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Discrete-Time Signals and Systems

Reference:

Sections 2.1-2.5 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

5(,7){ 1, forn=0

0, forn#0

2. unit step signal:
1, forn>0
u(n) = 0

, forn<0
u,(n):{

u(n)—u(n—1)=u(n+1)—2u,(n)+ u(n—1)
u(n—+1)—u(n)

3. unit ramp signal:
n, forn>0
0, forn<O

Note:

o(n)

u(n)
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Signal Symmetry

Even signal:  x(—n) = x(n)

Odd signal:  x(—n) = —x(n)
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Signal Symmetry

Even signal component: x.(n) = 2 [x(n) + x(—n)]
Odd signal component:  x,(n) =  [x(n) — x(—n)]

Note: x(n) = xe(n) + x,(n)
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Simple Manipulation of Discrete-Time Signals
» Transformation of independent variable:
» timeshift: n—n—k, keZ
> Question: what if kK ¢ Z7
» time scale: n — an, a € Z
» Question: what if o & Z7
» Additional, multiplication and scaling:
» amplitude scaling: y(n) = Ax(n), —00 < n < oo
» sum: y(n) = xy(n) + xa2(n), —00 < n < oo
» product: y(n) = x1(n)x2(n), —00 < n< oo
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Simple Manipulation of Discrete-Time Signals
Find x(n) — x(n+ 1).

A
L
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x(n)-x(n+1)
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Simple Manipulation of Discrete-Time Signals |
Find x(2n + 1).

n [ F+1 x(3F +1)
<-1] < —% 0 if % + 1 is an integer; undefined otherwise
-1 7% undefined
0 1 x(1)=1
1 g undefined
2 4 x(4) =2
3 % undefined
4 7 x(7) =3
5 177 undefined
6 10 x(10) =2
7 % undefined
8 13 x(13) =1
9 % undefined
10 16 x(16) = —1
11 % undefined
12 19 x(19) = -2
> 12 > 19 0if % + 1 is an integer; undefined otherwise

1+ o 1 l
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Simple Manipulation of Discrete-Time Signals
Graph of x(3n+1).

3 This signal is undefined for values of n
that are not even integers and zero for
even integers not shown on this sketch.

1 1
I 10 12
8

RN, g T 23 4 56 7 9111 KR! > n
-1 3
) 5
-3
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2.2 Di ime S
: iscrete-Time Systems
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Terminology: Implication

If “A” then “B" Shorthand: A — B

Example 1:
it is snowing = it is at or below freezing temperature

Example 2:
a>52 = «is positive
Note: For both examples above, B #= A

<«
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Terminology: Equivalence

If “A” then “B" Shorthand: A — B

and

If “B” then “A” Shorthand: B =— A

can be rewritten as

“A" if and only if “B" Shorthand: A «<— B

We can also say:

» Ais EQUIVALENT to B
» A=2B
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Terminology: Input-Output Description

x(n) ) ) y(n)
input/ Discrete-time output/
excitation System response
Discrete-time Discrete-time
signal signal

» Input-output description (exact structure of system is unknown
or ignored):

y(n) =T [x(n)]

» “black box" representation:

x(n) L y(n)
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Classification of Discrete-Time Systems

Why is this so important?

» mathematical techniques developed to analyze systems are often
contingent upon the general characteristics of the systems being
considered

» For a system to possess a given property, the property must hold
for every possible input to the system.

» to disprove a property, need a single counter-example
» to prove a property, need to prove for the general case
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Classification of Discrete-Time Systems

Common System Properties:

static VS. dynamic
time-invariant  vs. time-variant
linear Vs, nonlinear
causal Vs. non-causal
stable vs. unstable systems
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Static vs. Dynamic

» Static system (a.k.a. memoryless): the output at time n
depends only on the input sample at time n; otherwise the
system is said to be dynamic

» a system is static iff (if and only if)

y(n) = Tlx(n), nl

for every time instant n.
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Static vs. Dynamic
» Consider the general system:

y(n) = Tlx(n—N),x(n—N+1),--,x(n—1),x(n),x(n + 1),
x(n+M—1),x (n+/v/)], N,M >0

» For N =M =0, y(n) = T[x(n)], the system is static.

» For 0 < N, M < oo, the system is said to be dynamic with finite
memory of duration N + M + 1.

» For either N and/or M equal to infinite, the system is said to
have infinite memory.
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Static vs. Dynamic

Examples: memoryless or not?

~ y(n) = Ax(n), A+ 0

» y(n)=Ax(n)+ B, A B,#0

> y(n) = x(n) cos(35(n — 5))

> y(n) = x(=n)

> y(n) = X(n+ 1)

> y(n) = xn+2)

> y(n) = >

> y(n) =3 ke o x(K)

Ans: Y, Y, Y, N,N,N, Y, N

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 20 / 63




Discrete-Time Signals and Systems

Time-invariant vs. Time-variant Systems

» Time-invariant system: input-output characteristics do not
change with time

» a system is time-invariant iff
T T
x(n) — y(n) = x(n— k) — y(n — k)

for every input x(n) and every time shift k.

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

21/ 63

Discrete-Time Signals and Systems

Time-invariant vs. Time-variant Systems

Examples: time-invariant or not?

> y(n)=Ax(n), A#0

» y(n)=Ax(n)+ B, A B,#0
> y(n) = x(n) cos(z5n)

- y(n) = x(~n)

> y(n) =x(n+1)

> y(n) = 1—x(1n+2)

> y(n) = &>

Y0 = S0

Ans: Y, Y, N, N, Y, Y, Y, Y
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Linear vs. Nonlinear Systems

» Linear system: obeys superposition principle

» a system is linear iff
Tlar xi(n) + a2 x2(n)] = a1 Txa(n)] + a2 Txa(n)]

for any arbitrary input sequences x;(n) and x»(n), and any
arbitrary constants a; and a,
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Linear Systems: Homogeneity
A system is linear iff
Tlar xi(n) + a2 xe(n)] = a1 Tha(n)] + a2 Tlxa(n)]
» Homogeneity: Let a, = 0.
Tlar x1(n)] = a1 Tx(n)]
T T
x(n) — y(n) = ax(n) — awy(n)
for any constant aj.
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Linear Systems: Additivity

A system is linear iff

Tlar xa(n) + a2 xo(n)] = a1 TPa(n)] + a2 The(n)]

» Additivity: Let a; = a» = 1.

Tha(n) + xa(n)] = Tha(n)] + Tlx(n)]

xi(n) = yi(n)

.
() Toya(ny ol el o) +eln)

for any input sequences x;(n) and xx(n).
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Linear Systems: Additivity

Therefore:

Linearity = Homogeneity +  Additivity

Need both!
If a system is not homogeneous, it is not linear.
If a system is not additive, it is not linear.
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Linear vs. Nonlinear Systems

Examples: linear or not?

» y(n)=Ax(n), A#0

» y(n)=Ax(n)+ B, A B,#0

» y(n) = x(n) cos(%n)

-~ y(n) = x(~n)

> y(n) =x(n+1)

> y(n) = 1—x(1n+2)

> y(n) = e>)

- y(0) = X0 x(K)

Ans: Y, N, Y, Y, Y, N, N Y
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Causal vs. Noncausal Systems

» Causal system: output of system at any time n depends only on
present and past inputs

» a system is causal iff

y(n) =T [x(n),x(n—1),x(n—2),...]

for all n
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Causal vs. Noncausal Systems

Examples: causal or not?

» y(n)=Ax(n), A#0

» y(n)=Ax(n)+ B, A B,#0
> y(n) = x(n) cos(35(n + 1))

- y(n) = x(n

> y(n) =x(n+1)

> y(n) = 1—x(1n+2)

> y(n) = >

- yln) = i (0

Ans: Y, Y, Y, N, N, N, Y, Y
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Stable vs. Unstable Systems

» Bounded Input-Bounded output (BIBO) Stable: every bounded
input produces a bounded output

» a system is BIBO stable iff

Ix(n)| < My <00 = |y(n)| <M, <0
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Discrete-Time Bounded Signals

I " lll““.-mIHHHHL
e ]
o A e il

—M,

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Discrete-Time Signals and Systems

Stable vs. Unstable Systems

Examples: stable or not?

» y(n)=Ax(n), A#0

» y(n)=Ax(n)+ B, A B,#0
» y(n) = x(n) cos(zzn)

> y(n) = x(=n)

> y(n) = x(n+1)

> y(n) = 1—x(1n+2)

> y(n) e3x(n)

> y(n) = 2 ke oo x(K)

Ans: Y, Y, Y, Y, Y,N, Y, N

32/ 63



Discrete-Time Signals and Systems

Final Remarks

» For a system to possess a given property, the property must hold
for every possible input and parameter of the system.

» to disprove a property, need a single counter-example

» to prove a property, need to prove for the general case
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2.3 Analysis of Dst-Time Linear
Time-Invaraint Systems
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The Convolution Sum

Recall:
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The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit
sample input §(n) be h(n).

s(n) L5 h(n)
s(n—k) L5 h(n— k)
a d(n— k) T a h(n — k)
x(k) 6(n—k) L5 x(k) h(n— k)
ST x(K)a(n—k) ST x(k)h(n — k)
k=—0o0 k=—o00
x(n) T y(n)
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The Convolution Sum

Therefore,

for any LTI system.
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Properties of Convolution

Associative and Commutative Laws:

x(n) = h(n) h(n) * x(n)
[x(n) * hi(n)] + ho(n) = x(n) * [hy(n) * ha(n)]
o |, hy(n) »  hfn) y(n:)
h(n) * hfn) = hin) * hy(n)
x(n) . hin) ~ hy(n) y(”;)
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Properties of Convolution

Distributive Law:
x(n) % [h1(n) + ha(n)] = x(n) = h1(n) + x(n) x ha(n)

h1(n) + hz(n)

hy(n)

x(n) _C%' y(n)
L

hyn)
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Causality and Convolution

For a causal system, y(n) only depends on present and past inputs
values. Therefore, for a causal system, we have:

> h(k)x(n — k)

y(n) =
= i h(k)x(n — k) + > h(k)x(n — k)

= ) h(k)x(n— k)

where h(n) = 0 for n < 0 to ensure causality.
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2.4 Discrete-time Systems
Described by Difference Equations
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Finite vs. Infinite Impulse Response

For causal LTI systems, h(n) =0 for n < 0.

Finite impulse response (FIR):

Y = Y h(k)x(n )
Infinite impulse response (IIR):
y(n) = h(k)x(n — k)

How would one realize these systems?
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Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

M-1

y(n) = Z h(k)x(n — k) } nonrecursive systems

k=0

Infinite impulse response (IIR):

[ee]

y(n) = Z h(k)x(n — k) } recursive systems

k=0
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of

... difference equations.

All systems

All LTI systems
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of

... difference equations.

All systems

All LTI systems

AIl LTI FIR systems
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System Realization
General expression for Nth-order LCCDE:
N M
E ary(n—k) = g bix(n—k) a=1
k=0 k=0
Initial conditions: y(—1),y(—2),y(=3),...,y(—N).
Need: (1) constant scale, (2) addition, (3) delay elements.
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of

... difference equations.

All systems

...........
. -
. ~

..

.

D

Systems !
Described 1
by LCCDEs?,

S trenaemmn
LR

.
.......
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L]
2.5 Implementation of
- -
Discrete-time Systems
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Building Block Elements

x1(n)

Adder: (n) y(n) = z1(n) + x2(n)

(n) -]y =x(n_-1)

x
Unit delay: z

Constant multiplier: z(n) a a z(n)

Unit advance:

y(n) = z(n+1)

Signal multiplier: %fﬂ)_ x1(n)xa(n)

xa(n)
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FIR System Realization: Example

» Consider a 5-point local averager:

» The impulse response is given by:

h(n) — %}:aw)

k=n—4
1
5
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%&n_n+%am
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FIR System Realization

Finite Impulse Response Systems and Nonrecursive Implementation
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FIR System Realization: Example

» Consider a 5-point local averager:

1/5

123 4 n

Indeed FIR!
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FIR System Realization: Example

» Consider a 5-point local averager:

» Memory requirements stay constant; only need to store 5 values
(4 last + present).

» fixed number of adders required
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FIR System Realization: General
M—-1
y(n) = bix(n— k)
k=0
z(n)pl 271 z7t z7t |27t
bo b1 bo b3 brr—2 bar—1
() © e — y(n)
Requires:
» M multiplications
» M — 1 additions
» M — 1 memory elements
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FIR System Realization: Example

n

) = 5 3 K=Y k)

k=n—4 k=n—4
1 1 1
y(n) = gx(n—4)—|—gx(n—3)+gx(n—2)+~~
1 1
< gX(n — 1) + gX(n)
z(n—1) z(n—2) xz(n —3) z(n—4)

BYPRSEN ey /28 ey /20 ey A0

z z "z
1/5 1/5 lvs 1/5 1/5

® ® »(D—y(n)

C
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FIR System Realization

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

Infinite Impulse Response Systems and Recursive Implementation
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[IR System Realization: Example

» Consider an accumulator:

n

y(n)=> x(k) n=0,1,2,...

k=0

for y(—1) = 0.

» The impulse response is given by:

h(n) = zn:5(k)25(n)+6(n—1)—|—6(n_2)+...

Discrete-Time Signals and Systems

[IR System Realization: Example

» Consider an accumulator:

n

y(n)=> x(k) n=0,1,2,...

k=0

» |IR memory requirements seem to grow with increasing n!

for y(—1) = 0.

_ =0 hin]
0 n<O 1
e T
01234 n
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[IR System Realization: Example
n
y(n) = > x(k)
k=0 z(n) ® I >y(n)
n—1
= Y x(k) +x(n) 271
=0 1
= y(n—=1)+x(n)
y(n) = y(n—1)+x(n) recursive implementation
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Direct Form | vs. Direct Form |l Realizations
N M
y(n)=— Zak)’(” — k) + Z bix(n — k)
k=1 k=0
is equivalent to the cascade of the following systems:
M
v(n) = Z by x(n — k) nonrecursive
output 1 input 1
N
y(n) = - Z axy(n—k)+ v(n) recursive
k=1 . "
output 2 - input 2
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Direct Form | IIR Filter Implementation

z(n) bo AL VL~ y(n)
k2 \/

LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M 4+ N additions, M + N memory locations
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Direct Form Il IR Filter Implementation

z(n) [ bo o y(n)
2 )
1
z

b
l—>1—><+>
L1
— % .5
L1

b b
. !
. bar .

M1
L1

bar

LTI All-pole system

LTI All-zero system

Requires: M + N + 1 multiplications, M 4+ N additions, M + N memory locations

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 62 / 63

Discrete-Time Signals and Systems

Direct Form Il IR Filter Implementation
bo

B p— : D)
—1
y4
O—a == 5
21 b
O—=m g
21 b
Q— 0
B B
d Ve 1 bar—1 o
Z—l
—ay bar
[
:  ForN>M
—an

Requires: M + N + 1 multiplications, M 4+ N additions, max(M, N) memory

locations |
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