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Update

Coverage:

Before Reading Week: 4.1
With Eman: 4.2, 4.3, 4.4, 5.1
Today and Wed: Brief Rev of 4.1, 4.2, 4.3, 4.4, 5.1

and Sections 5.2, 5.4, 5.5

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Review of 4.1, 4.2, 4.3, 4.4

Frequency Analysis

white
light

prism

spectrum
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Review of 4.1, 4.2, 4.3, 4.4

Frequency Synthesis

Scientific Designation Frequency (Hz) k for F0 = 8.176

C1 32.703 4
C2 65.406 8
C3 130.813 16

C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
C7 2093.005 256
C8 4186.009 512

C1 C2 C3 C4 C5 C6 C7 C8
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Review of 4.1, 4.2, 4.3, 4.4

Complex Sinusoids: Continuous-Time
e jΩt = cos(Ωt) + j sin(Ωt) ≡ cts-time complex sinusoid

cos(2πFt)

0

t

sin(2πFt)

0

t
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Review of 4.1, 4.2, 4.3, 4.4

Complex Sinusoids: Discrete-Time
e jωn = cos(ωn) + j sin(ωn) ≡ dst-time complex sinusoid

cos(2πfn)

0

n

sin(2πfn)

0

n
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Review of 4.1, 4.2, 4.3, 4.4

Classification of Fourier Pairs

CTS-TIME DST-TIME

Continuous-Time Discrete-Time
PERIODIC Fourier Series Fourier Series

(CTFS) (DTFS)
Continuous-Time Discrete-Time

APERIODIC Fourier Transform Fourier Transform
(CTFT) (DTFT)
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Review of 4.1, 4.2, 4.3, 4.4

Classification of Fourier Pairs

CTS-TIME DST-TIME

PER x(t) =
∑∞

k=−∞ cke
j2πkF0t x(n) =

∑N−1
k=0 cke

j2πkn/N

ck = 1
Tp

∫
Tp

x(t)e−j2πkF0tdt ck = 1
N

∑N−1
n=0 x(n)e−j2πkn/N

APER x(t) = 1
2π

∫∞
−∞ X (Ω)e jΩtdΩ x(n) = 1

2π

∫
2π X (ω)e jωndω

X (Ω) =
∫∞
−∞ x(t)e−jΩtdt X (ω) =

∑∞
n=−∞ x(n)e−jωn
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Review of 4.1, 4.2, 4.3, 4.4

Duality

time domain
F←→ frequency domain

rectangle
F←→ sinc

sinc
F←→ rectangle

convolution
F←→ multiplication

multiplication
F←→ convolution

periodic
F←→ discrete

discrete
F←→ periodic

aperiodic
F←→ continuous

continuous
F←→ aperiodic
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Review of 4.1, 4.2, 4.3, 4.4

Duality

CTS-TIME DST-TIME

PER x(t) =
∑∞

k=−∞ cke
j2πkF0t x(n) =

∑N−1
k=0 cke

j2πkn/N

ck = 1
Tp

∫
Tp

x(t)e−j2πkF0tdt ck = 1
N

∑N−1
n=0 x(n)e−j2πkn/N

APER x(t) = 1
2π

∫∞
−∞ X (Ω)e jΩtdΩ x(n) = 1

2π

∫
2π X (ω)e jωndω

X (Ω) =
∫∞
−∞ x(t)e−jΩtdt X (ω) =

∑∞
n=−∞ x(n)e−jωn

periodic
F←→ discrete

discrete
F←→ periodic

aperiodic
F←→ continuous

continuous
F←→ aperiodic
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Review of 4.1, 4.2, 4.3, 4.4

Convergence

CTS-TIME DST-TIME

PER x(t) =
∑∞

k=−∞ cke
j2πkF0t x(n) =

∑N−1
k=0 cke

j2πkn/N

ck = 1
Tp

∫
Tp
x(t)e−j2πkF0tdt ck = 1

N

∑N−1
n=0 x(n)e−j2πkn/N

APER x(t) = 1
2π

∫∞
−∞X (Ω)e jΩtdΩ x(n) = 1

2π

∫
2πX (ω)e jωndω

X (Ω) =
∫∞
−∞x(t)e−jΩtdt X (ω) =

∑∞
n=−∞ x(n)e−jωn

I Convergence issues are prevalent when you have infinite sums
and integration.

I Dirichlet conditions provide sufficient conditions for convergence
of the Fourier pair at continuous points of the signal.
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Review of 4.1, 4.2, 4.3, 4.4

The Continuous-Time Fourier Series

(CTFS)
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Review of 4.1, 4.2, 4.3, 4.4

Continuous-Time Fourier Series (CTFS)

For continuous-time periodic signals with period Tp = 1
F0

:

I Synthesis equation:

x(t) =
∞∑

k=−∞

cke
j2πkF0t

I Analysis equation:

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt
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Review of 4.1, 4.2, 4.3, 4.4

CTFS: Dirichlet Conditions

1. x(t) has a finite number of discontinuities in any period.

2. x(t) contains a finite number of maxima and minima during any
period.

3. x(t) is absolutely integrable in any period:∫
Tp

|x(t)|dt <∞
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Review of 4.1, 4.2, 4.3, 4.4

CTFS: Example

Find the CTFS of the following periodic square wave:

t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 15 / 44

Review of 4.1, 4.2, 4.3, 4.4

CTFS: Example

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt =
1

Tp

∫ Tp/2

−Tp/2

x(t)e−j2πkF0tdt

=
1

Tp

∫ τ/2

−τ/2

A · e−j2πkF0tdt =
A

Tp

e−j2πkF0t

−j2πkF0

∣∣∣∣τ/2

−τ/2

=
A

πkTp · F0

[
e−j2πkF0τ/2 − e+j2πkF0τ/2

−2j

]
=

A

πk · 1

[
e j2πkF0τ/2 − e−j2πkF0τ/2

2j

]
=

A sin(πkF0τ)

πk
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Review of 4.1, 4.2, 4.3, 4.4

CTFS: Example

For τ = Tp

3
= 1

3F0
:

ck =
A sin(πk/3)

πk
t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
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Review of 4.1, 4.2, 4.3, 4.4

CTFS: Example

x̃(t) =
∞∑

k=−∞

cke
j2πkF0t =

∞∑
k=−∞

A sin(πk/3)

πk
e j2πkF0t

t

x(t)

A

A/2

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5

Note: At square wave discontinuities (e.g., t = τ/2),

x(τ/2) =
∞∑

k=−∞

A sin(πk/3)

πk
e j2πkF0(τ/2) =

A

2
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Review of 4.1, 4.2, 4.3, 4.4

The Continuous-Time Fourier Transform

(CTFT)
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Review of 4.1, 4.2, 4.3, 4.4

Continuous-Time Fourier Transform (CTFT)

For continuous-time aperiodic signals:

I Synthesis equation:

x(t) =
1

2π

∫ ∞
−∞

X (Ω)e jΩtdΩ

I Analysis equation:

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt
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Review of 4.1, 4.2, 4.3, 4.4

Continuous-Time Fourier Transform (CTFT)

Cyclic frequency can also be used.

I Synthesis equation:

x(t) =

∫ ∞
−∞

X (F )e j2πFtdF

I Analysis equation:

X (F ) =

∫ ∞
−∞

x(t)e−j2πFtdt
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Review of 4.1, 4.2, 4.3, 4.4

CTFT: Dirichlet Conditions

I Allowing Tp →∞ in CTFS Dirichlet conditions:

1. x(t) has a finite number of finite discontinuities.
2. x(t) has a finite number of maxima and minima.
3. x(t) is absolutely integrable:∫ ∞

−∞
|x(t)|dt <∞
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Review of 4.1, 4.2, 4.3, 4.4

CTFT: Example

Find the CTFS of the following periodic square wave:

t

x(t)

A

sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5
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Review of 4.1, 4.2, 4.3, 4.4

CTFT: Example

X (Ω) =

∫ ∞
−∞

x(t)e−jΩtdt =

∫ τ/2

−τ/2

Ae−jΩtdt

= A
e−jΩt

−jΩ

∣∣∣∣τ/2

−τ/2

= 2A
sin(Ωτ/2)

Ω
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Review of 4.1, 4.2, 4.3, 4.4

CTFT: Example

X (Ω) = 2A
sin(Ωτ/2)

Ω

sinc

0

X(0)

t

x(t)

A
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Review of 4.1, 4.2, 4.3, 4.4

The Discrete-Time Fourier Series

(DTFS)
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Review of 4.1, 4.2, 4.3, 4.4

Discrete-Time Fourier Series (DTFS)

For discrete-time periodic signals with period N :

I Synthesis equation:

x(n) =
N−1∑
k=0

cke
j2πkn/N

I Analysis equation:

ck =
1

N

N−1∑
n=0

x(n)e−j2πkn/N
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Review of 4.1, 4.2, 4.3, 4.4

DTFS: Convergence Conditions

None due to finite sums.
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Review of 4.1, 4.2, 4.3, 4.4

DTFS vs. CTFS: Why a finite sum?

x(n) =
N−1∑
k=0

cke
j2πkn/N vs. x(t) =

∞∑
k=−∞

cke
j2πkF0t

I Continuous-time sinusoids are unique for distinct frequencies;
e j

2
3
πt 6= e−j

16
3
πt .

I Discrete-time sinusoids with cyclic frequencies an integer
number apart are the same; e j

2
3
πn = e−j

16
3
πn.
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Review of 4.1, 4.2, 4.3, 4.4

0 1 3 4-1-3 5
2-2 6

0 1 3 4-1-3 5
2-2 6
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Review of 4.1, 4.2, 4.3, 4.4

DTFS vs. CTFS: Why a finite sum?

x(n) =
N−1∑
k=0

cke
j2πkn/N vs. x(t) =

∞∑
k=−∞

cke
j2πkF0t

Consider
sk(n) = e j2πkn/N , k = 0,±1,±2, . . .

I sk(n) is periodic since e j2πkn/N = e j2πf0n where

f0 = k
N
≡ rational.

I There are only N distinct dst-time harmonics sk(n):
k = 0, 1, 2, . . . ,N − 1.
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Review of 4.1, 4.2, 4.3, 4.4

Harmonically Related Dst-Time Sinusoids
I There are only N distinct dst-time harmonics sk(n).

k f0

...
...

−2 N−2
N
− 1

−1 N−1
N
− 1

0 0

1 1
N

2 2
N

...
...

N − 2 N−2
N

N − 1 N−1
N

N 1

N + 1 1 + 1
N

N + 2 1 + 2
N

...
...

I sk(n) harmonics are unique
for k = 0, 1, 2, . . . ,N − 1.

I Outside this range of k , the
cyclic frequencies are integers
apart thus resulting in the
same sinusoids as for
k = 0, 1, 2, . . . ,N − 1.
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Review of 4.1, 4.2, 4.3, 4.4

DTFS: Example

Find the DTFS of the following periodic square wave:

n

x(n)

A

N-N 0 L-L

k

c
0

k
c

0
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Review of 4.1, 4.2, 4.3, 4.4

DTFS: Example

ck =
1

N

N−1∑
n=0

x(n)e−j2πkn/N =
1

N

bN/2c∑
n=b−N/2c

x(n)e−j2πkn/N

=
1

N

L∑
n=−L

Ae−j2πkn/N =
1

N

2L∑
m=0

Ae−j2πk(m−L)/N

=
Ae j2πkL/N

N

2L∑
m=0

e−j2πkm/N =
Ae j2πkL/N

N

2L∑
m=0

(e−j2πk/N)m

=
Ae j2πkL/N

N

1− (e−j2πk/N)2L+1

1− (e−j2πk/N)
=

A

N

e j2πkL/N − e−j2πkL/N

e jπk/N − e−jπk/N
2j

2j

=
A

N

sin(2πkL/N)

sin(πk/N)
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Review of 4.1, 4.2, 4.3, 4.4

DTFS: Example

For L = 3 and N = 18:

ck =
A

18

sin(πk/3)

sin(πk/18)

k

c
0

k
c

0

n

x(n)

A

N-N 0 L-L

Note: ck is periodic with period N.
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Review of 4.1, 4.2, 4.3, 4.4

The Discrete-Time Fourier Transform

(DTFT)
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Review of 4.1, 4.2, 4.3, 4.4

Discrete-Time Fourier Transform (DTFT)

For discrete-time aperiodic signals:

I Synthesis equation:

x(n) =
1

2π

∫
2π

X (ω)e jωndω

I Analysis equation:

X (ω) =
∞∑

n=−∞

x(n)e−jωn
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Review of 4.1, 4.2, 4.3, 4.4

DTFT: Convergence Conditions

∞∑
n=−∞

|x(n)| <∞
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Review of 4.1, 4.2, 4.3, 4.4

DTFT: Example

Find the DTFT of the following rectangle function:

n

x(n)

A

0 L-L

0
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Review of 4.1, 4.2, 4.3, 4.4

DTFT: Example

X (ω) =
∞∑

n=−∞
x(n)e−jωn =

L∑
n=−L

Ae−jωn = A
L∑

n=−L

(e−jω)n

= A
2L∑

m=0

(e−jω)(m−L) = Ae jωL
2L∑

m=0

(e−jω)m

= Ae jωL
1− e−jω(2L+1)

1− e−jω
2j

2j

= A
sin(ωL)

sin(ω/2)
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Review of 4.1, 4.2, 4.3, 4.4

DTFT: Example

For L = 3:

X (ω) = A
sin(ωL)

sin(ω/2)
n

x(n)

A

0 L-L

0

Note: X (ω) is periodic with period 2π.
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Review of 4.1, 4.2, 4.3, 4.4

t

x(t)

A sinc

k

c
0

k
c

10 2-1-2

-3 3 4 5-4-5

t

x(t)

A sinc

0

X(0)

n

x(n)

A

N-N 0 L-L k

c
0

k
c

0

n

x(n)

A

0 L-L 0

CTFS

CTFT

DTFS

DTFT

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 42 / 44

Review of 4.1, 4.2, 4.3, 4.4

DTFT Theorems and Properties

Property Time Domain Frequency Domain
Notation: x(n) X (ω)

x1(n) X1(ω)
x2(n) X1(ω)

Linearity: a1x1(n) + a2x2(n) a1X1(ω) + a2X2(ω)
Time shifting: x(n − k) e−jωkX (ω)
Time reversal x(−n) X (−ω)
Convolution: x1(n) ∗ x2(n) X1(ω)X2(ω)
Correlation: rx1x2 (l) = x1(l) ∗ x2(−l) Sx1x2 (ω) = X1(ω)X2(−ω)

= X1(ω)X ∗2 (ω) [if x2(n) real]
Wiener-Khintchine: rxx(l) = x(l) ∗ x(−l) Sxx(ω) = |X (ω)|2

among others . . .
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Review of 4.1, 4.2, 4.3, 4.4

DTFT Symmetry Properties

Time Sequence DTFT

x(n) X (ω)
x∗(n) X ∗(−ω)
x∗(−n) X ∗(ω)
x(−n) X (−ω)
xR(n) Xe(ω) = 1

2 [X (ω) + X ∗(−ω)]
jxI (n) Xo(ω) = 1

2 [X (ω)− X ∗(−ω)]
X (ω) = X ∗(−ω)
XR(ω) = XR(−ω)

x(n) real XI (ω) = −XI (−ω)
|X (ω)| = |X (−ω)|

∠X (ω) = −∠X (−ω)
x ′e(n) = 1

2 [x(n) + x∗(−n)] XR(ω)
x ′o(n) = 1

2 [x(n)− x∗(−n)] jXI (ω)
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