Dr. Deepa Kundur University of Toronto Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 1 / 39 3 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems ## The Frequency Response Function - ▶ Recall for an LTI system: y(n) = h(n) * x(n). - ▶ Suppose we inject a complex exponential into the LTI system: $$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$ $$x(n) = Ae^{j\omega n}$$ Note: we consider x(n) to be comprised of a pure frequency of ω rad/s Chapter 5: Frequency Domain Analysis of LTI Systems # Discrete-Time Signals and Systems #### Reference: Sections 5.1, 5.2 - 5.5 of John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 2 / 20 4 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems ## The Frequency Response Function $$\therefore y(n) = \sum_{k=-\infty}^{\infty} h(k) A e^{j\omega(n-k)}$$ $$= \sum_{k=-\infty}^{\infty} h(k) A e^{j\omega n} \cdot e^{-j\omega k}$$ $$= A e^{j\omega n} \cdot \left[\sum_{k=-\infty}^{\infty} h(k) e^{-j\omega k} \right]$$ $$= A e^{j\omega n} H(\omega)$$ ▶ Thus, $y(n) = H(\omega)x(n)$ when x(n) is a pure frequency. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems $y(n) = H(\omega)x(n)$ output = scaled input $A \cdot v = \lambda \cdot v$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 5 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems # LTI System Eigenfunction - ► Implications: - ► An LTI system <u>can only change</u> the <u>amplitude</u> and <u>phase</u> of a sinusoidal signal. - An LTI system with inputs comprised of frequencies from set Ω_0 cannot produce an output signal with frequencies in the set Ω_0^c (i.e., the complement set of Ω_0) Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems # LTI System Eigenfunction - ► Eigenfunction of a system: - ► an input signal that produces an output that differs from the input by a constant multiplicative factor - ► multiplicative factor is called the eigenvalue - ▶ Therefore, a signal of the form $Ae^{j\omega n}$ is an eigenfunction of an LTI system. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 6 / 20 Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems # Magnitude and Phase of $H(\omega)$ $$H(\omega) = |H(\omega)|e^{j\Theta(\omega)}$$ $$|H(\omega)| \equiv \text{ system gain for freq } \omega$$ $\angle H(\omega) = \Theta(\omega) \equiv \text{ phase shift for freq } \omega$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 7 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 8 / 39 $$y(n) = \frac{1}{3} [x(n+1) + x(n) + x(n-1)]$$ By inspection, $h(n) = \frac{1}{3}\delta(n+1) + \frac{1}{3}\delta(n) + \frac{1}{3}\delta(n-1)$. Therefore, $$H(\omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n} = \sum_{n=-1}^{1} \frac{1}{3}e^{-j\omega n}$$ $$= \frac{1}{3}[e^{j\omega} + 1 + e^{-j\omega}] = \frac{1}{3}(1 + 2\cos(\omega))$$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 9 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.2 Frequency Response of LTI Systems # Frequency Response of LTI Systems z-Domain ω -Domain $H(z) \stackrel{\mathbf{z}=\mathbf{e}^{\mathbf{j}\omega}}{\Longrightarrow} H(\omega)$ system function $\stackrel{z=e^{i\omega}}{\Longrightarrow}$ frequency response $Y(z) = X(z)H(z) \stackrel{z=e^{j\omega}}{\Longrightarrow} Y(\omega) = X(\omega)H(\omega)$ Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems ## Example: What is the phase of $H(\omega) = \frac{1}{3}(1 + 2\cos(\omega))$? $$|H(\omega)| = \frac{1}{3}|1 + 2\cos(\omega)|$$ $$\Theta(\omega) = \begin{cases} 0 & 0 \le \omega \le \frac{2\pi}{3} \\ \pi & \frac{2\pi}{3} \le \omega < \pi \end{cases}$$ See → Figure 5.1.1 of text Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 10 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.2 Frequency Response of LTI Systems ## Frequency Response of LTI Systems If H(z) converges on the unit circle, then we can obtain the frequency response by letting $z = e^{j\omega}$: $$H(\omega) = H(z)|_{z=e^{j\omega n}} = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$$ $$= \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$ for rational system functions. # LTI Systems as Frequency-Selective Filters - ► <u>Filter</u>: device that <u>discriminates</u>, according to some attribute of the input, what passes through it - ▶ For LTI systems, given $Y(\omega) = X(\omega)H(\omega)$ - ▶ $H(\omega)$ acts as a kind of weighting function or spectral shaping function of the different frequency components of the signal LTI system \iff Filter Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 13 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters #### Ideal Filters - Common characteristics: - unity (flat) frequency response magnitude in <u>passband</u> and zero frequency response in stopband - ▶ linear phase; for constants *C* and *n*₀ $$H(\omega) = \left\{ egin{array}{ll} C \mathrm{e}^{-j\omega n_0} & \omega_1 < |\omega| < \omega_2 \ 0 & \mathrm{otherwise} \end{array} ight.$$ Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters #### Ideal Filters - Classification: - lowpass - highpass - bandpass - bandstop - allpass See Figure 5.4.1 of text Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 14 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters #### Ideal Filters ▶ Suppose $H(\omega) = Ce^{-j\omega n_0}$ for all ω : $$\begin{array}{ccc} \delta(n) & \stackrel{\mathcal{F}}{\longleftrightarrow} & 1 \\ \\ \delta(n-n_0) & \stackrel{\mathcal{F}}{\longleftrightarrow} & 1 \cdot e^{-j\omega n_0} \\ \\ \hline \textit{C} \cdot \delta(n-n_0) & \stackrel{\mathcal{F}}{\longleftrightarrow} & \textit{C} \cdot 1 \cdot e^{-j\omega n_0} = \textit{C}e^{-j\omega n_0} \end{array}$$ ▶ Therefore, $h(n) = C\delta(n - n_0)$ and: $$y(n) = x(n) * h(n) = x(n) * C\delta(n - n_0) = Cx(n - n_0)$$ #### Ideal Filters ► Therefore for ideal linear phase filters: $$H(\omega) = \left\{ egin{array}{ll} C e^{-j\omega n_0} & \omega_1 < |\omega| < \omega_2 \ 0 & ext{otherwise} \end{array} ight.$$ - signal components in stopband are annihilated - signal components in passband are shifted (and scaled by passband gain which is unity) Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 17 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 20 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters # Phase versus Magnitude What's more important? 18 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution # Why Invert? - ► There is a fundamental necessity in engineering applications to undo the unwanted processing of a signal. - reverse intersymbol interference in data symbols in telecommunications applications to improve error rate; called equalization - correct blurring effects in biomedical imaging applications for more accurate diagnosis; called restoration/enhancement - ► increase signal resolution in reflection seismology for improved geologic interpretation; called <u>deconvolution</u> Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems #### Invertibility of Systems - ▶ Invertible system: there is a one-to-one correspondence between its input and output signals - ▶ the one-to-one nature allows the process of reversing the transformation between input and output; suppose $$y(n) = \mathcal{T}[x(n)]$$ where \mathcal{T} is one-to-one $w(n) = \mathcal{T}^{-1}[y(n)] = \mathcal{T}^{-1}\{\mathcal{T}[x(n)]\} = x(n)$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 25 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution #### Invertibility of LTI Systems Therefore. $$h(n) * h_I(n) = \delta(n)$$ - For a given h(n), how do we find $h_l(n)$? - ► Consider the z—domain $$H(z)H_{I}(z) = 1$$ $$H_{I}(z) = \frac{1}{H(z)}$$ Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution # Invertibility of LTI Systems Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 26 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution ## Invertibility of Rational LTI Systems ▶ Suppose, H(z) is rational: $$H(z) = \frac{A(z)}{B(z)}$$ $H_I(z) = \frac{B(z)}{A(z)}$ poles of $H(z) = \text{zeros of } H_I(z)$ zeros of $H(z) = \text{poles of } H_I(z)$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 27 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 28 / 39 # Example Determine the inverse system of the system with impulse response $h(n) = (\frac{1}{2})^n u(n)$. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 29 / 39 31 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution #### Example Determine the inverse system of the system with impulse response $h(n) = (\frac{1}{2})^n u(n)$. - ▶ $H(z) = \frac{1}{1 \frac{1}{2}z^{-1}}$, ROC: $|z| > \frac{1}{2}$; note: direct system is causal + stable. - ► Therefore, $$H_I(z) = \frac{1}{H(z)} = 1 - \frac{1}{2}z^{-1}$$ ▶ By inspection, $$h_I(n) = \delta(n) - \frac{1}{2}\delta(n-1)$$ ▶ Is the inverse system stable? causal? Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution #### Common Transform Pairs | | Signal, $x(n)$ | z-Transform, $X(z)$ | ROC | |----|----------------------------|---|---------| | 1 | $\delta(n)$ | 1 | AII z | | 2 | u(n) | $\frac{1}{1-z^{-1}}$ | z > 1 | | 3 | $a^nu(n)$ | $ rac{ar{1}}{1-az^{-1}}$ | z > a | | 4 | na ⁿ u(n) | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z > a | | 5 | $-a^nu(-n-1)$ | $\frac{1}{1-az^{-1}}$ | z < a | | 6 | $-na^nu(-n-1)$ | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z < a | | 7 | $(\cos(\omega_0 n))u(n)$ | $\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$ | z > 1 | | 8 | $(\sin(\omega_0 n))u(n)$ | $\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$ | z > 1 | | 9 | $(a^n\cos(\omega_0 n)u(n)$ | $\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | | 10 | $(a^n\sin(\omega_0n)u(n)$ | $\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 30 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution ## Another Example Determine the inverse system of the system with impulse response $h(n) = \delta(n) - \frac{1}{2}\delta(n-1)$. $$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[\delta(n) - \frac{1}{2}\delta(n-1)\right]z^{-n}$$ $$= 1 - \frac{1}{2}z^{-1}$$ $$H_{I}(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$ #### Common Transform Pairs | | Signal, $x(n)$ | z-Transform, $X(z)$ | ROC | |----|--|---|---------| | 1 | $\delta(n)$ | 1 | All z | | 2 | u(n) | $\frac{1}{1-z^{-1}}$ | z > 1 | | 3 | $a^n u(n)$ | $\frac{\overline{1}}{1-az^{-1}}$ | z > a | | 4 | na ⁿ u(n) | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z > a | | 5 | $-a^nu(-n-1)$ | $\frac{1}{1-az^{-1}}$ | z < a | | 6 | $-\mathit{na}^\mathit{n}\mathit{u}(-\mathit{n}-1)$ | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z < a | | 7 | $(\cos(\omega_0 n))u(n)$ | $\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$ | z > 1 | | 8 | $(\sin(\omega_0 n))u(n)$ | $\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$ | z > 1 | | 9 | $(a^n\cos(\omega_0 n)u(n)$ | $\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | | 10 | $(a^n \sin(\omega_0 n) u(n)$ | $\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 33 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution ## Another Example There are two possibilities for inverses: ► Causal + stable inverse: $$h_l(n) = \left(\frac{1}{2}\right)^n u(n)$$ ► Anticausal + unstable inverse: $$h_I(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$$ Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution #### Common Transform Pairs | | Signal, $x(n)$ | z-Transform, $X(z)$ | ROC | |----|------------------------------|---|---------| | 1 | $\delta(n)$ | 1 | All z | | 2 | u(n) | $\frac{1}{1-z^{-1}}$ | z > 1 | | 3 | $a^nu(n)$ | $\frac{1}{1-az^{-1}}$ | z > a | | 4 | na ⁿ u(n) | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z > a | | 5 | $-a^nu(-n-1)$ | $\frac{1}{1-az^{-1}}$ | z < a | | 6 | $-na^nu(-n-1)$ | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z < a | | 7 | $(\cos(\omega_0 n))u(n)$ | $\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$ | z > 1 | | 8 | $(\sin(\omega_0 n))u(n)$ | $\frac{1-2z^{-1}\cos\omega_0+z^{-2}}{z^{-1}\sin\omega_0}$ $\frac{1-2z^{-1}\cos\omega_0+z^{-2}}{1-2z^{-1}\cos\omega_0+z^{-2}}$ | z > 1 | | 9 | $(a^n\cos(\omega_0 n)u(n)$ | $\frac{1 - az^{-1}\cos\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | | 10 | $(a^n \sin(\omega_0 n) u(n)$ | $\frac{1 - az^{-1}\sin\omega_0}{1 - 2az - 1\cos\omega_0 + a^2z^{-2}}$ | z > a | Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 34 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution ## Homomorphic Deconvolution ▶ The complex cepstrum of a signal x(n) is given by: $$c_{x}(n) = Z^{-1}\{\ln(Z\{x(n)\})\} = Z^{-1}\{\ln(X(z))\} = Z^{-1}\{C_{x}(z)\}$$ $$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$ cepstrum $\equiv c_x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} C_x(z) = \ln(X(z))$ • We say, $c_x(n)$ is produced via a homomorphic transform of x(n). $$Y(z) = X(z)H(z)$$ $$C_{y}(z) = \ln Y(z)$$ $$= \ln X(z) + \ln H(z)$$ $$= C_{x}(z) + C_{h}(z)$$ $$Z^{-1}\{C_{y}(z)\} = Z^{-1}\{C_{x}(z)\} + Z^{-1}\{C_{h}(z)\}$$ $$c_{y}(n) = c_{x}(n) + c_{h}(n)$$ Therefore, convolution in time-domain ←→ addition in cepstral domain Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 37 / 39 Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution ## Homomorphic Deconvolution ▶ Obtaining the inverse homomorphic transforms of $c_h(n)$ and $c_x(n)$ give estimates of h(n) and x(n), respectively. # Homomorphic Deconvolution ▶ In many applications, the characteristics of $c_x(n)$ and $c_h(n)$ are sufficiently distinct that temporal windows can be used to separate them: $$\hat{c}_h(n) = c_y(n)\hat{w}_{lp}(n)$$ $$\hat{c}_x(n) = c_y(n)\hat{w}_{hp}(n)$$ where: $$\hat{w}_{lp}(n) = \begin{cases} 1 & |n| \leq N_1 \\ 0 & |n| > N_1 \end{cases}$$ $$\hat{w}_{hp}(n) = \begin{cases} 0 & |n| \leq N_1 \\ 1 & |n| > N_1 \end{cases}$$ Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems