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Discrete-Time LTI Systems Discrete-time Systems

Input-Output Description of Dst-Time Systems

x(n) Discrete-time yin)

input/ output/
excitation ; System / response

Discrete-time Discrete-time
signal signal

» Input-output description (exact structure of system is unknown

or ignored):
y(n) =T [x(n)]

» “black box" representation:

x(n) L y(n)
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Discrete-Time LTI Systems Discrete-time Systems

System Properties

Why is this so important?

» mathematical techniques developed to analyze systems are often
contingent upon the general characteristics of the systems being
considered

» for a system to possess a given property, the property must hold
for every possible input to the system

» to disprove a property, need a single counter-example
» to prove a property, need to prove for the general case

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 3/61

Discrete-Time LTI Systems Discrete-time Systems

Terminology: Implication

If “A" then "B" Shorthand: A — B
Example 1:

it is snowing == it is at or below freezing temperature

Example 2:

a>52 = «is positive
Note: For both examples above, B #= A
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Discrete-Time LTI Systems

Terminology: Equivalence

If “A” then "B"

If “B" then "A"

Discrete-time Systems

Shorthand: A = B

Shorthand: B — A

can be rewritten as

“A" if and only if “B"”

We can also say:
» Ais EQUIVALENT to B
» A=B

Shorthand: A «<— B

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 5/ 61

Discrete-Time LTI Systems Discrete-time Systems

Common Properties

» Time-invariant system: input-output characteristics do not
change with time

» a system is time-invariant iff
T T
x(n) — y(n) = x(n—ng) — y(n— no)

for every input x(n) and every time shift ng.

z[n] H yln]

x[n — ng) H

Discrete-Time LTI Systems

Common Properties

Discrete-time Systems

» Linear system: obeys superposition principle

» a system is linear iff

Tla1 x1(n) + a2 x2(n)] = a1 Txa(n)] + a2 T[x2(n)]

for any arbitrary input sequences x1(n) and x2(n), and any

arbitrary constants a; and as.

x1[n]—

H

——y1[n]

w2 n]—r

a1z1[n| + asza[n]—

H

—— y2[n]

H

ary1[n] + azyz(n]
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Discrete-Time LTI Systems Discrete-time Systems
Additivity:
r1— H ——mn
T9 H ——y2
Ty +ay—— H ——V1 1+
Homogeneity:
v H [y
ax H ay
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Discrete-Time LTI Systems Discrete-time Systems

Common Properties

» Causal system: output of system at any time n depends only on
present and past inputs

» a system is causal iff

y(n) = F[x(n),x(n—1),x(n—2),...]
for all n.

» Bounded Input-Bounded output (BIBO) Stable: every bounded
input produces a bounded output

» a system is BIBO stable iff
Ix(n)| < My <o = |y(n)] <M, <o0
for all n and for all possible bounded inputs.
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Discrete-Time LTI Systems ~ The Convolution Sum

The Convolution Sum

Recall:
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Discrete-Time LTI Systems ~ The Convolution Sum

The Convolution Sum

Let the response of a linear time-invariant (LTI) system denoted 7 to
the unit sample input d(n) be h(n).

s(n) s h(n)
s(n—k) s h(n— k)
a o(n— k) T a h(n — k)
x(k) 6(n—k) L x(k) h(n— k)
ST x(K)a(n—k) 5 ST x(k)h(n — k)
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Discrete-Time LTI Systems ~ The Convolution Sum

The Convolution Sum

Therefore,

for any LTI system.
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Discrete-Time LTI Systems ~ The Convolution Sum

Causality and Convolution

For a causal system, y(n) only depends on present and past inputs
values. Therefore, for a causal system, we have:

y(n) = Y h(k)x(n— k)

k=—o0

I
M.

h(k)x(n — k) + > h(k)x(n — k)

k

— 00

[
hE

h(k)x(n — k)

x
I

0

where h(n) = 0 for n < 0 to ensure causality.
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Discrete-Time LTI Systems ~ The Convolution Sum

Stability and Convolution

It can also be shown that

(e 9]

> |h(n)] < oo <= LTl system is BIBO stable

n=—0oo

Note:
» <= means that the two statements are equivalent
» BIBO = bounded-input bounded-output
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Discrete-Time LTI Systems ~ The Convolution Sum

PROOF

For a stable system, y(n) is bounded if x(n) is bounded. What are the implications on h(n)?
We have:

y(m)l = | > h(k)x(n— k)
k=—oc0
< lh(k)x(n = k)| = lh(K)| - |x(n — k)|
[x(nM|<Mx<oo
< DT [A(R)IM =M > k()
k=—o0 k=—o00

Therefore, >72 _ _ |h(k)| < oo is a sufficient condition to guarantee:

o]

y(n) < My > (k)] < oo
k=—o00
and we can write:
o0
Z |h(n)] < oo = LTI system is stable
n=—oo
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Discrete-Time LTI Systems ~ The Convolution Sum

PROOF

To prove the reverse implication (i.e., necessity), assuming >.7° _ __ |h(n)| = co we must find a

bounded input x(n) that will always result in an unbounded y(n). Recall,

y(n) = > h(k)x(n—k)
k=—oc0

y(0) = D> h(kx(0—k)= > h(k)x(=k)
k=—o0 k=—o00

Consider x(n) = sgn(h(—n)); note: |x(n)| < 1.

oo}

w0 = 3 h(k)x(—k)
k=—o00
= > h(k)sgn(h(—(=k))) = > h(k)sgn(h(k))
k=—o0 k=—oc0
= > )=
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Discrete-Time LTI Systems ~ The Convolution Sum

PROOF

Therefore,
o0

Y. Ih(n)] =

n=—oo

guarantees that there exists a bounded input that will result in an unbounded output, so it is
also a necessary condition and we can write:

oo

Z |[h(n)] < oo <= LTI system is stable

n=—oo

Putting sufficiency and necessity together we obtain:
oo
Z |h(n)] < oo <= LTI system is stable

n=—oo

Note: <= means that the two statements are equivalent.
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Discrete-Time LTI Systems ~ The z-Transform and System Function

The Direct z-Transform

» Direct z-Transform:

o
X(z) = Z x(n)z™"
n=—o00
» Notation:
X(z) = Z{x(n)}
Z
x(n) +— X(z)
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Discrete-Time LTI Systems ~ The z-Transform and System Function

Region of Convergence

» the region of convergence (ROC) of X(z) is the set of all values
of z for which X(z) attains a finite value

» The z-Transform is, therefore, uniquely characterized by:

1. expression for X(z)
2. ROC of X(z)
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Discrete-Time LTI Systems ~ The z-Transform and System Function

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X(2) ROC: n < |z| < n
x1(n) Xi(z) ROC;
xa2(n) Xi(z) ROC,
Linearity: aixi(n) + axxa(n) a1 Xi(z) + axXa(z) At least ROC;N ROC,
Time shifting: x(n — k) z7kX(z) ROC, except
z=0 (if k > 0)
and z = oo (if k < 0)
z-Scaling: a"x(n) X(a71z) lalr < |z| < |aln
Time reversal x(—n) X(z™h) % <|z| < %
Conjugation: x*(n) X*(z*) ROC
z-Differentiation:  n x(n) —zd)fjgz) n<l|zl<n
Convolution: x1(n) * x2(n) Xi(z)Xa2(z2) At least ROC;N ROC,

among others ...
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Discrete-Time LTI Systems ~ The z-Transform and System Function

Common Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 d(n) 1 All z
2 u(n) 17;1 |z| > 1
3 a"u(n) ?12,1 |z| > |a|
4 na"u(n) ﬁ |z| > |a|
5 —a"u(—n-1) ?12,1 1z| < |4
6 —na"u(—n-—1) % |z| < |a|
7 (cos(won)u(n) = EELEEL |z >1
8  (sin(won))u(n 1_222:11:% |z| > 1
9 (a"cos(won)u(n) 1_23121312;:5?5:’222_2 |z| > |a|
10 (a"sin(won)u(n) A Z_shee, |7 > |4
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Discrete-Time LTI Systems ~ The z-Transform and System Function

The System Function

h(n) «= H(z)
time-domain <i> z-domain
PN

impulse response system function

y(n) = x(n) * h(n) <= Y(z)=X(z)- H(z)

Discrete-Time Fourier Analysis DTFT

Discrete-Time Fourier Transform (DTFT)

» DTFT pair:

1
x(n) = . i

X(w) = Y x(n)e*"

n=—oo

X(w)e™"dw

» X(w) is the decomposition of x(n) into its frequency
components.
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Therefore,
H(z) = Y(2)
X(2)
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Discrete-Time Fourier Analysis DTFT
Periodicity of the DTFT
Consider
o0
X(w+27r) = E x(n)e=Jwt2mn
n=—oo
o0
— E X(n)e—an . e—J27rn
n=—oo
oo o0
= g x(n)e™“". 1= g x(n)e™ " = X(w)
n=—o00 n=—o00
Therefore, X(w) is periodic with a period of 2.
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

» Since X(w) = X(w + 27), when dealing with discrete
frequencies, only a continuous frequency range of length 27
(representing one period) needs to be considered.

» Minimum frequency for w = 2k7, k € Z
» Maximum frequency for w = (2k + 1)w, k € Z
» Convention is to use w € [0,27) or w € (—, 7]

» Frequency range of a discrete-time signal is considered to be
w € (—m, 7]

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 25/ 61

Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

» Continuous-Time Sinusoids: Frequency and Rate of Oscillation:

x(t) = Acos(wt + ¢)

Rate of oscillation increases as w increases (or T decreases).
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Discrete-Time Fourier Analysis DTFT

w smaller
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Discrete-Time Fourier Analysis DTFT

w larger, rate of oscillation higher

2m

i
il
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Discrete-Time Fourier Analysis DTFT

Periodicity of the DTFT

» Discrete-Time Sinusoids: Frequency and Rate of Oscillation:

x[n] = Acos(Q2n + ¢)

Rate of oscillation increases as €2 increases UP TO A POINT then
decreases again and then increases again and then decreases again
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Discrete-Time Fourier Analysis  DTFT
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Discrete-Time Fourier Analysis DTFT

z[n] =cos(0-n) =1,Q=0 z[n] = cos(mn/8),Q = /8

[MINIMUM OSCILLATION] m
(®)

os(mn/2),Q = 7/2 z[n] = cos(mn), Q2 =

O -

I6 b -
gy

z[n] = cos(mn/4),Q =

(e}

/4

z[n] = cos(3mn/2),Q = 37/2

|

TETTTTTE I

. [MAXIMUM OSCILLATION]

z[n] = cos(Trn/4),Q = Tr/4  x[n] = cos(15mn/8),Q = 157/8

M

AR
|

z[n] = cos(2mn), Q = 27

] : .
i l“ I
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Discrete-Time Fourier Analysis DTFT
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Discrete-Time Fourier Analysis DTFT

DTFT Theorems and Properties

Property Time Domain Frequency Domain
Notation: x(n) X(w)
x1(n) Xi(w)
X2(n) X1 (w)
Linearity: aixi(n) + axx2(n) a1 Xi(w) + a2 X2(w)
Time shifting: x(n — k) e JwkX(w)
Time reversal x(—n) X(—w)
Convolution: x1(n) * x2(n) X1 (w)Xz(w)
Correlation: Faxo (1) = x1(1) * x2(=1)  Sxyx (w) = X1(w)Xo(—w)
= X1 (w) X5 (w) [if x2(n) real]
Wiener-Khintchine:  ro (1) = x(1) % x(—1) Sx(w) = [X(w)?

among others ...
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Discrete-Time LTI Filtering

LTI Filtering

y(n) = Y x(k)h(n— k)
k=—0c0
Y(w) = Hw)X(w)
where -
x(n) +— X(w)
h(n) <25 H(w)
F
y(n) = Y(w)
H(w) = [H(w)e®«
|[H(w)] = system gain for freq w
/H(w) =©(w) = phase shift for freq w
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Discrete-Time LTI Filtering

Complex Nature of X(jw)

Recall, Fourier Transform:
X(jw) = /Oo x(t)e¥tdt € C
and Inverse Fourier Transform:
x(t) = 2:;/0; X (jw)e* dw

1 /0 , 1 [ .
= — X(jw)e'“t Il X(jw)ewt
o /700 (jw)e“ dw + 277/0 (jw)e“ dw

Note: If x(t) is real, then the imaginary part of the negative frequency sinusoids
(i.e., et for w<0) cancel out the imaginary part of the positive frequency
sinusoids (i.e., & for w>0)
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Discrete-Time LTI Filtering

Complex Nature of X(jw)

» Rectangular coordinates: rarely used in signal processing
X(jw) = Xr(jw) +J Xi(jw)

where Xg(jw), X;(jw) € R.
» Polar coordinates: more intuitive way to represent frequency content

X(jw) = |X(jw)| e/<XU)

where [ X(jw)|, ZX(jw) € R.
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Discrete-Time LTI Filtering

Magnitude and Phase of X(jw)

» |X(jw)|: determines the relative presence of a sinusoid e/** in

x(t)

» /X(jw): determines how the sinusoids line up relative to one
another to form x(t)
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Discrete-Time LTI Filtering

Magnitude and Phase of X(jw)

x(t) = %/_00 X(jw)e“tdw

1 o0

= 5 X (jw)| e“XU) et gy
™ — 00
1 o0 . .

= 3 X (jw)| &Lt XUD dg,
™ — 00

> Recall, e/(“t+<X02)) = cos(wt 4+ £X(jw)) + jsin(wt + ZX(jw)).
> The larger |X(jw)| is, the more prominent e/t is in forming x(t).

> /X(jw) determines the relative phases of the sinusoids (i.e. how they line
up with respect to one another).
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Discrete-Time LTI Filtering

LTI Filtering

<
—
]
~—~
Il
X
—~
==
~—
>
—
o]
I
==
~

where

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis

39 /61

Discrete-Time LTI Filtering

LTI Systems as Frequency-Selective Filters

» Filter: device that discriminates, according to some attribute of
the input, what passes through it

» For LTI systems, given Y(w) = H(w)X(w)
» H(w) acts as a weighting or spectral shaping function of the
different frequency components of the signal

» LTI system is known as a frequency shaping filter

LTI system & filter
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Discrete-Time LTI Filtering

Causal FIR Filters

Definition: a discrete-time finite impulse response (FIR) filter is one
in which the associated impulse response has finite duration.

y(n) = > h(k)x(n— k)
= ST (k)x(n— k)

» lower limit of k = 0 is from causality requirement

» upper limit of 0 < M — 1 < oo is from the finite duration
requirement; in this case the support is M consecutive points
starting at time 0 and ending at M — 1
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Discrete-Time LTI Filtering

Causal lIR Filters

Definition: a discrete-time infinite impulse response (IIR) filter is one
in which the associated impulse response has infinite duration.

y(n) = > h(k)x(n—k)
= ‘ h(k)x(n — k)

» lower limit of k = 0 is from causality requirement

» necessary upper limit of oo is from the infinite duration
requirement
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Discrete-Time LTI Filtering

LCCDEs

Linear constant coefficient difference equations (LCCDEs) are an
important class of filters that we consider in this course:

y(n) = —Zaky(n—k)—l—Zbkx(n—k)

They have a rational system function:

M _ -
Soro bz 7k polynomial in z

H(z) = =

1+ ZLV:1 axz—%  another polynomial in z

Depending on the values of N, M, a, and b, they can correspond to
either FIR or IIR filters.
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Discrete-Time LTI Filtering

LCCDEs

Q: Why does an LCCDE have a rational system function?
N M
y(n) = = ay(n—k)+> bx(n— k)
k=1 k=0
N M
ay(n) = - Zaky(n — k) + Z bix(n—k) a=1

k=1 k=0

N M

Z ay(n—k) = Z bex(n — k)

k=0 k=0

N
Z{Z aky(n—k)}
k=0

M
Z{> " bx(n - k)}

k=0

N M
SazZ{y(n-k) = Y bZix(n— k)
k=0

k=0

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 44 / 61




Discrete-Time LTI Filtering

z-Transform Properties

Property Time Domain z-Domain ROC
Notation: x(n) X(z2) ROC: n <|z| < n
x1(n) Xi(z) ROC;
xa2(n) Xi(z) ROC,
Linearity: aixi(n) + axxa(n) a1 X1(z) + a2Xz2(z) At least ROCi;N ROC,
Time shifting: x(n— k) z7kX(z) ROC, except
z=0(if k > 0)
and z = oo (if k < 0)
z-Scaling: a"x(n) X(a=1z) la|lr < |z| < |aln
Time reversal x(—n) X(z7h) % <|z| < %
Conjugation: x*(n) X*(z*) ROC
z-Differentiation:  n x(n) —z%ﬁz) n<l|z|<n
Convolution: x1(n) * x2(n) Xi1(z)X2(z) At least ROC;N ROC,
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Discrete-Time LTI Filtering

LCCDEs

N M
daZ{y(n—k)} = > b Z{x(n—k)}
. %/_/ _ %/_/
k=0 z7kY(z) k=0 z7kX(2)

N M
Z az kY(z) = Z bz *X(2)
k=0 k=0

N M
Y(2) Z az k= X(z2) Z bez™k
k=0 k=0

M _
H(z) = Y(2) _ Loz - ap=1
X@) © SN e
M _ M _
H(z) = > k=0 bz 3 > ko bkz s

1-z2704 ZLVZI az k 1+ ZLVZI axz—k

Discrete-Time LTI Filtering

FIR LCCDEs

y(n) = - bex(n—k) = > h(k)x(n— k)
H(z) = 71bkz_k

Please note: upper limit is M — 1 opposed to M (which is used for the general

LCCDE case) to meet common FIR convention of an M-length filter.

By inspection:

0 otherwise

< n< —
h(n)—{bn 0<n<M-1
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Discrete-Time LTI Filtering
Block Diagram Represenation
z1(n)
Adder: y(n) = x1(n) + x2(n)
x2(n) 33
= —1
Unit delay: z(n) 27t y(n) = w(n -1)
Constant multiplier: x(n) a a x(n)
= 1
Unit advance: n z y(n) = z(n 4

z1(n) ~ y(n) = w1 (n)az(n)

Signal multiplier: ?
za(n)
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Discrete-Time LTI Filtering

FIR Filter Implementation

M-1
y(n) = bix(n— k)
k=0
z(n) 27t 271 21
bo b1 by b3
O ® + —y(n)
Requires:
» M multiplications
» M — 1 additions
» M — 1 memory elements
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Discrete-Time LTI Filtering

IR LCCDEs

y(n) = — Zaky(n — k) + Z bix(n — k)

M
SV bz - 1
H(z) = —=55=———=> bz " TR—
1+> ,akz s 1+, az

J/

Hi(z) Ha(z)

— Hi(z)- Hal2)

z(n)=> Hi(z) | Ha(z) > y(n)
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Discrete-Time LTI Filtering

Direct Form | [IR Filter Implementation

x(n) ) by O ~ y(n)
—1
Zl—b>1—><+>
1
z by

bar

LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Discrete-Time LTI Filtering

Direct Form Il IR Filter Implementation

z(n) |~ bo ~ Y(n)
¥ \_/

e ©)

bar

LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Discrete-Time LTI Filtering

Direct Form Il lIR Filter Implementation
bo

z(n) ® v ® y(n)
271 b
Q—A == 0
27! b

—a
® e ()
271 b
N —a3 T 3 e
@ _GM—ll bar—1 +
L1
—Aan | bM
For N>M
—ap

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory
locations

Discrete-Time LTI Filtering

Stability of Rational System Function Filters

y(n) = =) aw(n—k)+> bex(n— k)

Zzﬂ:o bz
1 + ZLV:1 aszk

Recall, for BIBO stability of a causal system the system poles must
be strictly inside the unit circle.

Why?

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 54 / 61

Dr. Deepa Kundur (University of Toronto)  Discrete-Time LTI Systems and Analysis 53 /61
Discrete-Time LTI Filtering
Stability of Rational System Function Filters
Recall,
[ee]
g |h(n)] < oo <= LTI system is stable
n=—oo
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

H(z) = > h(nz™"
HZ) < > [h(m)z "= > [h(n)]|z"]

When evaluated for |z| = 1 (i.e., on the unit circle),

HZ) < > lh(n)|< oo

n=—oo

Therefore, BIBO stability = ROC includes unit circle
ROC includes unit circle = BIBO stability is also true.
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters

Therefore,
0 f#(Z) R()C
E |h(n)| < o0 .LTl system < includes
is stable .
n=—o0 unit circle

For a causal rational system function, the ROC includes the unit
circle if all the poles are inside the unit circle.
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Discrete-Time LTI Filtering

Stability of Rational System Function Filters
... because
Im(z) Im(z)

Re(z) Re(z)

Causal: z(n) =0 n<0 Anticausal: z(n) =0 n >0

Im(z)

T
——}——»Re(z)
/]

ROC: r; < |z| < rq
Two-sided = Causal + Anticausal
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

» Autoregressive moving average (ARMA) filter:

y(n) = — Zaky(n — k) + Z bix(n — k)

Zyzo bz ™"
H(z) 022

» has both poles and zeros
» IIR
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:
» Moving average (MA) filter:

=
=

Il
M=

bix(n — k)

k=0

bkz’k

=
N

Il
M=

>
I

0

» has zeros only; no poles; is BIBO stable
» FIR
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Discrete-Time LTI Filtering

ARMA, MA and AR Filters

Other commonly used terminology for the filters described include:

» Autoregressive (AR) filter:

y(n) = => awy(n—k)
1

H(z) =
) 1+ Yy akz

» has poles only; no zeros
» |IR
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