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Chapter 1: Introduction

Analog and Digital Signals
I analog signal = continuous-time + continuous amplitude

I digital signal = discrete-time + discrete amplitude
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Chapter 1: Introduction

Analog and Digital Signals
I analog system = analog input + analog output

I digital system = digital input + digital output
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Chapter 1: Introduction

Discrete-time Sinusoids

x(n) = A cos(ωn + θ) = A cos(2πfn + θ), n ∈ Z

I discrete-time signal (not digital), ∵ −A ≤ xa(t) ≤ A and n ∈ Z
I A = amplitude

I ω = frequency in rad/sample

I f = frequency in cycles/sample; note: ω = 2πf

I θ = phase in rad
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MINIMUM OSCILLATION

MINIMUM OSCILLATION

MAXIMUM OSCILLATION
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ENVELOPE CYCLES
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Chapter 1: Introduction

ENVELOPE CYCLES
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Chapter 1: Introduction

NOT PERIODIC
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Chapter 1: Introduction

Uniqueness: Continuous-time

For F1 6= F2,

A cos(2πF1t + θ) 6= A cos(2πF2t + θ)

except at discrete points in time.
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Chapter 1: Introduction

Uniqueness: Continuous-time

F1 6= F2:
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Chapter 1: Introduction

Uniqueness: Discrete-time

Let f1 = f0 + k where k ∈ Z,

x1(n) = A e j(2πf1n+θ)

= A e j(2π(f0+k)n+θ)

= A e j(2πf0n+θ) · e j(2πkn)

= x0(n) · 1 = x0(n)
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Chapter 1: Introduction

Harmonically Related Complex Exponentials

Harmonically related sk(t) = e jkΩ0t = e j2πkF0t ,
(cts-time) k = 0,±1,±2, . . .

Scientific Designation Frequency (Hz) k for F0 = 8.176

C-1 8.176 1
C0 16.352 2
C1 32.703 4
C2 65.406 8
C3 130.813 16
C4 261.626 32
...

...
C9 8372.018 1024
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Chapter 1: Introduction

Harmonically Related Complex Exponentials

Scientific Designation Frequency (Hz) k for F0 = 8.176

C1 32.703 4
C2 65.406 8
C3 130.813 16

C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
C7 2093.005 256
C8 4186.009 512

C1 C2 C3 C4 C5 C6 C7 C8
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Chapter 1: Introduction

Harmonically Related Complex Exponentials

What does the family of harmonically related sinusoids sk(t) have in
common?

Harmonically related sk(t) = e jkΩ0t = e j2π(kF0)t ,
(cts-time) k = 0,±1,±2, . . .

fund. period: T0,k =
1

cyclic frequency
=

1

kF0

period: Tk = any integer multiple of T0

common period: T = k · T0,k =
1

F0
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Chapter 1: Introduction

Harmonically Related Complex Exponentials

Discrete-time Case:

For periodicity, select f0 = 1
N

where N ∈ Z:

Harmonically related sk(n) = e j2πkf0n = e j2πkn/N ,
(dts-time) k = 0,±1,±2, . . .

I There are only N distinct dst-time harmonics:
sk(n), k = 0, 1, 2, . . . ,N − 1.

Professor Deepa Kundur (University of Toronto)Introduction to Digital Signal Processing 16 / 58



Chapter 1: Introduction

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler
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Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Sampling:
I conversion from cts-time to dst-time by taking “samples” at

discrete time instants

I E.g., uniform sampling: x(n) = xa(nT ) where T is the sampling
period and n ∈ Z
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Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Quantization:
I conversion from dst-time cts-valued signal to a dst-time

dst-valued signal

I quantization error: eq(n) = xq(n)− x(n) for all n ∈ Z
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Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Coding:
I representation of each dst-value xq(n) by a

b-bit binary sequence

I e.g., if for any n, xq(n) ∈ {0, 1, . . . , 6, 7}, then the coder may
use the following mapping to code the quantized amplitude:
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Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Example coder:

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111
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Chapter 1: Introduction

Sampling Theorem

If the highest frequency contained in an analog signal xa(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2Fmax = 2B

then xa(t) can be exactly recovered from its sample values using the
interpolation function

g(t) =
sin(2πBt)

2πBt

Note: FN = 2B = 2Fmax is called the Nyquist rate.
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Chapter 1: Introduction

Sampling Theorem

Sampling Period = T =
1

Fs
=

1

Sampling Frequency

Therefore, given the interpolation relation, xa(t) can be written as

xa(t) =
∞∑

n=−∞

xa(nT )g(t − nT )

xa(t) =
∞∑

n=−∞

x(n) g(t − nT )

where xa(nT ) = x(n); called bandlimited interpolation.
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Bandlimited Interpolation

0 
n

bandlimited interpolation
function -- sinc

x(n) samples
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Digital-to-Analog Conversion

0 
n

original/bandlimited
interpolated signal

x(n)
1

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

-T T0 
t

-2T 2T 3T

1 

original/bandlimited
interpolated signal

zero-order
hold

-3T

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

-T T0 
t

-2T 2T 3T

1 

-3T

linear
interpolation

original/bandlimited
interpolated signal

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Chapter 2: Dst-Time Signals & Systems

Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

δ(n) =

{
1, for n = 0
0, for n 6= 0

2. unit step signal:

u(n) =

{
1, for n ≥ 0
0, for n < 0

3. unit ramp signal:

ur (n) =

{
n, for n ≥ 0
0, for n < 0

Note:

δ(n) = u(n)− u(n − 1)= ur (n + 1)− 2ur (n) + ur (n − 1)

u(n) = ur (n + 1)− ur (n)
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Chapter 2: Dst-Time Signals & Systems

Signal Symmetry

Even signal: x(−n) = x(n)

Odd signal: x(−n) = −x(n)

-1 10
n

x(n)

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

1

2

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x(n) x(n)

Professor Deepa Kundur (University of Toronto)Introduction to Digital Signal Processing 29 / 58
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Signal Symmetry

Even signal component: xe(n) = 1
2

[x(n) + x(−n)]

Odd signal component: xo(n) = 1
2

[x(n)− x(−n)]

Note: x(n) = xe(n) + xo(n)
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Signal Symmetry
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Chapter 2: Dst-Time Signals & Systems

Simple Manipulation of Discrete-Time Signals

I Transformation of independent variable:
I time shift: n→ n − k , k ∈ Z

I Question: what if k 6∈ Z?
I time scale: n→ αn, α ∈ Z

I Question: what if α 6∈ Z?

I Additional, multiplication and scaling:
I amplitude scaling: y(n) = Ax(n), −∞ < n <∞
I sum: y(n) = x1(n) + x2(n), −∞ < n <∞
I product: y(n) = x1(n)x2(n), −∞ < n <∞
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Chapter 2: Dst-Time Signals & Systems

Simple Manipulation of Discrete-Time Signals I

Find x(n)− x(n + 1).

x(n)

n
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Simple Manipulation of Discrete-Time Signals II

x(n)
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Chapter 2: Dst-Time Signals & Systems

Simple Manipulation of Discrete-Time Signals I
Find x( 3

2
n + 1).

n 3n
2

+ 1 x( 3n
2

+ 1)

< −1 < − 1
2

0 if 3n
2

+ 1 is an integer; undefined otherwise

-1 − 1
2

undefined
0 1 x(1) = 1
1 5

2
undefined

2 4 x(4) = 2
3 11

2
undefined

4 7 x(7) = 3
5 17

2
undefined

6 10 x(10) = 2
7 23

2
undefined

8 13 x(13) = 1
9 29

2
undefined

10 16 x(16) = −1
11 35

2
undefined

12 19 x(19) = −2
> 12 > 19 0 if 3n

2
+ 1 is an integer; undefined otherwise
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Simple Manipulation of Discrete-Time Signals
Graph of x( 3

2
n + 1).
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This signal is undefined for values of n 
that are not even integers and zero for 
even integers not shown on this sketch.
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Chapter 2: Dst-Time Signals & Systems

Input-Output Description of Dst-Time Systems

Discrete-time
System

x(n)

Discrete-time
signal

y(n)

Discrete-time
signal

input/
excitation

output/
response

I Input-output description (exact structure of system is unknown
or ignored):

y(n) = T [x(n)]

I “black box” representation:

x(n)
T−→ y(n)
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Chapter 2: Dst-Time Signals & Systems

Classification of Discrete-Time Systems
Common System Properties:

static vs. dynamic

time-invariant vs. time-variant

linear vs. nonlinear

causal vs. non-causal

stable vs. unstable systems

...
...

Professor Deepa Kundur (University of Toronto)Introduction to Digital Signal Processing 38 / 58

Chapter 2: Dst-Time Signals & Systems

Static vs. Dynamic

I Static system (a.k.a. memoryless): the output at time n
depends only on the input sample at time n; otherwise the
system is said to be dynamic

I a system is static iff (if and only if)

y(n) = T [x(n), n]

for every time instant n.
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Static vs. Dynamic

I Consider the general system:

y(n) = T [x(n − N), x(n − N + 1), · · · , x(n − 1), x(n), x(n + 1),

· · · , x(n + M − 1), x(n + M)], N,M > 0

I For N = M = 0, y(n) = T [x(n)], the system is static.

I For 0 < N,M <∞, the system is said to be dynamic with finite
memory of duration N + M + 1.

I For either N and/or M equal to infinite, the system is said to
have infinite memory.
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Static vs. Dynamic

Examples: memoryless or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25

(n − 5))

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, Y, Y, N, N, N, Y, N
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Discrete-Time Bounded Signals

|x[n]||x[n]|

x[n] x[n]

UNBOUNDED SIGNALBOUNDED SIGNAL

x[n] x[n]

n

n

n

n

n

n
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Chapter 2: Dst-Time Signals & Systems

The Convolution Sum

Recall:

x(n) =
∞∑

k=−∞

x(k)δ(n − k)
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The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit
sample input δ(n) be h(n).

δ(n)
T−→ h(n)

δ(n − k)
T−→ h(n − k)

α δ(n − k)
T−→ α h(n − k)

x(k) δ(n − k)
T−→ x(k) h(n − k)

∞∑
k=−∞

x(k)δ(n − k)
T−→

∞∑
k=−∞

x(k)h(n − k)

x(n)
T−→ y(n)
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The Convolution Sum

Therefore,

y(n) =
∞∑

k=−∞

x(k)h(n − k) = x(n) ∗ h(n)

for any LTI system.
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Chapter 2: Dst-Time Signals & Systems

Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

y(n) =
M−1∑
k=0

h(k)x(n − k)

}
nonrecursive systems

Infinite impulse response (IIR):

y(n) =
∞∑
k=0

h(k)x(n − k)

}
recursive systems
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Chapter 2: Dst-Time Signals & Systems

System Realization

General expression for Nth-order LCCDE:

N∑
k=0

aky(n−k) =
M∑
k=0

bkx(n−k) a0 , 1

Initial conditions: y(−1), y(−2), y(−3), . . . , y(−N).

Need: (1) constant scale, (2) addition, (3) delay elements.
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Chapter 2: Dst-Time Signals & Systems

Building Block Elements

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +
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Direct Form I vs. Direct Form II Realizations

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

is equivalent to the cascade of the following systems:

v(n)︸︷︷︸
output 1

=
M∑
k=0

bk x(n − k)︸ ︷︷ ︸
input 1

nonrecursive

y(n)︸︷︷︸
output 2

= −
N∑

k=1

aky(n − k) + v(n)︸︷︷︸
input 2

recursive
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Direct Form I IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

+

+

+

+

+

LTI All-zero system LTI All-pole system

...... ... ...

v(n)

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

+

+

+

+

+

LTI All-pole system

... ...

LTI All-zero system

......

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

... ...

+

+

+

+

+

......

... For N>M

Requires: M + N + 1 multiplications, M + N additions, max(M,N) memory

locations
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Chapter 3: The z-Transform and Its Applications

The Direct z-Transform

I Direct z-Transform:

X (z) =
∞∑

n=−∞

x(n)z−n

I Notation:

X (z) ≡ Z{x(n)}

x(n)
Z←→ X (z)
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Chapter 3: The z-Transform and Its Applications

Region of Convergence

I the region of convergence (ROC) of X (z) is the set of all values
of z for which X (z) attains a finite value

I The z-Transform is, therefore, uniquely characterized by:

1. expression for X (z)
2. ROC of X (z)
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Chapter 3: The z-Transform and Its Applications

ROC Families: Finite Duration Signals
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Chapter 3: The z-Transform and Its Applications

ROC Families: Infinite Duration Signals
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Chapter 3: The z-Transform and Its Applications

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X (z) ROC: r2 < |z| < r1

x1(n) X1(z) ROC1

x2(n) X2(z) ROC2

Linearity: a1x1(n) + a2x2(n) a1X1(z) + a2X2(z) At least ROC1∩ ROC2

Time shifting: x(n − k) z−kX (z) At least ROC, except
z = 0 (if k > 0)
and z =∞ (if k < 0)

z-Scaling: anx(n) X (a−1z) |a|r2 < |z| < |a|r1

Time reversal x(−n) X (z−1) 1
r1
< |z| < 1

r2
Conjugation: x∗(n) X∗(z∗) ROC

z-Differentiation: n x(n) −z dX (z)
dz

r2 < |z| < r1

Convolution: x1(n) ∗ x2(n) X1(z)X2(z) At least ROC1∩ ROC2

among others . . .
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Chapter 3: The z-Transform and Its Applications

Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 cos(ω0n)u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 sin(ω0n)u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|

�
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