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2.1 Discrete-Time Signals
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Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

δ(n) =

{
1, for n = 0
0, for n 6= 0

2. unit step signal:

u(n) =

{
1, for n ≥ 0
0, for n < 0

3. unit ramp signal:

ur (n) =

{
n, for n ≥ 0
0, for n < 0

Note:

δ(n) = u(n)− u(n − 1) = ur (n + 1)− 2ur (n) + ur (n − 1)

u(n) = ur (n + 1)− ur (n)
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Signal Symmetry

Even signal: x(−n) = x(n)

Odd signal: x(−n) = −x(n)
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Signal Symmetry

Even signal component: xe(n) = 1
2

[x(n) + x(−n)]

Odd signal component: xo(n) = 1
2

[x(n)− x(−n)]

Note: x(n) = xe(n) + xo(n)
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Signal Symmetry
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Simple Manipulation of Discrete-Time Signals

I Transformation of independent variable:
I time shift: n→ n − k , k ∈ Z

I Question: what if k 6∈ Z?
I time scale: n→ αn, α ∈ Z

I Question: what if α 6∈ Z?

I Additional, multiplication and scaling:
I amplitude scaling: y(n) = Ax(n), −∞ < n <∞
I sum: y(n) = x1(n) + x2(n), −∞ < n <∞
I product: y(n) = x1(n)x2(n), −∞ < n <∞
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Simple Manipulation of Discrete-Time Signals
Find x(n)− x(n + 1).

x(n)
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Simple Manipulation of Discrete-Time Signals I
Find x( 3

2
n + 1).

n 3n
2

+ 1 x( 3n
2

+ 1)

< −1 < − 1
2

0 if 3n
2

+ 1 is an integer; undefined otherwise

-1 − 1
2

undefined
0 1 x(1) = 1
1 5

2
undefined

2 4 x(4) = 2
3 11

2
undefined

4 7 x(7) = 3
5 17

2
undefined

6 10 x(10) = 2
7 23

2
undefined

8 13 x(13) = 1
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2
undefined

10 16 x(16) = −1
11 35

2
undefined

12 19 x(19) = −2
> 12 > 19 0 if 3n

2
+ 1 is an integer; undefined otherwise
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Simple Manipulation of Discrete-Time Signals
Graph of x( 3

2
n + 1).
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This signal is undefined for values of n 
that are not even integers and zero for 
even integers not shown on this sketch.
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2.2 Discrete-Time Systems
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Terminology: Implication

If “A” then “B” Shorthand: A =⇒ B

Example 1:
it is snowing =⇒ it is at or below freezing temperature

Example 2:
α ≥ 5.2 =⇒ α is positive
Note: For both examples above, B 6=⇒ A
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Terminology: Equivalence

If “A” then “B” Shorthand: A =⇒ B

and
If “B” then “A” Shorthand: B =⇒ A

can be rewritten as

“A” if and only if “B” Shorthand: A ⇐⇒ B

We can also say:

I A is EQUIVALENT to B

I A = B

=
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Terminology: Input-Output Description

Discrete-time
System

x(n)

Discrete-time
signal

y(n)

Discrete-time
signal

input/
excitation

output/
response

I Input-output description (exact structure of system is unknown
or ignored):

y(n) = T [x(n)]

I “black box” representation:

x(n)
T−→ y(n)
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Classification of Discrete-Time Systems

Why is this so important?

I mathematical techniques developed to analyze systems are often
contingent upon the general characteristics of the systems being
considered

I For a system to possess a given property, the property must hold
for every possible input to the system.

I to disprove a property, need a single counter-example
I to prove a property, need to prove for the general case
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Classification of Discrete-Time Systems
Common System Properties:

static vs. dynamic

time-invariant vs. time-variant

linear vs. nonlinear

causal vs. non-causal

stable vs. unstable systems

...
...
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Static vs. Dynamic

I Static system (a.k.a. memoryless): the output at time n
depends only on the input sample at time n; otherwise the
system is said to be dynamic

I a system is static iff (if and only if)

y(n) = T [x(n), n]

for every time instant n.
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Static vs. Dynamic

I Consider the general system:

y(n) = T [x(n − N), x(n − N + 1), · · · , x(n − 1), x(n), x(n + 1),

· · · , x(n + M − 1), x(n + M)], N,M > 0

I For N = M = 0, y(n) = T [x(n)], the system is static.

I For 0 < N,M <∞, the system is said to be dynamic with finite
memory of duration N + M + 1.

I For either N and/or M equal to infinite, the system is said to
have infinite memory.
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Static vs. Dynamic

Examples: memoryless or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25

(n − 5))

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, Y, Y, N, N, N, Y, N
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Time-invariant vs. Time-variant Systems

I Time-invariant system: input-output characteristics do not
change with time

I a system is time-invariant iff

x(n)
T−→ y(n) =⇒ x(n − k)

T−→ y(n − k)

for every input x(n) and every time shift k .
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Time-invariant vs. Time-variant Systems

Examples: time-invariant or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25
n)

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, Y, N, N, Y, Y, Y, Y
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Linear vs. Nonlinear Systems

I Linear system: obeys superposition principle

I a system is linear iff

T [a1 x1(n) + a2 x2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

for any arbitrary input sequences x1(n) and x2(n), and any
arbitrary constants a1 and a2
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Linear Systems: Homogeneity

A system is linear iff

T [a1 x1(n) + a2 x2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

I Homogeneity: Let a2 = 0.

T [a1 x1(n)] = a1 T [x1(n)]

x(n)
T−→ y(n) =⇒ a1x(n)

T−→ a1y(n)

for any constant a1.
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Linear Systems: Additivity
A system is linear iff

T [a1 x1(n) + a2 x2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

I Additivity: Let a1 = a2 = 1.

T [x1(n) + x2(n)] = T [x1(n)] + T [x2(n)]

x1(n)
T−→ y1(n)

x2(n)
T−→ y2(n)

=⇒ x1(n) + x2(n)
T−→ y1(n) + y2(n)

for any input sequences x1(n) and x2(n).
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Linear Systems: Additivity

Therefore:

Linearity = Homogeneity + Additivity

Need both!
If a system is not homogeneous, it is not linear.
If a system is not additive, it is not linear.
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Linear vs. Nonlinear Systems

Examples: linear or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25
n)

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, N, Y, Y, Y, N, N, Y
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Causal vs. Noncausal Systems

I Causal system: output of system at any time n depends only on
present and past inputs

I a system is causal iff

y(n) = T [x(n), x(n − 1), x(n − 2), . . .]

for all n
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Causal vs. Noncausal Systems

Examples: causal or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25

(n + 1))

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, Y, Y, N, N, N, Y, Y
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Stable vs. Unstable Systems

I Bounded Input-Bounded output (BIBO) Stable: every bounded
input produces a bounded output

I a system is BIBO stable iff

|x(n)| ≤ Mx <∞ =⇒ |y(n)| ≤ My <∞

for all n.
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Discrete-Time Bounded Signals

|x[n]||x[n]|

x[n] x[n]

UNBOUNDED SIGNALBOUNDED SIGNAL

x[n] x[n]

n

n

n

n

n

n

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 31 / 63

Discrete-Time Signals and Systems

Stable vs. Unstable Systems

Examples: stable or not?

I y(n) = A x(n), A 6= 0

I y(n) = A x(n) + B , A,B , 6= 0

I y(n) = x(n) cos( π
25
n)

I y(n) = x(−n)

I y(n) = x(n + 1)

I y(n) = 1
1−x(n+2)

I y(n) = e3x(n)

I y(n) =
∑n

k=−∞ x(k)

Ans: Y, Y, Y, Y, Y, N, Y, N
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Final Remarks

I For a system to possess a given property, the property must hold
for every possible input and parameter of the system.

I to disprove a property, need a single counter-example

I to prove a property, need to prove for the general case
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2.3 Analysis of Dst-Time Linear
Time-Invaraint Systems
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The Convolution Sum

Recall:

x(n) =
∞∑

k=−∞

x(k)δ(n − k)
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The Convolution Sum
Let the response of a linear time-invariant (LTI) system to the unit
sample input δ(n) be h(n).

δ(n)
T−→ h(n)

δ(n − k)
T−→ h(n − k)

α δ(n − k)
T−→ α h(n − k)

x(k) δ(n − k)
T−→ x(k) h(n − k)

∞∑
k=−∞

x(k)δ(n − k)
T−→

∞∑
k=−∞

x(k)h(n − k)

x(n)
T−→ y(n)
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The Convolution Sum

Therefore,

y(n) =
∞∑

k=−∞

x(k)h(n − k) = x(n) ∗ h(n)

for any LTI system.
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Properties of Convolution

Associative and Commutative Laws:

x(n) ∗ h(n) = h(n) ∗ x(n)

[x(n) ∗ h1(n)] ∗ h2(n) = x(n) ∗ [h1(n) ∗ h2(n)]

x(n) h (n)1 h (n)2

h (n) * h (n)1 2 h (n) * h (n)2 1=

y(n)

x(n) h (n)2 h (n)1
y(n)
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Properties of Convolution

Distributive Law:

x(n) ∗ [h1(n) + h2(n)] = x(n) ∗ h1(n) + x(n) ∗ h2(n)

h (n) + h (n)1 2

h (n)1

h (n)2

x(n) y(n)
+
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Causality and Convolution

For a causal system, y(n) only depends on present and past inputs
values. Therefore, for a causal system, we have:

y(n) =
∞∑

k=−∞

h(k)x(n − k)

=
−1∑

k=−∞

h(k)x(n − k) +
∞∑
k=0

h(k)x(n − k)

=
∞∑
k=0

h(k)x(n − k)

where h(n) = 0 for n < 0 to ensure causality.
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2.4 Discrete-time Systems
Described by Difference Equations
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Finite vs. Infinite Impulse Response

For causal LTI systems, h(n) = 0 for n < 0.

Finite impulse response (FIR):

y(n) =
M−1∑
k=0

h(k)x(n − k)

Infinite impulse response (IIR):

y(n) =
∞∑
k=0

h(k)x(n − k)

How would one realize these systems?
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Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

y(n) =
M−1∑
k=0

h(k)x(n − k)

}
nonrecursive systems

Infinite impulse response (IIR):

y(n) =
∞∑
k=0

h(k)x(n − k)

}
recursive systems
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of
. . .

. . . difference equations.

All LTI systems

All systems
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of
. . .

. . . difference equations.

All LTI FIR systems All LTI IIR systems

All LTI systems

All systems
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System Realization

There is a practical and computationally efficient means of
implementing all FIR and a family of IIR systems that makes use of
. . .

. . . difference equations.

All LTI FIR systems All LTI IIR systems

All LTI systems

Systems 
Described
by LCCDEs

All systems
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System Realization

General expression for Nth-order LCCDE:

N∑
k=0

aky(n−k) =
M∑
k=0

bkx(n−k) a0 , 1

Initial conditions: y(−1), y(−2), y(−3), . . . , y(−N).

Need: (1) constant scale, (2) addition, (3) delay elements.
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2.5 Implementation of
Discrete-time Systems

Professor Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 48 / 63



Discrete-Time Signals and Systems

Building Block Elements

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +
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FIR System Realization

Finite Impulse Response Systems and Nonrecursive Implementation
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FIR System Realization: Example
I Consider a 5-point local averager:

y(n) =
1

5

n∑
k=n−4

x(k) n = 0, 1, 2, . . .

I The impulse response is given by:

h(n) =
1

5

n∑
k=n−4

δ(k)

=
1

5
δ(n − 4) +

1

5
δ(n − 3) +

1

5
δ(n − 2) +

1

5
δ(n − 1) +

1

5
δ(n)
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FIR System Realization: Example
I Consider a 5-point local averager:

y(n) =
1

5

n∑
k=n−4

x(k) n = 0, 1, 2, . . .

h[n]

n

1/5

0 1 2 3 4

Indeed FIR!
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FIR System Realization: Example
I Consider a 5-point local averager:

y(n) =
1

5

n∑
k=n−4

x(k) n = 0, 1, 2, . . .

I Memory requirements stay constant; only need to store 5 values
(4 last + present).

I fixed number of adders required
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FIR System Realization: Example

y(n) =
1

5

n∑
k=n−4

x(k) =
n∑

k=n−4

1

5
x(k)

∴ y(n) =
1

5
x(n − 4) +

1

5
x(n − 3) +

1

5
x(n − 2) + · · ·

· · · 1

5
x(n − 1) +

1

5
x(n)

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+ + + +

1/5 1/5 1/5 1/5 1/5
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FIR System Realization: General

y(n) =
M−1∑
k=0

bkx(n − k)

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+ + + + +

...

...
Requires:

I M multiplications

I M − 1 additions

I M − 1 memory elements
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FIR System Realization

Infinite Impulse Response Systems and Recursive Implementation
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IIR System Realization: Example
I Consider an accumulator:

y(n) =
n∑

k=0

x(k) n = 0, 1, 2, . . . for y(−1) = 0.

I The impulse response is given by:

h(n) =
n∑

k=0

δ(k) = δ(n) + δ(n − 1) + δ(n − 2) + · · ·

=

{
1 n ≥ 0
0 n < 0

h[n]

n

1

0 1 2 3 4

. . .
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IIR System Realization: Example
I Consider an accumulator:

y(n) =
n∑

k=0

x(k) n = 0, 1, 2, . . . for y(−1) = 0.

I IIR memory requirements seem to grow with increasing n!
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IIR System Realization: Example

y(n) =
n∑

k=0

x(k)

=
n−1∑
k=0

x(k) + x(n)

= y(n − 1) + x(n)

∴ y(n) = y(n − 1) + x(n)

+

recursive implementation
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Direct Form I vs. Direct Form II Realizations

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

is equivalent to the cascade of the following systems:

v(n)︸︷︷︸
output 1

=
M∑
k=0

bk x(n − k)︸ ︷︷ ︸
input 1

nonrecursive

y(n)︸︷︷︸
output 2

= −
N∑

k=1

aky(n − k) + v(n)︸︷︷︸
input 2

recursive
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Direct Form I IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

+

+

+

+

+

LTI All-zero system LTI All-pole system

...... ... ...

v(n)

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

+

+

+

+

+

LTI All-pole system

... ...

LTI All-zero system

......

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form II IIR Filter Implementation

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

+

+

+

+

... ...

+

+

+

+

+

......

... For N>M

Requires: M + N + 1 multiplications, M + N additions, max(M,N) memory

locations �
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