Frequency Domain Analysis of LTI Systems

Professor Deepa Kundur

University of Toronto

Chapter 5: Frequency Domain Analysis of LTI Systems

Frequency Domain Analysis of LTI Systems

Reference:
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems
Linear Time-Invariant (LTI) Systems
LTI
z(n) =  hn) > y(n)=2(n)*h(n)
h(n) —— H(w)
LTI
X(w)—» Hw) pb—>Y(w) =X(w)Hw)
Professor Deepa Kundur (University of Toront&)yequency Domain Analysis of LTI Systems 3/49

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

» Recall for an LTI system: y(n) = h(n) x x(n).

» Suppose we inject a complex exponential into the LTI system:

y(n) = Y h(k)x(n— k)
x(n) = A_ej“’”

» Note: we consider x(n) to be comprised of a pure frequency of
w rad/s
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Linear Time-Invariant (LTI) Systems

z(n) =Ae/" =—  p(n) f——> 7

real h(n) ~—— H(w)

imaginary
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The Frequency Response Function

y(n) = i h(k)Ae/~ (=)

k=—o00
0o

= Y h(k)Ae" - ek

k=—o00

= A" | Y h(k)e
k=—o00

J/

—H(w)=DTFT{h(n)}

= Ae“"H(w)

» Thus, y(n) = H(w)x(n) when x(n) is a pure frequency.
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Linear Time-Invariant (LTI) Systems
LTI
(n) =Ae/" ——3  p(n) f—> 7

real h(n) ~—— H(w)

imaginary
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Linear Time-Invariant (LTI) Systems

z(n) =Ae’" = h(n) |—> y(n) =Ac’"H(w)

real h(n) ~—— H(w)

imaginary
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The Frequency Response Function

Thus, when x(n) is a pure frequency,

y(n) = H(w)x(n)

output = scaled input
M-v = A-v
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The Frequency Response Function

M- v = AV
—— ~~
matrix-vector processing scaled input vector
y(n) = h(n)x A" = H(w)Ae™"
———— —_—
LTI system processing scaled input signal

» Therefore, a signal of the form Ae/“" is an eigenfunction of an
LTI system.

» The function H(w) represents the associated eigenvalue.
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LTI System Eigenfunction

» Eigenfunction of a system:

» an input signal that produces an output that differs from the
input by a constant (possibly complex) multiplicative factor

» multiplicative factor is called the eigenvalue
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LTI System Eigenfunction

Implications:

> An LTI system can only change the amplitude and phase of a sinusoidal
signal. It cannot change the frequency.

» An LTI system with inputs comprised of frequencies from set )y cannot
produce an output signal with frequencies in the set Qf (i.e., the
complement set of Q).

» If you inject a signal comprised of frequencies 1 Hz, 4 Hz and 7Hz into a
system and you get an output signal comprised of frequencies 1 Hz and 8
Hz, your system is not LTI.
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Example: Nonlinear System

Suppose: x(n) = cos(2mfin+ ¢1) + cos(2mfn + ¢5) is injected into:

y(n) = x*(n) nonlinear system
= (cos(2wfin+ ¢1) 4 cos(2nfon + ¢2))>
= cos’(2nfin + ¢1) + cos?(2nfan + ¢) + 2 cos(2mfin + ¢1) cos(2mhan + ¢2)
_ |:1+cos(27r(2f1)n+2¢1)] n |:1+cos(27r(2f2)n+2¢2)}

2 2
+ [C05(27T(f1 — R)n+ (¢1 — ¢2)) + cos(2m(fi + H)n + (¢1 + ¢2))
2
- L % [cos(2m(2f)n + 261) + cos(2m(26)n + 265)
freq O

Feos(2m(fi — o)+ (¢1 — $2)) + cos(2m(f + R2)n + (¢1 + ¢2))]

The output frequencies (0,2f,2f, fi — f, fi + ) are different from the input
frequencies (f1, ).
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Magnitude and Phase of H(w)

Hw) = |H(w)e®w
|[H(w)] = system gain for freq w
ZH(w) =O(w) = phase shift for freq w
y(n) = H(w)Ae™"
= |H(w)|e/®@ Ae/en
— A|H(w)|ej(wn+@(w))
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2(n) =Ae/" ——  p(n) = y(n) =AU H(w)

x(n) =47 ——1  p(n) [—>yn) =A1 /" H (W)

z(n) =Ase!?" =l p(p) P y(n) =Ase’*" H(wy)

LTI

z(n) =A;e 4 Ayel 2" — h(n) F—>yn) =A1 71" H (wy)+ Aze? 2" H (wy)
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x(n) =A1e1" + Ape!?" ——1  h(n) f—>y(n) =417 " H (w))+Aze?2" H (W)

LTI
1 jwn l wn
z(n) =~ [ X(w)e"dw—1 p(n) F—>yn)=5 | X(wHw)e" dv
27 o0 27 J2m
1 .
=35 / Y (w)e’*" dw
T Jor

> An LTI system changes the amplitudes and phase shifts of the individual
frequency components within x(n) to produce y(n).

> H(w) dictates how frequency w is changed in the signal.
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Example:
Determine the magnitude and phase of H(w) for the three-point moving average

(MA) system
y(n) = 5 bx{n+ 1) 4 x(n) + x(n — 1)

By inspection, h(n) = 38(n+1) + 16(n) + 15(n —1).

e} 1 1
Hw) = g h(n)e™“" = E ge*f“’"
n=—o0 n=-—1
1, Loy 1
= —[¢¥+14+e7“]==(142cos(w))
3 3
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Example:

What is the phase of H(w) = $(1 + 2cos(w))?

M@ = 311+ 2cos(w)

0 0Sw<Z
™ Z{Sw<7r

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

h(n)
l |1/3
n
1 1
JH@)
1/3
w
—T 2w T m 2 T
3 3 3 3
ZH(w)
2 g
3
w
- _r T 2m T
3 3 3
—T
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Frequency Response of LTI Systems
z-Domain w-Domain
z=el¥
H(z) = H(w)
. z=el¥
system function = frequency response
z=el¥
Y(z) = X(2)H(z) = Y(w)=X(w)H(w)
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Frequency Response of LTI Systems

» If H(z) converges on the unit circle, then we can obtain the
frequency response by letting z = e/“:

Hw) = H(Z)l,—ein = Z h(n)e Jn

M iwk
JW
Ek:o bie

N .
1+ kg axe ek

for rational system functions.
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imaginary

mﬂZY
f real
u:iﬁ\)u:ﬂ

imaginary

complex plane

imaginary
complex plane p

— |

complex plane

real
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LTI Systems as Frequency-Selective Filters

» Filter: device that discriminates, according to some attribute of

the input, what passes through it

» For LTI systems, given Y(w) = X(w)H(w)

» H(w) acts as a kind of weighting function or spectral shaping

function of the different frequency components of the signal

LTI system <= Filter
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Sharp [Hpp(w)]
Transition
N pov Ideal Lowpass Filter
Stopband Stopband
—T —We We 7T
Sharp
e (Hnr(@)
' E Ideal Highpass Fil
Classification: —|passband lipassband el Highpass er
Stoppand
—_r —We We T
> lowpass
. Sharp Hpp(w
> highpass e [HEP()]
‘Ip—bdr — Ideal Bandpass Filter
assban assban
Stoppand
| 4
bandpass -1 TWe2 —Wel Wel  We2 7T
» bandstop
[Hps(w)|
Passband Passband
» a”-paSS Fvs e Ideal Badstop Filter
Stopband Stopband
—m  TWe2 —Wel Wel  We2 7T
[Hap(w)|
rE Ideal All-pass Filter
—_r T
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Ideal Filters

Sharp ’HLP(UJ)‘
Transit’i;?n
Passband Ideal Lowpass Filter
Stopband Stopband
w
- —We 0 We ™
Sharp
Transitign ‘HHP (w)’
—_— — Ideal Highpass Filter
Passband Passband
Stoppand
w
_7T _wc A wc 7T
sharp |Hpp(w)]
gTransition?
Ideal Bandpass Filter
Passband Passband
Stoppand
w
—T —We2 —Wel A Wel We2 ™
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Ideal Filters

|Hps(w)|
Passband Passband
— Ideal Badstop Filter
Passband
Stopband Stopband
w
—T —We2 —Wel 0 Wel We2 m
[Hap(w)]
Passband Ideal All-pass Filter
w
—T 0 s
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Ideal Filters

» Common characteristics:
» flat (typically unity for C = 1) frequency response magnitude in
passband and zero frequency response in stopband

» linear phase; for constants C and ng

_ Ce™wm ) < |w| < wa
H(w) = { 0 otherwise
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|deal Filters
» Suppose H(w) = Ce ™7™ for all w:
F
(n) +— 1
il —jwno
d(n—ng) +— 1l-e
F —jwno —jwno
C-9(n—ng) <— C-1l-e = Ce
» Therefore, h(n) = Cé(n — ng) and:
y(n) = x(n) x h(n) = x(n) x Cé(n — ng) = Cx(n — ng)
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Ideal Filters

» Therefore for ideal linear phase filters:

| Ce o wy < |w] < wa
H(w) = 0 otherwise

» signal components in stopband are annihilated
» signal components in passband are shifted (and scaled by
passband gain which is unity (for C = 1))

Professor Deepa Kundur (University of Toront&)yequency Domain Analysis of LTI Systems
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Phase versus Magnitude

What’s more important?
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5.4 LTI Systems as Frequency Selective Filters
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Why Invert?

» There is a fundamental necessity in engineering applications to
undo the unwanted processing of a signal.

» reverse intersymbol interference in data symbols in
telecommunications applications to improve error rate; called
equalization

» correct blurring effects in biomedical imaging applications for
more accurate diagnosis; called restoration/enhancement

» increase signal resolution in reflection seismology for improved
geologic interpretation; called deconvolution
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Invertibility of Systems

» Invertible system: there is a one-to-one correspondence between
its input and output signals

» the one-to-one nature allows the process of reversing the
transformation between input and output; suppose

y(n) = T][x(n)] where T is one-to-one
w(n) = T 'ly(n)] =T [Tx(n)]] = x(n)

Identity System
y(n)
x(n) T T7-1 w(n) = z(n)
Direct Inverse
System System
Professor Deepa Kundur (University of Toront&)yequency Domain Analysis of LTI Systems 37 /49
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Invertibility of LTI Systems

Identity System
y(n)
z(n) T - 71 w(n) = x(n)
Direct Inverse
System System

Impluse response = §(n)

LTI ( ) LTI
yn
(n) h(n) - hi(n) w(n) = x(n)
Direct Inverse
System System
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Invertibility of LTI Systems

» Therefore,
h(n) % h;(n) = §(n)

» For a given h(n), how do we find h;(n)?
» Consider the z—domain

H(z)H(z) = 1
H/(Z) =
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Invertibility of Rational LTI Systems

» Suppose, H(z) is rational:

>

H(z) = i)
(z
Az)

poles of H(z) = zeros of H,(z)

oY)

H/(Z) =

zeros of H(z) = poles of H,(z)
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Example

Determine the inverse system of the system with impulse response

h(n) = (3)"u(n).
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Common Transform Pairs

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Professor Deepa Kundur (University of Toront&)yequency Domain Analysis of LTI Systems

Signal, x(n) z-Transform, X(z) ROC
1 a(n) 1 All z
2 u(n) — |z| > 1
3 a"u(n) —L |z| > |a|
4 na"u(n) (T |z] > |a|
5 —a"u(—n-1) Y |z| < |a
6 —na"u(—n — 1) (1_3;#1)2 |Z| < |a‘

)

7 (cos(won))u(n) % |z| > 1
8 (sin(won))u(n) T Teosgz |z| > 1
9 (a"cos(won)u(n) 1_2312__312@153’51’2224 |z| > |al
10 (a"sin(won)u(n) gttty — |2 > |al
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Example

Determine the inverse system of the system with impulse response

h(n) = (3)"u(n).
> H(z) = ﬁ ROC: || > 1.

» Therefore,

> By inspection,
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Common Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 o(n) 1 All z
2 u(n) — |z| > 1
3 a"u(n) T |z] > a|
4 na"u(n) (1_"”2;11)2 |z| > |a
5 —a"u(—n-1) — |z| < |a
6 —na"u(—n—1) ﬁ |z| < |al
7 (cos(won))u(n) H 2| > 1
8 (sin(won))u(n) #‘;‘:ﬁd,z |z| > 1
9 (a"cos(won)u(n) IE_csen o |z] > g
10 (a"sin(won)u(n) 122" sinwo |z] > |a|

1—2az—1coswg+a2z—2
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z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X(z2) ROC: n <|z| < n
x1(n) Xi(z) ROC;
xa2(n) X2(z2) ROC,
Linearity: aixi(n) + axxa(n) a1 X1(z) + a2Xz2(z) At least ROCi;N ROC,
Time shifting: x(n — k) z7kX(z) At least ROC, except

Z:O(Ifk>0)
and z = oo (if k < 0)

z-Scaling: a"x(n) X(a=1z) la|lr < |z| < |aln
Time reversal x(—n) X(z7h) % <|z| < %
Conjugation: x*(n) X*(z*) ROC
z-Differentiation:  n x(n) —z%ﬁz) n<l|z|<n
Convolution: x1(n) * x2(n) Xi1(z)X2(z) At least ROC;N ROC,

among others ...

Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Another Example

Determine the inverse system of the system with impulse response
h(n) = 6(n) — 36(n —1).

Hiz) = > h(mz"= Y [4(n) %5(n_1)]z*"

1

= 1_5271
1

Hi(z) = 1—1,-1
2
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Common Transform Pairs
Signal, x(n) z-Transform, X(z) ROC
1 o(n) 1 All z
2 u(n) 171271 |z| > 1
3 a"u(n) " |z| > |a|
4 na"u(n) Ty |z| > |a
1
5 —a"u(—n-—1) o T |z| < |4
6 —na”u(—n — 1) (1_351?1)2 |Z| < |a‘
12—
7 (cos(won))u(n) Wm |z| > 1
8  (sin(won))u(n) #MW |z| > 1
9 (a"cos(won)u(n) 1_2312__312331565:r§22—2 |z] > |a|
10 (a"sin(won)u(n) 1723121126052';‘“:322_2 |z] > |a|
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Common Transform Pairs
Signal, x(n) z-Transform, X(z) ROC
1 o(n) 1 All z
2 u(n) 171271 |z| > 1
3 a"u(n) T—az T |z| > |a|
4 nanu(n) ujzﬁ |Z| > |a‘
5 —a"u(—n—1) oz T |z| < |a|
6 —na”u(—n — 1) u_iglﬁ |Z| < |a‘
7 (cos(won))u(n) % |z| > 1
8  (sin(won))u(n) #mw |z| > 1
9 (a"cos(won)u(n) 1_2‘912__3129152:11322—2 |z] > |a|
10 (a"sin(won)u(n) 172312_7&'12&52';“’:322_2 |z] > |a|
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Another Example

There are two possibilities for inverses:

» Causal + stable inverse (|z| > 1 includes unit circle):
1 n
hi(n) = 5 u(n)

> Anticausal + unstable inverse (|z| < 3 does not include unit circle):

o) =~ (5) at-n—1)
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