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4.1 Frequency Analysis of Continuous-Time Signals

Reference

Reference:

Section 4.1 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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4.1 Frequency Analysis of Continuous-Time Signals

Frequency Analysis
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4.1 Frequency Analysis of Continuous-Time Signals

Frequency Synthesis

Scientific Designation Frequency (Hz) k for F0 = 8.176

C1 32.703 4
C2 65.406 8
C3 130.813 16

C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
C7 2093.005 256
C8 4186.009 512

C1 C2 C3 C4 C5 C6 C7 C8
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4.1 Frequency Analysis of Continuous-Time Signals

Complex Sinusoids
e jΩt = cos(Ωt) + j sin(Ωt) ≡ complex sinusoid

cos(2πft)

0

t

sin(2πft)

0

t
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4.1 Frequency Analysis of Continuous-Time Signals

Complex Sinusoids: as Eigenfunctions
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4.1 Frequency Analysis of Continuous-Time Signals

Complex Sinusoids: as Eigenfunctions

y(t) = h(t) ∗ e jΩt = H(Ω)e jΩt

Av = λv

Therefore, the set of functions {e jΩt} for Ω ∈ R represent
eigenfunctions of LTI systems.
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4.1 Frequency Analysis of Continuous-Time Signals

The Continuous-Time Fourier Series

(CTFS)
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4.1 Frequency Analysis of Continuous-Time Signals

Continuous-Time Fourier Series (CTFS)

For continuous-time periodic signals with period Tp = 1
F0

I Synthesis equation:

x(t) =
∞∑

k=−∞

cke
j2πkF0t

I Analysis equation:

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Intuition

x(t) =
∞∑

k=−∞

cke
j2πkF0t

I {e j2πkF0t} forms an orthogonal set for k = 0,±1,±2,±3, . . .

< e j2πkF0t , e j2πmF0t > =

∫
Tp

e j2πkF0t(e j2πmF0t)∗dt

=

∫
Tp

e j2πkF0te−j2πmF0tdt =

∫ Tp

0

e j2π(k−m)F0tdt

=

 t|Tp

0 k = m

e j2π(k−m)F0t

j2π(k−m)F0

∣∣∣Tp

0
k 6= m

=

{
Tp k = m
0 k 6= m
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Intuition

x(t) =
∞∑

k=−∞

cke
j2πkF0t

I Thus, x(t) is being broken down into a series of orthogonal basis functions
that are sinusoidal in nature.

I ck are the coefficients needed to represent x(t) in the basis set {e j2πkF0t}.

I There is a decoupling that takes place such that modifying the frequency
components of x(t) related to 2πkF0 will not affect those related to 2πmF0

for m 6= k .
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Dirichlet Conditions

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt

x̃(t) =
∞∑

k=−∞

cke
j2πkF0t

Q: For what conditions is x̃(t) equal to x(t)?
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Dirichlet Conditions

I A: Sufficient conditions are given by Dirichlet conditions:

1. x(t) has a finite number of discontinuities in any period.
2. x(t) contains a finite number of maxima and minima during any

period.
3. x(t) is absolutely integrable in any period:∫

Tp

|x(t)|dt <∞
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Dirichlet Conditions

I Note: the Dirichlet conditions guarantee equality except at
values of t for which x(t) is discontinuous.

I At discontinuities,
∑
∀k cke

j2πkF0t convergences to the midpoint
of the discontinuity.
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Example

Find the CTFS of the following periodic square wave:

t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Example

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt =
1

Tp

∫ Tp/2

−Tp/2

x(t)e−j2πkF0tdt

=
1

Tp

∫ τ/2

−τ/2

A · e−j2πkF0tdt =
A

Tp

e−j2πkF0t

−j2πkF0

∣∣∣∣τ/2

−τ/2

=
A

πkTp · F0

[
e−j2πkF0τ/2 − e+j2πkF0τ/2

−2j

]
=

A

πk · 1

[
e j2πkF0τ/2 − e−j2πkF0τ/2

2j

]
=

A sin(πkF0τ)

πk
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Example

For τ = Tp

3
= 1

3F0
:

ck =
A sin(πk/3)

πk
t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
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4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Example

x̃(t) =
∞∑

k=−∞

cke
j2πkF0t =

∞∑
k=−∞

A sin(πk/3)

πk
e j2πkF0t

t

x(t)

A

A/2

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5

Note: At square wave discontinuities (e.g., t = τ/2),

x(τ/2) =
∞∑

k=−∞

A sin(πk/3)

πk
e j2πkF0(τ/2) =

A

2
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4.1 Frequency Analysis of Continuous-Time Signals

The Continuous-Time Fourier Transform

(CTFT)
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4.1 Frequency Analysis of Continuous-Time Signals

Continuous-Time Fourier Transform (CTFT)

For continuous-time aperiodic signals

I Synthesis equation:

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

I Analysis equation:

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt
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4.1 Frequency Analysis of Continuous-Time Signals

Continuous-Time Fourier Transform (CTFT)

Cyclic frequency can also be used.

I Synthesis equation:

x(t) =

∫ ∞
−∞

X (F )e j2πFtdF

I Analysis equation:

X (F ) =

∫ ∞
−∞

x(t)e−j2πFtdt
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Dirichlet Conditions

I Allowing Tp →∞ in CTFS Dirichlet conditions:

1. x(t) has a finite number of finite discontinuities.
2. x(t) has a finite number of maxima and minima.
3. x(t) is absolutely integrable:∫ ∞

−∞
|x(t)|dt <∞
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Example

Find the CTFS of the following periodic square wave:

t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Example

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt =

∫ τ/2

−τ/2

Ae−jΩtdt

= A
e−jΩt

−jΩ

∣∣∣∣τ/2

−τ/2

= 2A
sin(Ωτ/2)

Ω
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Example

X (Ω) = 2A
sin(Ωτ/2)

Ω
t

x(t)

A

sinc

0

X(0)
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Intuition

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

I Suppose a(t) and b(t) are continuous-time aperiodic signals. We define:

< a(t), b(t) > =

∫ ∞
−∞

a(t)b∗(t)dt

I Therefore, we can interpret X (Ω) as follows:

X (Ω) = < x(t), e jΩt >
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Intuition

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

I We may consider x(t) as a linear combination of e jΩt for Ω ∈ R.

I The larger |X (Ω)|, the more x(t) will look like a sinusoid with Ω.
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Duality

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

x(t)
F←→ X (Ω)

rectangle
F←→ sinc

sinc
F←→ rectangle

convolution
F←→ multiplication

multiplication
F←→ convolution
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Duality

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

Shape A
F←→ Shape B

Shape B
F←→ Shape A

Operation A
F←→ Operation B

Operation B
F←→ Operation A
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Magnitude and Phase

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

=
1

2π

∫ ∞
−∞
|X (Ω)|e j∠X (Ω)e jΩtdΩ

=

∫ ∞
∞
|X (Ω)|e j(Ωt+∠X (Ω))df

I |X (Ω)| dictates the relative presence of the sinusoid of frequency Ω in x(t).

I ∠X (Ω) dictates the relative alignment of the sinusoid of frequency Ω in
x(t).

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 30 / 41

4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Magnitude and Phase

Q: Which is more important for a given signal?

I Does one component (magnitude or phase) contain more
information than another?

I When filtering, if we had to preserve on component (magnitude
or phase) more, which one would it be?
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Audio Example
I An audio signal is represented by a real function x(t).

I The function x(−t) represents playing the audio signal backwards.

I Since x(t) is real:

X (Ω) = X ∗(−Ω)

|X (Ω)| = |X ∗(−Ω)| = |X (−Ω)| since |c | = |c∗| for c ∈ C

I Therefore,
|X (Ω)| = |X (−Ω)|

That is, the CTFT magnitude is even for x(t) real.
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Audio Example

I Recall, x(t)
F←→ X (Ω) x(−t)

F←→ X (−Ω)

I Therefore,

|X (Ω)|︸ ︷︷ ︸
spectrum magnitude of x(t)

=

spectrum magnitude of x(−t)︷ ︸︸ ︷
|X (−Ω)|

Therefore, the magnitude of the FT of an audio signal played forward
and backward is the same!
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4.1 Frequency Analysis of Continuous-Time Signals

Example: Still Image x(t1, t2)
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4.1 Frequency Analysis of Continuous-Time Signals

Example: |X (Ω1,Ω2)|
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4.1 Frequency Analysis of Continuous-Time Signals

Example: ∠X (Ω1,Ω2)
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4.1 Frequency Analysis of Continuous-Time Signals
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4.1 Frequency Analysis of Continuous-Time Signals

Reconstruction using

magnitude only

Top Left Photo: Ralph’s

magnitude is the same,

Phase = 0

Top Right Photo: Meg’s

magnitude is the same,

Phase = 0
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4.1 Frequency Analysis of Continuous-Time Signals

Reconstruction using

phase only

Top Left Photo: Ralph’s

magnitude normalized to

one, Phase is the same

Top Right Photo: Meg’s

magnitude normalized to

one, Phase is the same
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4.1 Frequency Analysis of Continuous-Time Signals

Reconstruction swapping

magnitude and phase

of the images.

Top Left Photo: Ralph’s

phase + Meg’s magnitude

Top Right Photo: Meg’s

phase + Ralph’s magni-

tude
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4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Magnitude and Phase

Q: Which is more important for a given signal? A: Phase

I Does one component (magnitude or phase) contain more
information than another? A: Yes, phase

I When filtering, if we had to preserve on component (magnitude
or phase) more, which one would it be?
A: Phase

�
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