Multirate Digital Signal Processing: Part IV

Dr. Deepa Kundur

University of Toronto

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

1 / 40

3 / 49

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks

Filter Banks

- ► Two types: analysis and synthesis
- consist of a parallel bank of filters used for:
 - ▶ signal analysis, DFT computation, etc.
 - ► signal (re-)synthesis

Discrete-Time Signals and Systems

Reference:

Sections 11.10 and 11.11 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Analysis Filter Bank

Consider Uniform DFT Filter Bank

- 1. analysis filter bank
- 2. *N* filters $\{H_k(z), k = 0, 1, ..., N-1\}$
- 3. prototype filter: $H_0(z)$

$$H_{k}(z) = H_{0} \left(z e^{-j2\pi k/N} \right)$$

$$H_{k}(e^{j2\pi\omega}) = H_{0} \left(e^{j\omega} e^{-j2\pi k/N} \right)$$

$$H_{k}(\omega) = H_{0} \left(\omega - \frac{2\pi k}{N} \right)$$

$$= H_{0}(\omega) * \delta \left(\omega - \frac{2\pi k}{N} \right)$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

5 / 49

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks $\begin{array}{c} \text{Analysis Filter Bank} \\ \text{Analysis Filter Bank} \\ \text{LTI Filter} \\ H_0(z) \\ \\ \text{LTI Filter} \\ H_{N-1}(z) \\ \\ \text{LTI Filter} \\ \\ H_{N-1}(z) \\ \\ \text{Dr. Deepa Kundur (University of Toronto)} \\ \text{Multirate Digital Signal Processing: Part IV} \\ \end{array}$

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks

Prototype Filter

For k = 0, 1, 2, ..., N:

$$H_{k}(\omega) = H_{0}\left(\omega - \frac{2\pi k}{N}\right)$$

$$\begin{bmatrix} h_{k}(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & H_{k}(\omega) \\ h_{0}(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & H_{0}(\omega) \end{bmatrix}$$

$$\begin{bmatrix} h_{0}(n)e^{j2\pi nk/N} & \stackrel{\mathcal{F}}{\longleftrightarrow} & H_{0}\left(\omega - \frac{2\pi k}{N}\right) \\ \vdots & h_{k}(n) & = & h_{0}(n)e^{j2\pi nk/N} \end{bmatrix}$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

6 / 49

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Ban

Uniform DFT Filter Bank

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

- $\gamma_k(n)$ is bandlimited such that it is oversampled by a factor of $N\gg 1$
- ▶ $H_0(\omega)$ behaves as a anti-aliasing filter prior to decimation.
- ► Recall, ...

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

13 / 49

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks

Recall,

Note: y(m) contains the same information as v(m); thus downsampling of v(m) is lossless compression.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

$$X_{k}(m) = \gamma_{k}(mD)$$

$$\gamma_{k}(n) = [x(n) \cdot e^{-j\omega_{k}n}] * h_{0}(n)$$

$$= \sum_{l=-\infty}^{\infty} x(l) \cdot e^{-j\omega_{k}l} h_{0}(n-l)$$

$$= \sum_{l=-\infty}^{\infty} h_{0}(n-l)x(l) \cdot e^{-j\omega_{k}l}$$

$$X_{k}(m) = \gamma_{k}(mD) = \sum_{n=-\infty}^{\infty} h_{0}(mD-n)x(n) \cdot e^{-j2\pi nk/N}$$

$$X_k(m) = \sum_{n=-\infty}^{\infty} h_0(mD-n)x(n)e^{-j2\pi nk/N} \equiv k$$
th DFT coeff

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

17 / 49

Analogous structure to analysis filter bank:

Application-based processing may occur between the analysis and synthesis filter banks.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks

Therefore,

$$Y_{k}(\omega) = H_{k}(\omega) \cdot X(\omega)$$

$$= \underbrace{\left[H_{0}(\omega) \cdot X\left(\omega + \frac{2\pi k}{N}\right)\right] * \delta\left(\omega - \frac{2\pi k}{N}\right)}_{\text{B}}$$

$$= \underbrace{\left\{H_{0}(\omega) \cdot \left[X(\omega) * \delta\left(\omega + \frac{2\pi k}{N}\right)\right]\right\}}_{\text{compen. at s}}$$

$$= \underbrace{\left\{H_{0}(\omega) \cdot \left[X(\omega) * \delta\left(\omega + \frac{2\pi k}{N}\right)\right]\right\}}_{\text{compen. at s}}$$

$$r(n) \cdot \underbrace{e^{+j2\pi kn/N}}_{= e^{j\omega_k n}} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \left[R(\omega) * \delta \left(\omega - \frac{2\pi k}{N} \right) \right]$$

where $\omega_k = 2\pi kn/N$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

21 / 49

Analogous structure to analysis filter bank:

Note: compensation for baseband processing in analysis bank.

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks Uniform DFT Filter Bank PROTOTYPE $H_1(\omega)$ $H_{N-1}(\omega)$ $H_{N-1}(\omega)$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

23 / 49

$$v(n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{m=-\infty}^{\infty} Y_k(m) g_0(n-mD) e^{j2\pi nk/N}$$

$$= \sum_{m=-\infty}^{\infty} g_0(n-mD) \underbrace{\left[\frac{1}{N} \sum_{k=0}^{N-1} Y_k(m) e^{j2\pi nk/N}\right]}_{\equiv y_0(m) \equiv \text{IDFT coeff}}$$

$$v(m) = \sum_{m=-\infty}^{\infty} g_0(n-mD) \left[rac{1}{N} \sum_{k=0}^{N-1} Y_k(m) \mathrm{e}^{\mathrm{j} 2\pi nk/N}
ight] \equiv \mathsf{IDFT}$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

25 / 49

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks $\gamma_k(n) = \underbrace{H_0(\omega) X\left(\omega + \frac{4\pi}{N}\right)}_{H_0(\omega)} X\left(\omega + \frac{4\pi}{N}\right) X\left(\omega\right) \\ +\underbrace{\frac{4\pi}{N}}_{H_0(\omega)} X\left(\omega + \frac{4\pi}{N}\right) X\left(\omega\right) \\ +\underbrace{\frac{4\pi}{N}}_{N} X\left(\omega\right) \\ +$

Chapter 11: Multirate Digital Signal Processing 11.10 Digital Filter Banks Alternative Filter Bank Structures $x(n) \xrightarrow{e^{-j\omega_k n}} \text{LTI Filter} \xrightarrow{\gamma_k(n)} \downarrow D \xrightarrow{X_k(m)} X_k(m)$ $x(n) \xrightarrow{LTI Filter} \xrightarrow{e^{-j\omega_k n}} \xrightarrow{\gamma_k(n)} \downarrow D \xrightarrow{X_k(m)} X_k(m)$

$$h_k(n) = h_0(n)e^{j2\pi nk/N}$$

 $H_k(\omega) = H_0\left(\omega - \frac{2\pi nk}{N}\right)$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Critically Sampled Filter Banks

D = N

 maximizes efficiency by minimizing the number of samples in computations

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

33 / 40

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Two-Channel Quadrature Mirror Filter Bank

Q: What is a quadrature mirror filter?

A: Consider analysis filters $H_0(\omega)$ and $H_1(\omega)$ that are lowpass and highpass, respectively.

$$H_0(\omega) = H(\omega)$$

 $H_1(\omega) = H(\omega - \pi)$

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Two-Channel Quadrature Mirror Filter Bank

- multirate digital filter structure that employs:
 - ▶ two decimators for "signal analysis"
 - ▶ two interpolators "signal synthesis"
- basic building block for quadrature mirror filter (QMF) applications

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

3/ / //

Two-Channel Quadrature Mirror Filter Bank

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

35 / 49

Recall, for a downsampler:

$$x(n) = u(nD) \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad X(z) = \frac{1}{D} \sum_{i=0}^{D-1} U(z^{1/D} W_D^i)$$

where $W_D = e^{-j2\pi/D}$.

$$x(n) = u(nD) \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad X(z) = \frac{1}{D} \sum_{i=0}^{D-1} U\left(\frac{\omega - 2\pi i}{D}\right)$$

For D=2:

$$X(z) = \frac{1}{2} \sum_{i=0}^{2-1} U\left(\frac{\omega - 2\pi i}{2}\right)$$
$$= \frac{1}{2} \left[U\left(\frac{\omega}{2}\right) + U\left(\frac{\omega - 2\pi}{2}\right) \right]$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Suppose we connect the analysis and synthesis sections.

$$\begin{split} \hat{X}(\omega) &= X_{a0}(2\omega)G_0(\omega) + X_{a1}(2\omega)G_1(\omega) \\ &= \frac{1}{2}\left[H_0\left(\omega\right)X\left(\omega\right) + H_0\left(\frac{2\omega - 2\pi}{2}\right)X\left(\frac{2\omega - 2\pi}{2}\right)\right]G_0(\omega) \\ &+ \frac{1}{2}\left[H_1\left(\omega\right)X\left(\omega\right) + H_1\left(\frac{2\omega - 2\pi}{2}\right)X\left(\frac{2\omega - 2\pi}{2}\right)\right]G_1(\omega) \\ &= \frac{1}{2}\left[H_0(\omega)G_0(\omega) + H_1(\omega)G_1(\omega)\right]X(\omega) \\ &+ \frac{1}{2}\left[H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega)\right]X(\omega - \pi) \end{split}$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

43 / 49

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

To Eliminate Aliasing

We require A(z) = 0 or . . .

$$H_0(-z)G_0(z) + H_1(-z)G_1(z) = 0$$

$$\frac{1}{2} [H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega)] = 0$$

Sufficient condition:

Let $G_0(\omega) = H_1(\omega - \pi)$ and $G_1(\omega) = -H_0(\omega - \pi)$. Therefore,

LHS =
$$\frac{1}{2} [H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega)]$$

= $\frac{1}{2} [H_0(\omega - \pi)H_1(\omega - \pi) + H_1(\omega - \pi)(-H_0(\omega - \pi))]$
= $\boxed{0}$

11.11 Two-Channel Quadrature Mirror Filter Bank Chapter 11: Multirate Digital Signal Processing

$$\hat{X}(\omega) = \underbrace{\frac{1}{2} [H_0(\omega)G_0(\omega) + H_1(\omega)G_1(\omega)] X(\omega)}_{+ \underbrace{\frac{1}{2} [H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega)] X(\omega - \pi)}_{-}$$

effect of aliasing - ELIMINATE!

 $\hat{X}(z) = \frac{1}{2} [H_0(z)G_0(z) + H_1(z)G_1(z)] X(z)$ $+ \underbrace{\frac{1}{2} \left[H_0(-z) G_0(z) + H_1(-z) G_1(z) \right]}_{=A(z)} X(-z)$ = Q(z)X(z) + A(z)X(-z)

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Mirror Image Symmetric Filters

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Mirror Image Symmetric Filters

Suppose

$$h(n) \stackrel{\mathcal{F}}{\longleftrightarrow} H(\omega)$$

Therefore.

$$H_0(\omega) = H(\omega) \implies h_0(n) = h(n)$$
 $H_1(\omega) = H(\omega - \pi) \implies h_1(n) = e^{j\pi n}h(n) = (-1)^nh(n)$
 $G_0(\omega) = H(\omega) \implies g_0(n)h(n)$
 $G_1(\omega) = -H(\omega - \pi) \implies h_1(n) = -e^{j\pi n}h(n) = (-1)^{n+1}h(n)$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

45 / 40

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Thus,

$$H^{2}(z) + H^{2}(-z) = 2z^{-k}$$

 $H^{2}(\omega) - H^{2}(\omega - \pi) = 2e^{-j\omega k}$
 $|H^{2}(\omega) - H^{2}(\omega - \pi)| = |2e^{-j\omega k}| = 2$

Therefore, $|H^2(\omega) - H^2(\omega - \pi)| = C > 0$ is a necessary condition for perfect reconstruction.

If $H(\omega)$ also has <u>linear phase</u>, this is a <u>sufficient</u> condition for perfect reconstruction.

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Condition for Perfect Reconstruction

Recall, $\hat{X}(z) = Q(z)X(z) + A(z)X(-z)$. Given that A(z) = 0, perfect reconstruction is possible for $\hat{X}(n) = X(n-k)$ or:

$$Q(z) = \frac{1}{2} [H_0(z)G_0(z) + H_1(z)G_1(z)] = z^{-k}$$

$$= \frac{1}{2} [H(z)H(z) + H(-z)(-H(-z))] = z^{-k}$$

$$\therefore H^2(z) + H^2(-z) = 2z^{-k}$$

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

46 / 49

Chapter 11: Multirate Digital Signal Processing 11.11 Two-Channel Quadrature Mirror Filter Bank

Polyphase Form of the QMF Bank

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part IV

Consider polyphase filters for M = 2:

$$H_{0}(z) = H(z) = P_{0}(z^{2}) + z^{-1}P_{1}(z^{2})$$

$$H_{1}(z) = H(-z) = P_{0}((-z)^{2}) + (-z)^{-1}P_{1}((-z)^{2})$$

$$= P_{0}(z^{2}) - z^{-1}P_{1}(z^{2})$$

$$G_{0}(z) = H(z)P_{0}(z^{2}) + z^{-1}P_{1}(z^{2})$$

$$G_{1}(z) = -H(-z) = -\left[P_{0}((-z)^{2}) + (-z)^{-1}P_{1}((-z)^{2})\right]$$

See Figure 11.11.3 of text

