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Elementary Discrete-Time Signals
1. unit sample sequence (a.k.a. Kronecker delta function):
1, forn=0
5(,7){ 0, forn#0
2. unit step signal:
(n) = 1, forn>0
uny = 0, forn<0
3. unit ramp signal:
(n) = n, forn>0
urin) = 0, forn<O0
Note:
o(n) = w(n)—uln-1)=u(n+1)—2u(n)+ u(n-1)
u(n) = u(n+1)—ul(n)
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Signal Symmetry

Even signal:  x(—n) = x(n)

Odd signal:  x(—n) = —x(n)
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Signal Symmetry

Even signal component:  x.(n) = 5 [x(n) + x(—n)]
Odd signal component:  x,(n) = £ [x(n) — x(—n)]

Note: x(n) = xe(n) + x,(n)
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Signal Symmetry

(x(n)+x(-n))/2
1 even part
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Simple Manipulation of Discrete-Time Signals

» Transformation of independent variable:
» timeshift: n—n—k, keZ
> Question: what if kK ¢ Z7
» time scale: n — an, a € Z
» Question: what if o & Z7

» Additional, multiplication and scaling:
» amplitude scaling: y(n) = Ax(n),
» sum: y(n) = x1(n) + xa(n),
» product: y(n) = x1(n)x2(n),

—o00o < n<o0
—o0o < n< oo
—o00o < n<ox
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Simple Manipulation of Discrete-Time Signals |

Find x(n) — x(n+1).

234 56 728 910

1
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Simple Manipulation of Discrete-Time Signals |l

x(n)-x(n+1)
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Simple Manipulation of Discrete-Time Signals |
Find x(2n + 1).

n [ F+1 x(3F +1)
<-1] < —% 0 if % + 1 is an integer; undefined otherwise
-1 7% undefined
0 1 x(1)=1
1 g undefined
2 4 x(4) =2
3 % undefined
4 7 x(7) =3
5 177 undefined
6 10 x(10) =2
7 % undefined
8 13 x(13) =1
9 % undefined
10 16 x(16) = —1
11 % undefined
12 19 x(19) = -2
> 12 > 19 0if % + 1 is an integer; undefined otherwise
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Simple Manipulation of Discrete-Time Signals
Graph of x(3n+1).

3 This signal is undefined for values of n
2 o) that are not even integers and zero for
even integers not shown on this sketch.

1 1
I 10 12
8

RN, g T 23 4 56 7 9111 KR! > n
-1 3
) 5
-3
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Input-Output Description of Dst-Time Systems

x(n) ) . y(n)
input/ Discrete-time output/

excitation System response

Discrete-time Discrete-time
signal signal

» Input-output description (exact structure of system is unknown

or ignored):
y(n) =T [x(n)]

» “black box" representation:
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Classification of Discrete-Time Systems

Why is this so important?

» mathematical techniques developed to analyze systems are often
contingent upon the general characteristics of the systems being
considered

» for a system to possess a given property, the property must hold
for every possible input to the system

» to disprove a property, need a single counter-example
» to prove a property, need to prove for the general case
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Time-invariant vs. Time-variant Systems

» Time-invariant system: input-output characteristics do not
change with time

» a system is time-invarariant iff
T T
x(n) — y(n) = x(n—k) — y(n—k)

for every input x(n) and every time shift k.
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Time-invariant vs. Time-variant Systems

Examples: time-invariant or not?

- y(n) = n x(n)

> y(n) = /x(n) +x*(n - 2)
- y() = x(—n)

e y(m) = x(n 1)

> y(n) = lfx(ln+2)

> y(n) = >

Ans: Y, N, Y, N, Y, Y, Y
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Linear vs. Nonlinear Systems

» Linear system: obeys superposition principle
» a system is linear iff

Tla: x1(n) + a2 x2(n)] = a1 Txa(n)] + a2 Txz(n)]

for any arbitrary input sequences x;(n) and x»(n), and any
arbitrary constants a; and a,
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Linear vs. Nonlinear Systems

Examples: linear or not?

> y(n) = A x(n)

> y(n) = n x(n)

> y(n) = v/x(n) + x*(n - 2)

> y(n) = x(—n)

> y(n) =x(n+1)

> y(n) = 17X(1n+2)

> y(n) = ¥

Ans: Y, Y, N, Y, Y, N N
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Causal vs. Noncausal Systems

» Causal system: output of system at any time n depends only on
present and past inputs

» a system is causal iff

y(n) = F[x(n),x(n—1),x(n—2),..]

for all n
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Causal vs. Noncausal Systems

Examples: causal or not?

> y(n) = A x(n)

> y(n) = n x(n)

> y(n) = v/x(n) +x*(n - 2)
> y(n) = x(—n)

> y(n) =x(n+1)

> y(n) = 5y

> y(n) = )

Ans: Y, Y, Y, N, N, N, Y

Dr. Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems 19 / 36

Chapter 2: Discrete-Time Signals and Systems

Stable vs. Unstable Systems

» Bounded Input-Bounded output (BIBO) Stable: every bounded
input produces a bounded output

» a system is BIBO stable iff
Ix(n)| < My <00 = |y(n)| <M, <o

for all n.
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Stable vs. Unstable Systems

Examples: stable or not?
y(n) = A x(n)

v

v
<
S
I
=
X
—~
S
~

(n)
> y(n) = /x(n) + x*(n - 2)
- y(n) = x(~n)
- y(m) =x(n+ 1)
> y(n) = 17X(1n+2)
> y(n) = ¥

Ans: Y, N, Y, Y, Y N Y
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The Convolution Sum

Recall:

Dr. Deepa Kundur (University of Toronto) Discrete-Time Signals and Systems

22/ 36

Chapter 2: Discrete-Time Signals and Systems

The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit
sample input §(n) be h(n).

s(n) s h(n)
s(n—k) s h(n— k)
a o(n— k) T a h(n — k)
x(k) 6(n—k) L x(k) h(n— k)
ST x(K)a(n—k) 5 ST x(k)h(n — k)
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The Convolution Sum

Therefore,

for any LTI system.
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Properties of Convolution

Associative and Commutative Laws:

x(n)*« h(n) = h(n) = x(n)
[x(n)  bu(n)] + ha(n) = x(n) * [hi(n) * hy(n)]

X L k) o o HY
hy(n) * hn) = h(n) * h,(n)
x(n) y(n)
> hyn) > hn) >
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Properties of Convolution

Distributive Law:

x(n) * [h(n) + ha(n)] = x(n) * hy(n) + x(n) * hy(n)

h1(n) + hz(n)
hy(n) —
x(n) y(n)
Or—
h{n) 1
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Causality and Convolution

For a causal system, y(n) only depends on present and past inputs
values. Therefore, for a causal system, we have:

y(n) = Y h(k)x(n— k)

= i h(k)x(n — k) + > h(k)x(n — k)

= ) h(k)x(n— k)
k=0
where h(n) = 0 for n < 0 to ensure causality.
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Finite-Impulse Reponse vs. Infinite Impulse
Response

Finite impulse response (FIR):

How would one realize these systems? Two classes: recursive and
nonrecursive.
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Infinite Impulse Response System Realization

There is a practical and computationally efficient means of
implementing a family of IIR systems that makes use of ...

... difference equations.
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Infinite Impulse Response System Realization

» Consider an accumulator:

y(n)=>» x(k) n=0,1,2,...
k=0

» Memory requirements grow with increasing n!

Dr. Deepa Kundur (University of Toronto)
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Infinite Impulse Response System Realization
y(n) = > x(k)
k=0 z(n) ® l >y(n)
n—1
= Y x(k) +x(n) 271
=0 1
— y(n—1)+x(n)
y(n) = y(n—1)+x(n) recursive implementation
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Linear Constant-Coefficient Difference Equations

» General expression for Nth-order LCCDE:

N M
Zaky(n—k):Zbkx(n—k) a=1
k=0 k=0

Initial conditions: y(—1),y(—2),y(=3),...,y(—N)
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Direct Form | vs. Direct Form |l Realizations

y(n) =— Z ary(n— k) + Z bix(n — k)

is equivalent to the cascade of the following systems:

M
v(n) = Z by x(n — k) nonrecursive
k=1 .
output 1 input 1
N
y(n) = - g ary(n—k)+ v(n) recursive
k=1 .
output 2 input 2
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Direct Form | IIR Filter Implementation

x(n) . bo o ® . y(n)
27t !
— % .0 De—=8 7
271 -1
b o oI
1
z

LTI All-zero system

LTI All-pole system

Requires: M + N + 1 multiplications, M 4+ N additions, M + N memory locations
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Direct Form Il IR Filter Implementation

o(n) N BT y(n)
k2 o/
—1
z

b
l—>1—><+>
L1
l—b>2—><+)
Z*l

b3
: bary
L1

bar

LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form Il IR Filter Implementation
bo
z(n) ® v ® y(n)
z71 b
— 1
). I (;
® Y ®»
z71 b
) —g2 ] 2 i
® 2 ®
z71 b
X | X
h —apn—1 ) by—1 A~
@ M—1 l M—1 n
Z—l
—ay by
|
: ForN>M
—an
Requires: M + N + 1 multiplications, M 4+ N additions, max(M, N) memory
locations [
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