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Analog vs. Digital

Analog and Digital Signals

I analog signal = continuous-time + continuous amplitude

I digital signal = discrete-time + discrete amplitude
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Analog vs. Digital

Analog and Digital Signals

I Analog signals are fundamentally significant because we must
interface with the real world which is analog by nature.

I Digital signals are important because they facilitate the use of
digital signal processing (DSP) systems, which have practical
and performance advantages for several applications.
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Analog vs. Digital

Analog and Digital Systems

I analog system =
analog signal input + analog signal output

I advantages: easy to interface to real world, do not need A/D or
D/A converters, speed not dependent on clock rate

I digital system =
digital signal input + digital signal output

I advantages: re-configurability using software, greater control
over accuracy/resolution, predictable and reproducible behavior
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Analog vs. Digital
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Sampling:
I conversion from cts-time to dst-time by taking “samples” at

discrete time instants

I E.g., uniform sampling: x(n) = xa(nT ) where T is the sampling
period and n ∈ Z
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Analog vs. Digital
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Quantization:
I conversion from dst-time cts-valued signal to a dst-time

dst-valued signal

I quantization error: eq(n) = xq(n)− x(n) for all n ∈ Z
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Analog vs. Digital

Analog-to-Digital Conversion
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Coding:
I representation of each dst-value xq(n) by a

b-bit binary sequence

I e.g., if for any n, xq(n) ∈ {0, 1, . . . , 6, 7}, then the coder may
use the following mapping to code the quantized amplitude:
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Analog vs. Digital
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Example coder:

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111
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Analog vs. Digital

Sampling Theorem

If the highest frequency contained in an analog signal xa(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2Fmax = 2B

then xa(t) can be exactly recovered from its sample values using the
interpolation function

g(t) =
sin(2πBt)

2πBt

Note: FN = 2B = 2Fmax is called the Nyquist rate.
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Analog vs. Digital

Sampling Theorem

Sampling Period = T =
1

Fs
=

1

Sampling Frequency

Therefore, given the interpolation relation, xa(t) can be written as

xa(t) =
∞∑

n=−∞

xa(nT )g(t − nT )

xa(t) =
∞∑

n=−∞

x(n) g(t − nT )

where xa(nT ) = x(n); called bandlimited interpolation.
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Analog vs. Digital

Digital-to-Analog Conversion
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I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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Analog vs. Digital

Digital-to-Analog Conversion
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I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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DSP Systems
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I In practice, a DSP system does not use idealized A/D or D/A
models.

Dr. Deepa Kundur (University of Toronto) Introduction to DSP Systems 17 / 30

DSP Systems
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Anti-aliasing Filter:
I ensures that analog input signal does not contain frequency

components higher than half of the sampling frequency (to obey
the sampling theorem)

I this process is irreversible
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DSP Systems

A DSP System
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DSP Systems
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Sample and Hold:
I holds a sampled analog value for a short time while the A/D

converts and interprets the value as a digital
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DSP Systems

A DSP System
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DSP Systems
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A/D:
I converts a sampled data signal value into a digital number, in

part, through quantization of the amplitude
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DSP Systems

A DSP System
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D/A:
I converts a digital signal into a “staircase”-like signal
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A DSP System
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DSP Systems
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Reconstruction Filter:
I converts a “staircase”-like signal into an analog signal through

lowpass filtering similar to the type used for anti-aliasing
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DSP Systems

A DSP System
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DSP Systems

Real-time DSP Considerations

Q: What are initial considerations when designing a DSP system that
must run in real-time?

I Algorithm: related to computational operations and accuracy
required by the application

I Sample rate: the rate at which input samples are received for
processing

I Speed: to meet an application throughput requirement with a
given sample rate, it must be possible to operate the DSP at a
particular speed

I Numeric representation: format and number of bits used for
data representation; depends on required computational
precision and dynamic range required for application
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DSP Systems

Real-time DSP Considerations

Q: Is a DSP technology suitable for a real-time application?

I Clock rate: rate at which a DSP performs its most basic unit of

work; to meet the timing requirement with a given sampling rate, it

must be possible to operate the DSP at a particular clock rate

I Throughput: rate of multiply and accumulates (MACs) performed;

measured in number of MACs per second

I Arithmetic and addressing capability: requirements related to the

algorithm complexity, precision and data access

I Precision: associated with format (fixed vs. floating), number of bits

used for data representation, and required dynamic range

I Size, cost and power consumption: technology-dependent
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DSP Systems

Programmable DSPs

I Application-specific: designed to perform one function more
accurately, faster or more cost-effectively

I examples: FFT chips, digital filters
I can be programmable within confines of a function; e.g.,

coefficients of a digital filter

I General purpose: microprocessor whose architecture is optimized
to process sampled data at high rates via pipelining and
parallelism

I programmable and more cost-effective for general computing
I short system design cycle time

�
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