0

Ideal Lowpass Filter

Passband Passband
Stopband

Sharp
Transition

0

Ideal Bandpass Filter
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Invertibility of Systems

I Invertible system: there is a one-to-one correspondence between
its input and output signals

I the one-to-one nature allows the process of reversing the
transformation between input and output; suppose

y(n) = T [x(n)] where T is one-to-one

w(n) = T −1[y(n)] = T −1[T [x(n)]] = x(n)

Direct
System

Identity System

Inverse
System
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Invertibility of LTI Systems

Impluse response = 

Direct
System

Inverse
System

Direct
System

Identity System

Inverse
System

LTI LTI
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Invertibility of LTI Systems

I Therefore,
h(n) ∗ hI (n) = δ(n)

I For a given h(n), how do we find hI (n)?

I Consider the z−domain

H(z)HI (z) = 1

HI (z) =
1

H(z)
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Invertibility of Rational LTI Systems

I Suppose, H(z) is rational:

H(z) =
A(z)

B(z)

HI (z) =
B(z)

A(z)

poles of H(z) = zeros of HI (z)

zeros of H(z) = poles of HI (z)
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Chapter 7: The Discrete Fourier
Transform
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Intuition

aperiodic + dst in time
DTFT←→ cts + periodic in freq

↓ periodic repetition ↓ sampling

periodic + dst in time
DTFS←→ dst + periodic in freq

one period of dst-time samples
DFT←→ one period of dst-freq samples

n = 0, 1, . . . ,N − 1 k = 0, 1, . . . ,N − 1

Therefore, we define the Discrete Fourier Transform (DFT) as being a

computable transform that approximates the DTFT.
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Intuition
Example

0

...

DTFT

n

A

N-N 0 ...1 2 3 4 N-1
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Intuition
Example

k0

n

A

N

N

-N

-N

0

1 2 3
4

...

...

N-1

1 2 3 4 N-1

DTFT DTFS
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Intuition
Example

0 1 2 3 4

0 1 2 3
4

...

N-10 1 2 3
4

...

kk

n

DFT

n

A

N

N

-N

-N

... N-1
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Intuition
Example

0 1 2 3 4

0 1 2 3
4

...

N-10 1 2 3
4

...

kk

n

DFT

n

A

N

N

-N ... N-1

-N
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DTFT, DTFS and DFT

x(n) for all n
DTFT←→ X (ω) for all ω

↓ periodic repetition ↓ sampling

xp(n) =
∞∑

l=−∞

x(n + lN) for all n
DTFS←→ X (k) = X (ω)|ω= 2π

N k for all k

x̂(n)
DFT←→ X̂ (k)

where

x̂(n) =

{
xp(n) for n = 0, . . . ,N − 1
0 otherwise

and

X̂ (k) =

{
X (k) for k = 0, . . . ,N − 1
0 otherwise
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The Discrete Fourier Transform Pair

I DFT and inverse-DFT (IDFT):

X (k) =
N−1∑
n=0

x(n)e−j2πk
n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1

Note: we drop the ·̂ notation from now on.
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Frequency Domain Sampling

I Recall, sampling in time results in a periodic repetition in
frequency.

x(n) = xa(t)|t=nT
F←→ X (ω) =

1

T

∞∑
k=−∞

Xa(ω +
2π

T
k)

I Similarly, sampling in frequency results in periodic repetition in
time.

xp(n) =
∞∑

l=−∞

x(n + lN)
F←→ X (k) = X (ω)|ω= 2π

N
k
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Frequency Domain Sampling and Reconstruction
N = 4

-1 10
n

x (n)

= x (n)

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x (n)support length = 4 = N

no overlap

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

x (n)

+

l=0

x (n-N)

+

l=1

+

x (n+N)
l=-1

+

x (n+2N)

l=-2

x (n-2N)

l=2

. . .. . .

~
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Frequency Domain Sampling and Reconstruction
N = 4

1

=x(n)

x (n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

support length = 6 > N

overlap

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

2

1

x (n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

l=0 l=1

+ +

l=-1

+ + +

l=-2 l=2
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~

x (n)
x (n-N)x (n+N)

x (n+2N) x (n-2N)
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Frequency Domain Sampling and Reconstruction
N = 4

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

2

1 1

x(n)

=x(n)

-1 10
n

x(n)

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

=x(n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x  (n)p

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x  (n)p
time-domain aliasing

no temporal aliasing
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Important DFT Properties

Property Time Domain Frequency Domain
Notation: x(n) X (k)
Periodicity: x(n) = x(n + N) X (k) = X (k + N)
Linearity: a1x1(n) + a2x2(n) a1X1(k) + a2X2(k)
Time reversal x(N − n) X (N − k)

Circular time shift: x((n − l))N X (k)e−j2πkl/N

Circular frequency shift: x(n)e j2πln/N X ((k − l))N
Complex conjugate: x∗(n) X∗(N − k)
Circular convolution: x1(n)⊗ x2(n) X1(k)X2(k)
Multiplication: x1(n)x2(n) 1

N
X1(k)⊗ X2(k)

Parseval’s theorem:
∑N−1

n=0 x(n)y∗(n) 1
N

∑N−1
k=0 X (k)Y ∗(k)
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Chapter 8: The Fast Fourier Transform
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Radix-2 FFT

Two strategies:

I Decimation in time (our focus in the lecture)

I Decimation in frequency

I Note: We assume that N is a power of two; i.e., N = 2r .
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Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

x(1)
x(5)

x(3)
x(7)

Combine
4-point
DFTs

x(0)
x(4)

x(2)
x(6)

2-point
DFT

2-point
DFT

Combine
2-point
DFTs

2-point
DFT

2-point
DFT

Combine
2-point
DFTs
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Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)

X(1)
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-1

-1 -1

-1 -1
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-1

-1

-1

0W 8

0W 8
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0W 8

0W 8

0W 8
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FFT Complexity

-1

WN
r

a

b

rr
NA = a + W   b

rr
NA = a - W   b

I Each butterfly requires:
I one complex multiplication
I two complex additions

I In total, there are:
I N

2 butterflies per stage
I logN stages

I Order of the overall DFT computation is: O(N logN).
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Chapter 11: Multirate Digital Signal
Processing
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Sampling Rate Conversion
I Goal: Given a discrete-time signal x(n) sampled at period T

from an underlying continuous-time signal xa(t), determine a
new sequence x̂(n) that is a sampled version of xa(t) at a
different sampling rate Td .

x(n) = xa(nT ) x̂(n) = xa(nTd)

-1 10
n

x(n)

-2-3 2 3

1

-1 10
n

x(n)

-2
-3

2
3

1

T

Td
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Sampling of Discrete-Time Signals
Suppose a discrete-time signal x(n) is sampled by taking every Dth
sample as follows:

xd(n) = x(nD), for all n

Decimation example: D = 2:

-1 10
n

x(n)

-2-3 2 3

1 T

x (n)
T   = 2Td

-1 10
n-2

-3
2

3

1

d

x (n)
T   = 4Td

-1 1
0

n
-2-3 2 3

1
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Decimation example: D = 2, 4:

-1 10
n

x(n)

-2-3 2 3

1 T

x (n)
T   = 2Td

-1 10
n-2

-3
2

3

1

d

x (n)
T   = 4Td
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Decimation example: D = 2, 4:

d1/T

0
F

X  (F)d

......

d1/T

0
F

X  (F)d

......

1/T

0
F

X (F)

......
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Downsampling with Anti-Alaising Filter

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

LTI Filter Downsampler
Decimator

I The anti-aliasing filter Hd(ω) should have effective
continuous-time frequency cutoff of F0 = 1

2DT
Hz, which is

equivalent to a normalized cutoff of:

f0 =
F0

Fs
=

1

2DT
· 1

Fs
=

1

2D
or ω0 = 2π

1

2D
=
π

D
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−π/D ≤ ω ≤ π/D is expanded into −π ≤ ω ≤ π

d1/T

0

X  (  )d

X(  )

......

1/T

0

......

d1/T

0

X  (  )d

......

ANTI-ALIASED VERSION
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−π/D ≤ ω ≤ π/D is expanded into −π ≤ ω ≤ π

0

X  (  )d

X(  )

......

0

......

ANTI-ALIASED VERSION
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Interpolation of Discrete-time Signals

To achieve this, consider a two-stage process:

I Stage 1: Upsample to appropriately compress the spectrum.

I Stage 2: Then filter with an appropriate lowpass filter.

I We will consider upsampling by a factor of I .
I Note: we change here the interpolation factor from D to I to

distinguish our results from decimation.
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Interpolation by a Factor I

Upsampler

LTI FilterLTI Filter LTI Filter Downsampler
Interpolator Decimator

Interpolator
LTI Filter

I Interpolation only increases the visible resolution of the signal.
No new information is gained.
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Interpolation of Discrete-time Signals

I Upsampling (without filtering) can be represented as:

v(m) =

{
x(m/I ) m = 0,±I ,±2I , . . .
0 otherwise

V (ω) = X (ωI )
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Interpolation example: I = 4: upsampling + lowpass filtering

0
n

y(n)

-1 1-2-3 2 3

1

x(n)

-1 1
0

n
-2-3 2 3

1

-1 1-2-3 2 3

v(n)

0
n

1
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Interpolation example: I = 4: upsampling + lowpass filtering

0

V (  )

......

0

Y(  )

......

0

......

X (  )
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−π ≤ ω ≤ π is compressed into −π/I ≤ ω ≤ π/I

0

X  (  )I

......

0

......

X (  )
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Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

I x(n): original samples at sampling rate Fx

I y(n): new samples at sampling rate Fy
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Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

Upsampler LTI Filter Downsampler
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H(ω) = Hu(ω)Hd(ω) =

{
I 0 ≤ |ω| ≤ min(π/D, π/I )
0 otherwise
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Sampling Rate Conversion by I/D

Upsampler LTI Filter LTI Filter Downsampler
Interpolator Decimator

Upsampler LTI Filter Downsampler
I/D Rate Converter
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