Introduction to Digital Signal Processing

Professor Deepa Kundur

University of Toronto

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

1/58

Chapter 1: Introduction

Analog and Digital Signals

» analog signal = continuous-time + continuous amplitude

» digital signal = discrete-time + discrete amplitude

continuous amplitude discrete amplitude

continuous-time x(1) ﬁ(t)
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Chapter 1: Introduction

Analog and Digital Signals

» analog system = analog input + analog output
» digital system = digital input + digital output
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Discrete-time Sinusoids

x(n) = Acos(wn+0) = Acos(2rfn+6), neZ

> discrete-time signal (not digital), "" —A < x,(t) < Aand n€Z
> A = amplitude

> w = frequency in rad/sample

» f = frequency in cycles/sample; note: w = 27 f

» @ = phase in rad
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z[n] =cos(0-n) =1,w=0 z[n] = cos(mn/8),w = /8 z[n] = cos(mn/4),w = /4
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z[n] = cos (%)  No=31 ofn] = cos ()

, N does not exist
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Chapter 1: Introduction

Uniqueness: Continuous-time

FOI’F17£F2,

Acos(2mFit + 0) # Acos(2mFat + 0)

except at discrete points in time.
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Uniqueness: Continuous-time
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Chapter 1: Introduction

Uniqueness: Discrete-time

Let f; = fy + k where k € Z,

xl(n) — Aej(27rf1n+0)
A ej(27r(f0+k)n+0)

A ej(27rfon+9) . ej(27rl<n)

= Xo(n) -1 = Xo(n)
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Chapter 1: Introduction

Harmonically Related Complex Exponentials

Harmonically related s, (t) = e/t = e/2rkFot,

(cts-time) k=0,+1,42,...
Scientific Designation Frequency (Hz) k for Fp = 8.176
C-1 8.176 1

Cco 16.352 2
C1 32.703 4
C2 65.406 8
c3 130.813 16
C4 261.626 32
C9 8372.018 1024
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Harmonically Related Complex Exponentials

Scientific Designation Frequency (Hz) k for Fp = 8.176

Chapter 1: Introduction

Harmonically Related Complex Exponentials

What does the family of harmonically related sinusoids sk(t) have in
common?

Harmonically related s, (t) = e/<%t = e/2r(kFo)t,

(cts-time) k=0,+1,42,...
1 1
und. peno 0.k cyclic frequency  kFy
period: T, = any integer multiple of Ty
1
common period: T = k- Ty = —
El FO
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C1 32.703 4
C2 65.406 8
C3 130.813 16
C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
c7 2093.005 256
C8 4186.009 512
:[‘;U_ - C—!]:l]—} _cs______ch:[‘—”_J;uil L _lc—!:"_{‘_}_‘;l:'}__}__c
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Chapter 1: Introduction
Harmonically Related Complex Exponentials
Discrete-time Case:
For periodicity, select fo = % where N € Z:
Harmonically related s, (n) = e/27kfon = ei2mkn/N
(dts-time) k=0,£1,42 ...
» There are only N distinct dst-time harmonics:
se(n), k=0,1,2,...,N—1.
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Chapter 1: Introduction

A/D converter

Analog-to-Digital Conversion

Chapter 1: Introduction
Analog-to-Digital Conversion
A/D converter
xa(t) x(n) xq(n) 01011...
Sampler / » Quantizer / > Coder >
/ 7 7
Analog Discrete-time Quantized Digital
signal signal signal signal
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Analog-to-Digital Conversion
A/D converter
x[(t) x(n) xq(n) 01011...
Sampler / » Quantizer / > Coder >
/ 7 7 /
Analog Discrete-time Quantized Digital
signal signal signal signal
Quantization:
» conversion from dst-time cts-valued signal to a dst-time
dst-valued signal
» quantization error: e,(n) = x,(n) — x(n) for all n € Z
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discrete time instants

period and n € Z
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x(1) x(n) xq(n) 01011...
Sampler / > Quantizer / > Coder >
/ 7 7
Analog Discrete-time Quantized Digital
signal signal signal signal
Sampling:

» conversion from cts-time to dst-time by taking “samples” at

» E.g., uniform sampling: x(n) = x,(nT) where T is the sampling
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Analog-to-Digital Conversion

A/D converter

» representation of each dst-value x,(n) by a
b-bit binary sequence
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x(1) x(n) xq(n) 01011...
Sampler / > Quantizer / »  Coder >
/ 7 7 /
Analog Discrete-time Quantized Digital
signal signal signal signal
Coding:

» e.g., if for any n, x4(n) € {0,1,...,6,7}, then the coder may
use the following mapping to code the quantized amplitude:
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Chapter 1: Introduction

Analog-to-Digital Conversion

A/D converter

x(1) x(n) xq(n) 01011...
Sampler // > Quantizer // »  Coder >
/ 7 7 /
Analog Discrete-time Quantized Digital
signal signal signal signal

Example coder:

Chapter 1: Introduction

Sampling Theorem

If the highest frequency contained in an analog signal x,(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2F.x = 2B

then x,(t) can be exactly recovered from its sample values using the
interpolation function

sin(27 Bt)
t)= ———=
g(t) 2w Bt
Note: Fy = 2B = 2F,,. is called the Nyquist rate.
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0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111
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Chapter 1: Introduction
Sampling Theorem

1 1

Sampling Period = T = — =
ampling Perio Fs  Sampling Frequency

Therefore, given the interpolation relation, x,(t) can be written as

o

x,(t) = Z x2(nT)g(t —nT)
x(t)= > x(n) g(t—nT)

where x,(nT) = x(n); called bandlimited interpolation.
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Bandlimited Interpolation

x(n) samples
bandlimited interpolation () P

function -- sinc

N

~5
*

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing 24 / 58
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Digital-to-Analog Conversion

original/bandlimited x(n)
interpolated signal

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

linear
interpolation

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Digital-to-Analog Conversion

hold

» Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

» In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Chapter 2: Dst-Time Signals & Systems

Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

1, forn=0
5(,7){ 0, forn#0

2. unit step signal:

(n) = 1, forn>0
un) = 0, forn<O0

3. unit ramp signal:
n, forn>0
0, forn<O

Note:

o(n) = w(n)—u(n—1)=u(n+1)—2u(n)+ u(n—-1)
u(n—+1)— u(n)

<
—

S
~

Il
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Chapter 2: Dst-Time Signals & Systems

Signal Symmetry

Even signal:  x(—n) = x(n)

Odd signal:  x(—n) = —x(n)
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Chapter 2: Dst-Time Signals & Systems

Signal Symmetry

(x(n)+x(-n))/2

1 even part
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Chapter 2: Dst-Time Signals & Systems

Signal Symmetry

Even signal component: x.(n) = 1 [x(n) + x(—n)]
Odd signal component:  x,(n) = % [x(n) — x(—n)]

Note: x(n) = x.(n) + xo(n)
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Simple Manipulation of Discrete-Time Signals

» Transformation of independent variable:
» timeshift: n—n—k, keZ
> Question: what if kK ¢ Z7
» time scale: n — an, « € Z
» Question: what if o & Z7

» Additional, multiplication and scaling:

» amplitude scaling: y(n) = Ax(n), —00 < n < oo
» sum: y(n) = x1(n) + x2(n), —00 < n < oo
» product: y(n) = xq(n)xa(n), —00 < n< oo
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Chapter 2: Dst-Time Signals & Systems

Simple Manipulation of Discrete-Time Signals |

Find x(n) — x(n+ 1).

Chapter 2: Dst-Time Signals & Systems

Simple Manipulation of Discrete-Time Signals Il

x(n)-x(n+1)
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Simple Manipulation of Discrete-Time Signals |
: 3
Find x(5n +1).

n 341 x(32 +1)

< -1 < —% 0if % + 1 is an integer; undefined otherwise
-1 —% undefined
0 1 x(1) =1
1 3 undefined
2 4 x(4) =2
3 % undefined
4 7 x(7)=3
5 1?7 undefined
6 10 x(10) =2
7 2 undefined
8 13 x(13) =1
9 % undefined
10 16 x(16) = —1
11 % undefined
12 19 x(19) = —2

> 12 > 19 0if % + 1 is an integer; undefined otherwise
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Simple Manipulation of Discrete-Time Signals
Graph of x(3n+1).

This signal is undefined for values of n
2 that are not even integers and zero for
even integers not shown on this sketch.

1 1I
10
8 9

| | 12 -
3T )1 23 4567 111 3 > n
-1 J|
2 >
-3
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Chapter 2: Dst-Time Signals & Systems

Input-Output Description of Dst-Time Systems

x(n) Discrete-time yin)

input/ output/
excitation ; System ; response

Discrete-time Discrete-time
signal signal

» Input-output description (exact structure of system is unknown
or ignored):

y(n) =T [x(n)]

» “black box" representation:

x(n) L y(n)
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Chapter 2: Dst-Time Signals & Systems

Classification of Discrete-Time Systems

Common System Properties:

static VS. dynamic
time-invariant vs. time-variant
linear Vs, nonlinear
causal Vs. non-causal
stable vs. unstable systems
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Static vs. Dynamic

» Static system (a.k.a. memoryless): the output at time n
depends only on the input sample at time n; otherwise the
system is said to be dynamic

» a system is static iff (if and only if)

y(n) = Tlx(n), nl

for every time instant n.
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Static vs. Dynamic
» Consider the general system:

y(n) = Tx(n—N),x(n—N+1),--- ,x(n—1),x(n),x(n+1),
<y x(n+ M —1),x(n+ M), N,M >0

» For N =M =0, y(n) = T[x(n)], the system is static.

» For 0 < N, M < oo, the system is said to be dynamic with finite
memory of duration N + M + 1.

» For either N and/or M equal to infinite, the system is said to
have infinite memory.
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Chapter 2: Dst-Time Signals & Systems Chapter 2: Dst-Time Signals & Systems
Static vs. Dynamic Discrete-Time Bounded Signals
Examples: memoryless or not? . .
» y(n)=Ax(n), A#0 L_l_l_lTrU_L.TT,_LLU_”_]_U_U_L ““. oﬂ”””]””n
» y(n)=Ax(n)+B, A B,#0 l“
> y(n) = x(n) cos(55(n — 5))
e Y — S L RS £ PO /S L. H|
> y(n) =x(n+1) IRARAPSITIN T.T” I-”I T”“Th .?T””
> y(n) = 1—x(1n+2)
> y(n) = (") M, xm M, | xnl________ _H_I
_ 2N e R BAEP [ R B I P I3
- y(n) = Yh o x(k) v, | T Lot 1]
TIT T soumom sionat © IH O UESTSaEETL
Ans: Y, Y, Y, NN NN, Y N | | A IR —— S
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The Convolution Sum The Convolution Sum
Let the response of a linear time-invariant (LTI) system to the unit
sample input (n) be h(n).
T
Recall: o(n) — h(n)
> T
x(n) = Z x(k)3(n — k) d(n—k) — h(n—k)
k=00 a o(n— k) T a h(n — k)
x(k) 6(n—k) L x(k) h(n — k)
ST x(k)o(n—k) L5 ST x(k)h(n — k)
k=—o0 k=—o00
T
x(n) — y(n)
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Chapter 2: Dst-Time Signals & Systems

The Convolution Sum

Therefore,

for any LTI system.

Chapter 2: Dst-Time Signals & Systems

Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

M-1

y(n) = Z h(k)x(n — k) } nonrecursive systems
k=0

Infinite impulse response (IIR):

[o.@]
y(n) = g h(k)x(n — k) } recursive systems
k=0
Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing 46 / 58

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing 45 / 58
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System Realization
General expression for Nth-order LCCDE:
N M
E ary(n—k) = g bix(n—k) a=1
k=0 k=0
Initial conditions: y(—1),y(—2),y(=3),...,y(—N).
Need: (1) constant scale, (2) addition, (3) delay elements.
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Chapter 2: Dst-Time Signals & Systems

Building Block Elements

x1(n)

Adder: (n) y(n) = z1(n) + x2(n)

Unit delay: z(n) 27! y(n) =2 - 1)
Constant multiplier: x(n) a a x(n)
Unit advance: = n) z y() = z(n 4 1)
Signal multiplier: _*wl(n) i—w = 21(n)z2(n)
x2(n)
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Chapter 2: Dst-Time Signals & Systems

Direct Form | vs. Direct Form |l Realizations

y(n) =— Z ary(n— k) + Z bix(n — k)

is equivalent to the cascade of the following systems:

M
v(n) = E by x(n — k) nonrecursive
k= . v
output 1 input 1
N
y(n) = - g axy(n— k) + v(n) recursive
k=1 . v
output 2 input 2
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Direct Form | IIR Filter Implementation

x(n) . bo ® v(n) © . y(n)
271 b " 5 1
0 (He——T
21 51
=2 0| lo—2g
zfl 271

LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M 4+ N additions, M + N memory locations
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Direct Form Il IR Filter Implementation

x(n) | bo o y(n)
2 )
1
z

b
l—>1—><+>
!
l—b>2—><+>
L1

b
. :
: b1 A
L1

bar

LTI All-pole system

LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form Il IR Filter Implementation
bo

x(n) ® 2 ® y(n)
—1
y4
O—IL ==
271 b
O—mm g
21 b
O—E—F——0
H . B
© —oMo1g bar—1 -
Z—l
—ay by
[
:  ForN>M
—an

Requires: M + N + 1 multiplications, M 4+ N additions, max(M, N) memory

locations
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Chapter 3: The z-Transform and Its Applications

The Direct z-Transform

» Direct z-Transform:

» Notation:

Chapter 3: The z-Transform and Its Applications

Region of Convergence

» the region of convergence (ROC) of X(z) is the set of all values
of z for which X(z) attains a finite value

» The z-Transform is, therefore, uniquely characterized by:

1. expression for X(z)
2. ROC of X(z)
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Chapter 3: The z-Transform and Its Applications
ROC Families: Finite Duration Signals
Im(z)
Re(z)
entire z-plane
except possibly
z =0 and/or z = o0
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ROC Families: Infinite Duration Signals
Im(z) Im(z)

T /7‘
Re(z) Re(z)
N

Anticausal: z(n) =0 n >0

Causal: z(n) =0 n<0

Im(z)

T
——‘——»Re(z)
/]

ROC: m < |z| <2
Two-sided = Causal + Anticausal
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Chapter 3: The z-Transform and Its Applications

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X(z2) ROC: n <|z| < n
x1(n) Xi(z) ROC;
xa2(n) X2(z2) ROC,
Linearity: aixi(n) + axxa(n) a1 X1(z) + a2Xz2(z) At least ROC;N ROC,
Time shifting: x(n— k) z7kX(z) At least ROC, except
z=0(if k > 0)
and z = oo (if k < 0)
z-Scaling: a"x(n) X(a=1z) la|lr < |z| < |aln
Time reversal x(—n) X(z71) % <|z| < %
Conjugation: x*(n) X*(z*) ROC
z-Differentiation:  n x(n) —z%ﬁz) n<l|z|<n
Convolution: x1(n) * x2(n) Xi1(z)X2(z) At least ROC;N ROC,
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Common Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 d(n) 1 All z
2 u(n) — |z| > 1
3 a"u(n) 17312_1 |z| > |a|
4 na"u(n) (1_"”;__1)2 |z| > |a]
5 —a"u(—n-1) 173271 |z| < |a]
6 —na"u(—n-—1) % |z] < |a|
7 cos(won)u(n)  AEELER 7 >1
8  sin(won)u(n) #0'2:&272 |z| > 1
9 a"cos(won)u(n) 1_23;_‘912;13)5f;22_2 |z| > |a|
10 a"sin(won)u(n) Loz sinwy |z| > |a]

1—2az~1 coswg+a%z—2
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